
Image-Guided Streamline Placement

Greg Turk, University of North Carolina at Chapel Hill

David Banks, Mississippi State University

Abstract

Accurate control of streamline density is key to producing several

effective forms of visualization of two-dimensional vector fields.

We introduce a technique that uses an energy function to guide the

placement of streamlines at a specified density. This energy func-

tion uses a low-pass filtered version of the image to measure the

difference between the current image and the desired visual den-

sity. We reduce the energy (and thereby improve the placement of

streamlines) by (1) changing the positions and lengths of stream-

lines, (2) joining streamlines that nearly abut, and (3) creating new

streamlines to fill sufficiently large gaps. The entire process is iter-

ated to produce streamlines that are neither too crowded nor too

sparse. The resulting streamlines manifest a more hand-placed ap-

pearance than do regularly- or randomly-placed streamlines. Ar-

rows can be added to the streamlines to disambiguate flow direc-

tion, and flow magnitude can be represented by the thickness, den-

sity, or intensity of the lines.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image genera-

tion; I.4.3 [Image Processing]: Enhancement.

Additional Key Words: Vector field visualization, flow visualiza-

tion, streamline, random optimization, random descent.

1 Introduction

The need to visualize vector fields is common in many scientific

and engineering disciplines. Examples of vector fields include ve-

locities of wind and ocean currents (e.g., for weather forecasting),

results of fluid dynamics simulation (e.g., for calculating drag over

a body), magnetic fields, blood flow, components of stress and strain

in materials, and cell migration during embryo development. Ex-

isting techniques for vector field visualization differ in how well

they represent such attributes of the vector field as magnitude, di-

rection, and critical points.

This work was motivated by two recent innovations for displaying

vector fields: spot noise [van Wijk 91] and line-integral convolu-

tion (LIC) [Cabral & Leedom 93]. We wondered how to compare

the results of the techniques. What is the gauge that measures how

well a certain method depicts a vector field? Evidently the place-

ment of the graphical elements is tremendously important. The

graphical elements (e.g. coherent streaks) should follow the flow

direction, but they should not be spaced too close together or too far

apart. Both spot noise and LIC can produce images where stream-

aligned streaks are evenly distributed, but that is more an indirect

result than a guiding principle in the algorithms. How can the stream-

lines be positioned to explicitly satisfy a desired distribution?

The elegant hand-designed streamline drawings in physics texts (for

example in Figure 1a) provide ample inspiration for vector field

illustrations. The streamlines in such illustrations are placed so that

no region is devoid of streamlines and no region is overpopulated

with them. The eye is drawn to regions where the density of ink in

one place differs greatly from that of the surrounding region. When

the density of the streamlines is allowed to vary in such illustra-

tions, it is usually to represent field magnitude, where denser line

spacing shows greater field strength.

Bertin shows another effective hand-designed representation of flow

where the direction of ocean current is represented by chains of

arrows that are laid out end-to-end so that the eye connects arrows

into streamlines and thus gets a stronger sense of flow orientation

[Bertin 83]. The success of this representation depends on having

chosen proper endpoints for these chains so that nowhere does the

image become cluttered. The techniques presented in our paper

will permit designers of vector-field visualizations to control stream-

line-spacing automatically in order to achieve results that mimic

hand-drawn figures.

2 Previous Work

A streamline is an integral curve that is everywhere tangent to a

given vector field (see, for example, [Kundu 90]). Many research-

ers have examined how to effectively and accurately integrate

streamline paths through both regular and irregular meshes. To our

Figure 1: (a) Hand-designed illustration of flow around a

cylinder, taken from [Feynman 64] and used with permis-

sion from the California Institute of Technology. (b) Auto-

matically generated flow lines using streamline optimization.

Data is from fluid flow simulation.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

© 1996 ACM-0-89791-746-4/96/008...$3.50

453

surprise, however, discussions of how best to place streamlines are

almost nonexistent in the visualization literature. We are aware of

three techniques that are used to “seed” streamlines within a vector

field: regular grids, random sampling, and user-specified seed points

for initiation of streamlines. Our knowledge of random and regular

grid seeding of streamlines is almost entirely limited to private com-

munications with visualization researchers. The one published tech-

nique that we have found uses particle traces on a 3D surface that

are terminated when they come too close to the paths of other par-

ticles [Max et al. 94]. The virtual wind tunnel (a 3D immersive

display system for flow visualization) allows users to initiate stream-

lines singly or in bundles [Bryson & Levit 91].

Recently there have been several exciting developments in display-

ing vector fields using texture synthesis. Line integral convolution

is a procedure that stretches a given image along paths that are dic-

tated by a vector field [Cabral & Leedom 93] [Forsell 94] [Stalling

& Hege 95]. Spot noise is a method of creating noise-like texture

by compositing many replicas of a shape [van Wijk 91] [de Leeuw

& van Wijk 95]. When the shapes that create spot noise textures are

stretched according to a given vector field, the resulting images

illustrate the vector field’s direction. Both line integral convolution

and spot noise are well-suited to depicting the fine detail of flow

orientation. They are somewhat less successful (in a single, static

image) at showing the flow magnitude; moreover, the local flow

direction is ambiguous in the sense that it can be interpreted to be

either of two directions that are 180 degrees apart.

A very different method of illustrating vector field data is to show

the important topological features of the flow. In general, stream-

lines that lie in a small neighborhood follow nearly-parallel paths.

The exceptions (in a continuously differentiable vector field) occur

in neighborhoods of points with zero-valued vectors. Several re-

searchers have developed techniques to identify these critical points

(sources, sinks, spirals, centers, and saddles) and the streamlines

that issue from them in eigen-directions [Globus et al. 91] [Helman

& Hesselink 91]. These particular points and curves partition a vec-

tor field into simpler regions where a texture-based method suffices

to display details of the vector field [Delmarcelle & Hesselink 94].

The remainder of this paper is organized as follows. In Section 3

we present a key concept in our work– a visual quality measure for

flow illustrations– and show how this measure can create visually

pleasing illustrations containing short arrows. In Section 4 we dem-

onstrate the creation of illustrations that contain well-placed long

streamlines. Section 5 discusses how these streamlines can be en-

hanced to produce a final illustration. We conclude by discussing

other applications that might use optimization based on a visual

quality measure.

3 Placement of Streamlets

Hedgehog illustrations (sometimes called vector plots) are perhaps

the most commonly used method of illustrating a two-dimensional

vector field. These are short field-aligned segments or arrows whose

base points lie on a regular grid (see Figure 2). The lengths of the

segments are often varied according to the field magnitude. The

popularity of hedgehog illustrations is almost surely due to their

ease of implementation. The resulting images can be slightly en-

hanced by using short streamlines (streamlets) that curve with the

flow instead of using straight lines. We use such streamlets in our

figures 2, 3, and 4.

Two artifacts are often present in hedgehog plots. First, the human

eye often picks out runs of adjacent arrows and groups them to-

gether visually, despite the fact that these groups are an artifact of

the underlying grid pattern and not related to the vector field being

Figure 3: (a) Short streamlines with

centers placed on a jittered grid (top);

(b) filtered version showing bright and

dark regions (bottom).

Figure 4: (a) Short streamlines placed

by optimization (top); (b) filtered ver-

sion showing fairly even gray value (bot-

tom).

Figure 2: (a) Short streamlines with

centers placed on a regular grid (top);

(b) filtered version of same (bottom).

454

illustrated. This effect can be seen in Figure 2a where three vertical

columns of streamlets erroneously suggest the presence of three

parallel field lines. One way to lessen this problem is to oversample

the seed points that produce the short segments. The drawback with

oversampling is that the resulting image becomes so filled with

streamlets that the eye can no longer discern individual elements. A

better solution to the sampling problem is to introduce noise, slightly

jittering the positions of the arrows to make their regularity less

noticeable [Crawfis & Max 92] [Dovey 95]. This strategy is illus-

trated in Figure 3a.

The second problem with hedgehogs is that as streamlets are placed

close together, portions of neighboring arrows come very close to

one another and may even overlap. Jittering the streamlets may in

fact make the overlaps more frequent (compare Figures 2a and 3a).

The twin problems of overlapped streamlets and grid regularity both

distract the viewer from the data being visualized; we would like to

reduce such distractions. We achieve this goal by using an energy

measure to guide streamlet placement and thus improve the quality

of the final image.

3.1 Optimization of Streamlet Positions

In the discussion that follows, S represents a collection of streamlets

sn for a given vector field V. The elements of S are idealized zero-

width curves, distinct from the geometric primitives (e.g., line seg-

ments or anti-aliased curves) employed to render them. We denote

by I(x,y) the idealized two-dimensional image of the streamlets in

S, with I(x,y) = 0 except along streamlines in S where it behaves

like the Dirac delta function.

Our method creates hedgehog plots by incrementally improving an

initial collection of streamlets. The initial collection can be created

by placing the streamlets either on a regular grid or in some random

fashion, and the final results appear to be independent of which

initialization method is chosen. An image may be improved by

selecting one streamlet at random and moving it a small amount in

a random direction. If the resulting image has a lower energy mea-

sure (lower energy means better quality) then that change is ac-

cepted. This process is repeated many times, terminating when the

energy reaches a threshold or when acceptance of random changes

become rare. Such a process is sometimes referred to as random

optimization or random descent. Figure 4a shows the result of this

algorithm applied to the same vector field as in Figures 2 and 3.

Notice how the streamlets of Figure 4 are more evenly spaced than

in Figures 2 and 3.

The energy measure that guides the optimization is based on a low-

pass-filtered (blurred) version of the image of S which is compared

against a uniform gray-level. Let L ∗ I represent a low-pass-filtered

version of the image I, where L is a given filter function. If t is the

target gray-scale value, then we define the energy measure E as the

squared error integrated over the domain:

 E(I) = ∫x ∫y [(L ∗ I) (x,y) - t]2 dx dy

The motivation for this energy measure is that the eye is drawn to

regions of an illustration where the density of ink is uneven, and in

a hedgehog plot we do not want to draw the eye to any inadvert-

ently bright or dim places. The streamlets should be evenly placed

across the image instead of being crowded in any one location. A

blurred image contains high values where the streamlets are too

close together and low values in regions that are devoid of streamlets.

Salisbury and his co-workers made similar used of low-pass filter-

ing to decide whether or not to lay down strokes for pen-and-ink

illustrations [Salisbury et al. 94]. Figure 2b and 3b show low-pass-

filtered versions of Figures 2a and 3a. Locations where two

streamlets crowd together in Figures 2a and 3a appear as a high

intensity (black) spot in Figures 2b and 3b. Figure 4a and 4b show

the corresponding images after the optimization routine has been

run. The intensity level in Figure 4b is more uniform than in Fig-

ures 2b and 3b.

When the optimization process is animated it looks as though each

streamlet is pushing away other nearby streamlets, reminiscent of

methods that use repulsion between points to evenly distribute

samples on a surface [Turk 91] [Witkin & Heckbert 94]. This simi-

larity should come as no surprise, since both methods are designed

to minimize an energy term by making small changes in the posi-

tion of graphical elements. In fact, we too have implemented

streamlet-repulsion as a method for creating hedgehog plots. The

visual results of the repulsion method are very similar to the results

of random optimization, and the running times are also similar. We

pursued the random-descent technique rather than the repulsion

method because we expected random descent to be easily exten-

sible to the more complicated task of placing longer streamlines

within V (Section 4).

3.2 Implementation of Low-Pass Filter

This section describes the implementation details for efficiently

computing the energy term for a given set S of streamlets. There

are three components to this computation: the representation of the

blurred image, the low-pass filter used to perform the blur, and the

manner in which we apply the filter to calculate this blurred image.

It would be computationally prohibitive to calculate the energy term

E by actually filtering an entire image each time we consider a ran-

dom change to some streamlet sn
. Instead, we associate with sn

certain information about how it affects the low-pass-filtered im-

age. The blurred image B contains pixel values for an image of S.

A streamlet maintains a list of pixels that it affects in B, together

with the values that it contributes to each of those pixels. To test

whether moving sn
 would improve the value of E, we first remove

the contribution of sn
 from its list of pixels in B and correct the

value of E based on the changes. Next, we add in the pixel contri-

butions for the new position of sn
 and recalculate E. We retain the

change to sn
 if the new value of E is better; otherwise we revert to

the old position for sn
. The (un-blurred) image I is purely a concep-

tual aid, and at no time during optimization do we generate an ac-

tual representation of I.

Two criteria influence the choice of a filter to create the blurred

image B. First, the filter kernel should have compact support so

that filtering operations are fast to compute. Second, the point-

spread function should fall off smoothly so that the quality measure

changes smoothly with small changes in streamline position. This

allows the optimization to detect changes in E even for small changes

in the image.

We use the following circularly symmetric filter kernel (from a ba-

sis function of cubic Hermite interpolation) to blur the image:

 K(x, y) = 2r3 - 3r2 +1, r < 1

 K(x, y) = 0, r >= 1

where r = sqrt(x2 + y2) / R.

This function has a similar shape to a two-dimensional Gaussian

filter, but it falls off to zero at a distance R away from its center.

The ideal density for a set of streamlines may be varied across the

image by stretching or shrinking the radius R of the filter.

455

We sample a streamlet sn
 at a finite number of points, resulting in a

piecewise-linear curve composed of zero-width line segments. We

calculate the filtered image of each segment by considering those

pixels in the filtered image that are within a distance R of the seg-

ment. The contribution of the line segment to a particular pixel in

the filtered image can quickly be computed by a variant of the tech-

nique used by Feibush for polygon anti-aliasing [Feibush et al. 80].

The line segment is rotated about the pixel center so that it lies

horizontally, and then two table-lookups based on the segment’s

endpoints are used to determine the kernel-weighted contribution

to the pixel. We have found that a very coarse low-pass filtered

image suffices to guide the placement of streamlines. Typically we

use a filter kernel that extends just two or three pixels in radius.

The filtered images in Figures 2, 3 and 4 were computed at a much

higher resolution than this for expository purposes.

4 Long Streamlines

This section describes how the optimization technique from Sec-

tion 3 can be extended to create images containing long, evenly-

distributed streamlines. One goal of this procedure is to enable fine

control over the distance between adjacent streamlines, whether that

target spacing be constant-valued or position-dependent. A second

goal is to avoid interrupting the streamlines. Since each endpoint

of a streamline distracts from the visual flow of the image, our im-

ages should favor fewer, longer streamlines over numerous, shorter

streamlets. It is not always possible to satisfy the two goals of uni-

form streamline separation and infrequent streamline breaks. In

places where the vector field converges (e.g. near a sink) these two

goals are at odds with one another. Our solution to the dilemma is

to let the energy function be the arbiter between uniform spacing

and long streamlines.

The optimization procedure for creating a hedgehog plot consists

of repeatedly considering small changes to the positions of the

streamlets, accepting only the changes that improve the measure E.

The procedure for creating a set of longer streamlines sn
 is similar.

We improve a set S of streamlines by considering several kinds of

changes to the streamlines. In addition to changes in a streamline’s

position, the algorithm also allows the operations of streamline in-

sertion/deletion, lengthening/shortening of streamlines, and com-

bination of two streamlines, end-to-end, into a single streamline.

We use the same quality measure E to determine which changes

will be accepted. In pseudo-code, the process for creating the col-

lection S of long streamlines is as follows.

 S ← null { S begins as an empty set of streamlines }

 { find an initial group of streamlets }

 foreach position (x,y) on a grid

 insert streamlet s at (x,y) into S to produce S’

 if E(S’) < E(S) then

 S ← S’

 { improve the collection of streamlines in S }

 repeat until accepted changes are rare

 choose an operation

 apply operation to random element(s) of S to produce S’

 if E(S’) < E(S) then

 S ← S’

Figure 5b shows a collection of streamlines created with the above

optimization procedure. The streamlines are evenly spaced and their

Figure 5: (a) Long streamlines with centers regularly placed

on a grid (top); (b) Streamlines placed by density-based op-

timization (bottom). This data is a randomly generated vec-

tor field.

endpoints are generally located where the vector field diverges or

converges. For comparison, Figure 5a shows long streamlines whose

seed points lie on a regular grid so that streamline density varies

greatly.

4.1 The Allowable Operations

The primitive streamline operations that we employ to improve the

quality of an image are described in more detail below.

Move: Change the position of the seed point of the stream-

line. Each streamline is defined in terms of this seed

point and a length to travel forward and backward

through the flow.

456

Insert: Create a new streamlet.

Delete: Remove a streamline entirely from S.

Lengthen: Add a positive value to the length of the streamline

(relative to the seed point) in the forward or back-

ward direction.

Shorten: Subtract from the length of the streamline (relative

to the seed point) in the forward or backward direc-

tion.

Combine: Connect two streamlines whose endpoints are suffi-

ciently close to one another. The location of the join

is a weighted average of the two endpoints based on

the relative lengths of the streamlines. The length

of the new streamline is the sum of the lengths of the

two parent streamlines.

Why do we allow so many kinds of changes during the optimiza-

tion process? Presumably we could create any possible collection

of streamlines using only insert and delete operations if we allow

newly-inserted streamlines to assume any length and position.

However, an actual implementation of the optimization process us-

ing such a restricted set of operations would be prohibitively slow

to converge. We use the larger complement of operations so that

the optimization procedure can move smoothly through the space

of all collections of streamlines. For example, suppose that joining

two particular streamlines would greatly improve the measure E.

The optimization routine could choose at random to remove each

of these streamlines and, also at random, create another streamline

that fills the void left by the two that were removed. It is very

unlikely that these three independent events would happen by

chance. Explicitly providing a combine operation makes this small

change in visual appearance much more likely to occur.

We find candidate pairs of streamlines for the combine operation

by querying a data structure that maintains the positions of stream-

line endpoints and can return pairs of endpoints whose distance is

less than a given tolerance. There are several ways in which we can

favor joining together streamlines. We could add a term to the en-

ergy function that gives a higher energy to those images that con-

tain more streamlines. Instead of this approach, however, we choose

to accept combine operations if they result in a new value of E that

is no greater than the old energy value plus a tolerance.

We can animate the optimization process by displaying the collec-

tion of streamlines every time a favorable change occurs. An ani-

mation of the optimization indicates the role of each operation. First,

streamlets are inserted throughout the image. After this initial phase

is finished the result looks much like a hedgehog plot using a jit-

tered grid, reminiscent of a Poisson-disk distribution of points. Next,

many of the streamlines gradually lengthen. As streamline end-

points approach one another, pairs of streamlines combine to form

longer streamlines. This dual process of lengthening and joining

creates many longer streamlines that typically follow nearly-paral-

lel trajectories. Gradually the changes in the image become minor,

and many of the changes at this stage are streamlines moving a

small distance, evening the spacing between neighbors. Changes

are accepted with decreasing frequency, and the process is termi-

nated when accepted changes become sufficiently rare.

4.2 Acceleration Using an Oracle

The stochastic optimization produces good results, but it spends

considerable time entertaining changes that are unlikely to improve

the image. The method can be accelerated by using an oracle that

suggests changes that are likely to decrease the energy function E.

An oracle is only effective if it can be consulted quickly and its

answers are generally reliable. The oracle described in this section

typically speeds up the convergence of the optimization by a factor

of three to five.

There are two systematic ways for an oracle to select changes to

propose: an image-based approach, and a streamline-based ap-

proach. Our oracle uses a combination of the two. The image-

based approach examines the blurred image B to identify places

where the streamlines are too sparse. The oracle makes insert sug-

gestions in these places. The streamline-based approach examines

the neighborhood of each individual streamline to decide if an op-

eration applied to the streamline is likely to improve the image.

The oracle uses information gathered from around a streamline to

decide whether to suggest a lengthen, shorten or move operation.

More precisely, the oracle keeps a running measure of how “ener-

getic” a given streamline is, and it maintains a priority queue that

orders the streamlines based on their individual level of energy.

When consulted, the oracle returns one of the most energetic stream-

lines, along with a suggestion of how to lessen its measure of en-

ergy.

The energy of a streamline is the sum on three factors: “desire” to

lengthen, “desire” to shorten, and “desire” to move. Each of these

factors is calculated by sampling the image B at a small number of

positions near the streamline. The desire to lengthen is computed

by comparing the target gray level t with the image values a short

distance beyond the endpoints of the streamline. The lower these

values are with respect to t, the greater the streamline desires to

grow into this empty region. The desire to shorten is found by

sampling B on either side of the streamline endpoints. If these val-

ues are too high, the streamline desires to shrink. The desire to

move is computed by comparing the image values on one side of

the streamline with the values on the other side. The greater the

difference between these two values, the more the streamline de-

sires to change its position. We typically consult 20 samples of the

image B to determine each of the three factors that determine a

streamline’s energy. This sampling is an inexpensive task in com-

parison to creating the entire path of a streamline and then low-

pass-filtering the resulting curve.

The oracle need not bother suggesting that a streamline be deleted.

Every time the optimization routine attempts to modify a stream-

line it can easily check whether entirely removing the streamline

improves the total energy measure E of the image. This is done by

evaluating E after the contribution of the streamline to the image B

is removed and before the altered streamline’s effect is added to B.

The oracle is important for improving efficiency, but it is the en-

ergy measure E that drives the optimization. The oracle is used

purely as a source of suggestions for how to reduce E, not as a

source of directives that are applied blindly. The oracle’s sugges-

tions are only accepted if the change improves the image quality.

We have found it effective for the oracle to propose 50% of the

changes, and for the other changes to be chosen completely at ran-

dom. Thus any change to the collection of streamlines is possible,

which makes it unlikely that the optimization will overlook a worth-

while improvement arising from any systematic bias of the oracle.

4.3 Intensity Tapering at Streamline Ends

Some streamlines must terminate within a region of converging flow

or else the target density of the image cannot be preserved there.

457

Figure 6: Field magnitude has been redundantly mapped

onto streamline density and width. Large magnitude is indi-

cated by dense, thin curves.

its length that indicate where to begin linearly fading to the back-

ground color at either endpoint. This intensity tapering is used to

weight the contribution of the streamline to the filtered image B.

Streamline tapering allows the optimization to find an even closer

match to the ideal gray-scale value in regions near the streamline

ends. In practice we have found it most effective to let intensity

tapering be a separate optimization phase, after the streamlines have

settled into their final position. In this final phase each streamline

is allowed to perform only two operations: 1) changes in length,

and 2) changes in the locations at which to begin intensity tapering.

Performing the intensity tapering after long streamlines have been

formed avoids the possibility that the optimization will produce many

short, intensity-tapered streamlines to satisfy the target density.

Figures 6 and 8 are rendered using the tapering information to modu-

late streamline width and intensity, respectively.

Saito and Takahashi have demonstrated a similar tapering effect for

drawing contour lines of a scalar field [Saito & Takahashi 90]. They

use information about the gradient of the scalar field to guide the

fading out of the contour lines. Their technique can also be used for

drawing streamlines of vector fields where the divergence is zero

everywhere, but it has no obvious generalization when the diver-

gence is non-zero (e.g. fields with sources and sinks).

4.4 Optimization Issues

Two recent techniques in computer graphics provided inspiration

for the optimization approach described here. The first of these is

the work by Andrew Witkin and Paul Heckbert for distributing par-

ticles over an implicit surface [Witkin & Heckbert 94]. In their

constrained optimization method, they let a small number of seed

particles repel one another in order to distribute themselves evenly

over a surface. They found that it is helpful to allow the initial

particles to grow, split, shrink or die to accommodate any change in

surface area when the surface geometry is being edited. Their op-

erations on particles are analogous to our operations on streamlines.

Figure 7: Chains of arrows indicate wind direction and magnitude over Australia. The arrows were deposited along streamlines

created by streamline optimization. Higher velocity is indicated by larger arrows. The vector field data was calculated using a

numerical weather model.

The resulting break of the streamline is visually jarring if it is ren-

dered as a rectangular end cap. We make the termination less abrupt

by gradually decreasing the width or intensity of the streamline near

its endpoint. We can gently fade a streamline by allowing yet an-

other operation, namely streamline tapering. Each streamline car-

ries with it (in addition to its center and length) two positions along

458

A second source of inspiration was the mesh optimization work by

Hugues Hoppe and co-workers [Hoppe et al. 93]. Their technique

uses three fundamental operations to automatically simplify a po-

lygonal mesh: edge split, edge collapse, and edge swap. They used

an energy measure to guide the optimization by random descent.

The high quality of the results produced by this method encouraged

us to try random descent in streamline optimization.

One frequently-voiced concern about optimization techniques is that

the behavior of the system is highly sensitive to the values of many

parameters. An example of such a parameter for streamline optimi-

zation is the maximum distance a streamline can move. The fear is

that the system may require a large amount of “parameter tweak-

ing.” Happily, we have found it unnecessary to change our param-

eter settings between datasets. The single parameter that we specify

for an illustration is the desired distance between neighboring stream-

lines (which can even be position-dependent). Other parameters

are derived from this target-distance. We believe that researchers

who implement the techniques described here will not have diffi-

culty replicating our results. To relieve the burden of re-imple-

menting our technique, we are making our source code publicly

available at http://www.cs.msstate.edu/~banks/IGSP.

5 Binding Visual Attributes to Streamlines

There is an important distinction between a streamline (a zero-width

integral curve) and the geometric elements associated with its dis-

play. A simple approach for displaying a streamline is to draw an

anti-aliased curve that connects vertices sampled along the stream-

line, but such a constant-width, constant-intensity curve is not nec-

essarily the best way to visualize the flow. For example, the curves

are unchanged if all the vectors reverse direction in the underlying

vector field; that is, the sense of flow direction is ambiguous in a

simple streamline display. Arrows can be inserted into the image to

disambiguate the flow direction. We apply two different techniques

to bind arrow-shaped glyphs to streamlines. The first technique is

to traverse the streamlines and deposit an arrow whenever the inte-

grated arc-length along a streamline is sufficient to accommodate

the arrow’s length. Such an object-order traversal is appropriate

for binding a long chain of glyphs onto a streamline. The second

approach is to distribute arrow-glyphs uniformly throughout the

image and then snap them to the nearest point on a streamline. Such

an image-order traversal is appropriate for images with only a few

scattered arrows serving as reminders of the flow direction.

Often some important scalar quantity is associated with a vector

field. The scalar value might be the temperature or density in a

fluid flow, or it might be the magnitude of the vector field at each

point. We would like to bind visual attributes to display such a sca-

lar quantity along with the streamlines. The thickness and the

grayscale-intensity of a streamline offer two convenient visual at-

tributes to convey a scalar quantity. Figure 6 shows a vector field

whose magnitude is bound to the width of the streamlines and where

the streamlines themselves have been placed so that the scalar field

determines the distance between neighboring streamlines.

6 Results

In this section we show some examples of images constructed us-

ing the optimization method for positioning long streamlines. The

first example is Figure 1b, which illustrates a numerical simulation

of flow around a cylinder. The arrowheads in this figure disam-

biguate flow orientation in the eddies. Figure 7 shows computed

wind velocity in the vicinity of Australia. First, the long streamline

optimization method placed streamlines through the image. Then

arrows were bound to these streamlines. The size of the arrow indi-

cates the wind magnitude. The arrows line up head-to-tail so that

the eye can easily follow from one to the next, as is favored by

illustrators [Bertin 83]. Human-subject studies have shown that if

a graphical stroke varies in width from large to small, people have a

strong sense that the direction is towards the larger end [Fowler &

Ware 89]. This guided our choice of tapered arrows in Figure 7.

Another application of the streamline-placement technique is to cre-

ate iso-intensity contours that are evenly spaced. Consider the ef-

fect of highlighting several discrete intensity levels in a gray-scale

image: even if the intensity-values are chosen in equal increments,

the resulting contours are likely to clump together in some regions

and spread apart in others. Our optimization technique provides a

convenient way to adaptively sample the intensity values so that

the curves are uniformly distributed in the image. Figure 8 shows

how the technique can be applied to a color photograph. We con-

verted the image to monochrome, blurred it, and then calculated its

gradient vector field. We ran the optimization on the gradient vec-

tor field and on a vector field orthogonal to it (and thus aligned with

the iso-value lines). The two sets of streamlines that resulted were

combined and used as a mask to apply the original color values to

the grayscale image. The effect is akin to weaving, with constant-

intensity thread being used along the contours.

Our streamline optimization program was written in C++, and the

calculations for the figures herein were performed on a Silicon

Graphics Indigo2 with an R4400 processor operating at 250 MHz.

Figures 4 (a) and 5 (b) were created in under one minute, and the

streamlines for Figures 6, 7 and 8 required roughly 15 minutes each.

We expect that fine-tuning the code would improve the speed by a

factor of two to four.

7 Conclusion and Future Work

There are several logical extensions to the streamline optimization

method presented in this paper. This same process can be used to

create streamlines on curved surfaces by running the optimization

in the parametric space of the surface and correcting for mapping

Figure 8: “Pears.” The texture in this image was created by

combining streamlines in two directions: along the gradient

of the blurred intensity and at 90 degrees to the gradient.

Original photograph courtesy of Herb Stokes.

459

distortions. The technique could also be used to create streamlines

in three dimensions, although computational efficiency will prob-

ably become an issue. The density of 3D streamlines could be made

dependent on additional properties of the vector field, such as prox-

imity to vortex cores. Another research area is in creating illustra-

tions that reveal different levels of detail when the viewer is at vari-

ous distances.

We expect that the notion of guiding the placement of graphical

elements by a visual measure of quality will have applications be-

yond vector field visualization. For instance, a similar optimiza-

tion method might prove useful in placing graphical elements in a

texture. Another potential use for such techniques is for computer

generation of illustrations that have a hand-drawn appearance [Saito

& Takahashi 90] [Winkenbach & Salesin 94].

8 Acknowledgments

We thank Glenn Wightwick of IBM Australia and Lloyd Treinish

of the IBM T. J. Watson Research Center for the Australia wind

data. Earth image is courtesy of Geosphere, Inc. The fluid flow

data of Figure 1 was provided courtesy of David Rudy, NASA Lan-

gley Research Center. We thank Peggy Wetzel and Mary Whitton

for help in making video of this work. Funding for this work was

provided in part by the NSF Science and Technology Center for

Computer Graphics and Scientific Visualization. Travel support

was provided by ICASE and the NSF Engineering Research Center

at MSU.

9 Bibliography

[Bertin 83] Bertin, Jacques, Semiology of Graphics, translated from

French, The University of Wisconsin Press 1983.

[Bryson &Levit 91] Bryson, Steve and Creon Levit, “The Virtual

Wind Tunnel: An Environment for the Exploration of Three-Di-

mensional Unsteady Flows,” Proceedings Visualization ’91, San

Diego, California, October 22–25, pp. 17–24.

[Cabral & Leedom 93] Cabral, Brian and Leith (Casey) Leedom,

“Imaging Vector Fields Using Line Integral Convolution,” Com-

puter Graphics Proceedings, Annual Conference Series

(SIGGRAPH ’93), pp. 263–270.

[Crawfis & Max 92] Crawfis, Roger and Nelson Max, “Direct Vol-

ume Visualization of Three Dimensional Vector Fields,” Proceed-

ings of the 1992 Workshop on Volume Visualization, pp. 55–60.

[de Leeuw & van Wijk 95] de Leeuw, Willem C., and Jarke van

Wijk, “Enhanced Spot Noise for Vector Field Visualization,” Pro-

ceedings Visualization ’95, Atlanta, Georgia, Oct. 29 – Nov. 3, pp.

233–239.

[Delmarcelle & Hesselink 94] Delmarcelle, Thierry and Lambertus

Hesselink, “The Topology of Symmetric, Second-Order Tensor

Fields,” Proceedings Visualization ’94, Washington, D.C., October

17–21, pp. 140–147.

[Dovey 95] Dovey, Don, “Vector Plots for Irregular Grids,” Pro-

ceedings Visualization ’95, Atlanta, Georgia, Oct. 29 – Nov. 3, pp.

248–253.

[Feibush et al. 80] Feibush, Eliot, Marc Levoy and Robert Cook,

“Synthetic Texturing Using Digital Filters,” Computer Graphics

Proceedings, Annual Conference Series (SIGGRAPH ’80), pp. 294–

301.

[Feynman 64] Feynman, Richard P., Robert B. Leighton and Mat-

thew Sands, The Feynman Lectures on Physics, Addison-Wesley,

Reading, Massachusetts, 1964.

[Forssell 94] Forsell, Lisa K., “Visualizing Flow over Curvalinear

Grid Surfaces Using Line Integral Convolution,” Proceedings Vi-

sualization ’94, Washington, D.C., October 17–21, pp. 240–247.

[Fowler & Ware 89] Fowler, David and Colin Ware, “Strokes for

Representing Univariate Vector Field Maps,” Graphics Interface

’89, London, Ontario, June 19–23, 1989, pp. 249–253.

[Globus et al. 91] Globus, A., C. Levit and T. Lasinski, “A Tool for

Visualizing the Topology of Three-Dimensional Vector Fields,”

Proceedings Visualization ’91, San Diego, California, October 22–

25, pp. 33–40.

[Helman & Hesselink 91] Helman, J. L. and L. Hesselink, “Visual-

ization of Vector Field Topology in Fluid Flows,” IEEE Computer

Graphics and Applications, Vol. 11, No. 3, pp. 36–46.

[Hoppe et al. 93] Hoppe, Hugues, Tony DeRose, Tom Duchamp,

John McDonald and Werner Stuetzel, “Mesh Optimization,” Com-

puter Graphics Proceedings, Annual Conference Series

(SIGGRAPH ’93), pp. 19–26.

[Kundu 90] Kundu, Pijush K., Fluid Mechanics, Academic Press,

Inc., San Diego, 1990.

[Max et al. 94] Max, Nelson, Roger Crawfis and Charles Grant,

“Visualizing 3D Velocity Fields Near Contour Surfaces,” Proceed-

ings Visualization ’94, Washington, D.C., October 17–21, pp. 248–

255.

[Saito & Takahashi 90] Saito, Takafumi and Tokiichiro Takahashi,

“Comprehensible Rendering of 3-D Shapes,” Computer Graphics,

Vol. 24, No. 4 (SIGGRAPH ’90), pp. 197–206.

[Salisbury et al. 94] Salisbury, Michael P., Sean E. Anderson, Ronen

Barzel and David H. Salesin, “Interactive Pen-and-Ink Illustration’,

Computer Graphics Proceedings, Annual Conference Series

(SIGGRAPH ’94), pp. 101–108.

[Stalling & Hege 95] Stalling, Detlev and Hans-Christian Hege,

“Fast and Resolution Independent Line Integral Convolution,” Com-

puter Graphics Proceedings, Annual Conference Series

(SIGGRAPH ’95), pp. 249–256.

[Turk 91] Turk, Greg, “Generating Textures on Arbitrary Surfaces

Using Reaction-Diffusion,” Computer Graphics, Vol. 25, No. 4

(SIGGRAPH ’91), pp. 289–298.

[van Wijk 91] van Wijk, Jarke J., “Spot Noise: Texture Synthesis

for Data Visualization,” Computer Graphics, Vol. 25, No. 4

(SIGGRAPH ’91), pp. 309–318.

[Winkenbach & Salesin 94] Winkenbach, Georges and David H.

Salesin, “Computer-Generated Pen-and-Ink Illustrations,” Computer

Graphics Proceedings, Annual Conference Series (SIGGRAPH ’94),

pp. 91–98.

[Witkin & Heckbert 94] Witkin, Andrew and Paul Heckbert, “Us-

ing Particles to Sample and Control Implicit Surfaces,” Computer

Graphics Proceedings, Annual Conference Series (SIGGRAPH 94),

pp. 269–277.

460

