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Abstract Recently, there has been remarkable growth of in-
terest in the development and applications of Time-of-Flight
(ToF) depth cameras. However, despite the permanent im-
provement of their characteristics, the practical applicabil-
ity of ToF cameras is still limited by low resolution and
quality of depth measurements. This has motivated many
researchers to combine ToF cameras with other sensors in
order to enhance and upsample depth images. In this paper,
we review the approaches that couple ToF depth images with
high-resolution optical images. Other classes of upsampling
methods are also briefly discussed. Finally, we provide an
overview of performance evaluation tests presented in the
related studies.

Keywords ToF cameras · depth images · optical images ·
depth upsampling · survey

1 Introduction

Image-based 3D reconstruction of static [111,121,49] and
dynamic [125] objects and scenes is a core problem of com-
puter vision. In the early years of computer vision, it was
believed that visual information is sufficient for computer
to solve the problem, as humans can perceive dynamic 3D
scenes based on their vision. However, humans do not need
to build precise 3D models of an environment to be able to
act in the environment while numerous applications of com-
puter vision require precise 3D reconstruction.
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Today, different sensors and approaches are often com-
bined to achieve the goal of building a detailed, geometri-
cally correct and properly textured 3D or 4D (spatio-tempo-
ral) model of an object or a scene. Visual and non-visual
sensor data are fused to cope with atmospheric haze [112],
varying illumination, surface properties [56], motion and oc-
clusion. This requires good calibration and registration of
the modalities such as colour and infrared images, laser-
measured data (LIDAR, hand-held scanners, Kinect), or ToF
depth cameras. The output is typically a point cloud, a depth
image, or a depth image with a colour value assigned to each
pixel (RGBD).

A calibrated stereo rig is a widespread, classical device
to acquire depth information based on visual data [111].
Since its baseline, i.e, the distance between the two cam-
eras, is usually narrow, the resulting depth accuracy is lim-
ited. (By depth accuracy we mean the overall accuracy of
depth measurement.) Wide-baseline stereo [121] can pro-
vide a better accuracy at the expense of more frequent occlu-
sions and partial loss of spatial data. A collection of different-
size, uncalibrated images of an object (or a video) can also
be used for 3D reconstruction. However, this requires dense
point correspondences (or dense feature tracking) across im-
ages/frames, which is not always possible.

Photometric stereo [49] applies a camera and several
light sources to acquire the surface normals. The normal
vectors are integrated to reconstruct the surface. The method
provides fine surface details but suffers from less robust glo-
bal geometry [92]. The latter is better captured by stereo
methods that can be combined with photometric stereo [92]
to obtain precise local and global geometry.

Shape acquisition systems using structured light [109,
26] contain one or two cameras and a projector that casts a
specific, fixed or programmable, pattern onto the shape sur-
face. Systems with programmable light pattern can achieve
high precision of surface measurement.
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The approaches to image-based 3D reconstruction listed
above are the most widely used in practice. A number of
other approaches to ‘Shape-from-X’ exist [124,126], such
as Shape-from-Texture, Shape-from-Shading, Shape-from-
Focus, or Structure-from-Motion. These approaches are usu-
ally less precise and robust. They can be applied when high
precision is not required, or as additional shape cues in com-
bination with other methods. For example, Shape-from-Sha-
ding can be used to enhance fine shape details in RGBD
data [144,95,44].

Among the non-visual sensors, the popular Kinect [148]
can be used for real-time dense 3D reconstruction, track-
ing and interaction [57,93]. The original device, Kinect I,
combines a colour camera with a depth sensor projecting
invisible structural light. In the Kinect II, the depth sensor
is a ToF camera coupled with a colour camera. Currently,
Kinect’s resolution and precision are somewhat limited but
still sufficient for applications in game industry and human-
computer interaction (HCI). (See the study [94] for Kinect
sensor noise analysis resulting in improved depth measure-
ment.)

Different LIDAR devices [10,38] have numerous appli-
cations in various areas including robot vision, autonomous
vehicles, traffic monitoring, as well as scanning and 3D re-
construction of indoor and outdoor scenes, buildings and
complete residential areas. They deliver point clouds with
a measure of surface reflectivity assigned to each point.

Last but not least, ToF depth cameras [28,113,45] ac-
quire low-resolution, registered depth and reflectance im-
ages at the rates suitable for real-time robot vision, naviga-
tion, obstacle avoidance, game industry and HCI.

This paper is devoted to a specific but critical aspect of
ToF image processing, namely, to depth image upsampling.
The upsampling can be performed in different ways. We
give a survey of the methods that combine a low-resolution
ToF depth image with a registered high-resolution optical
image in order to refine the depth image resolution, typically
by a factor of 4 to 16.

The rest of the paper is structured as follows. In Sec-
tion 2, we discuss an important class of ToF cameras and
compare their features to the features of three main image-
based methods. Although our survey is devoted to image-
guided depth upsampling, for the sake of completeness Sec-
tion 3 gives a brief overview of upsampling with stereo and
with multiple measurements, as well. Section 4 is a survey of
depth upsampling based on a single optical image. In Sec-
tion 5, we discuss the performance evaluation test results
presented in the reviewed literature on depth upsampling. Fi-
nally, Section 6 provides further discussion, conclusion and
outlook.

2 Time-of-Flight cameras

A recent survey [28] offers a comprehensive summary of
the operation principles, advantages and limitations of ToF
cameras. The survey [28] focuses on lock-in ToF cameras
which are widely used in numerous applications, while the
other category of ToF cameras, the pulse-based, is still rarely
used. Our survey is also devoted to lock-in ToF cameras; for
simplicity we will omit the term ‘lock-in’.

ToF cameras [113,102,37] are small, compact, low-weight,
low-consumption devices that emit infrared light and mea-
sure the time-of-flight to the observed object for calculating
the distance to the object, usually called the depth. Contrary
to LIDAR devices, ToF cameras have no mobile parts, and
they capture depth images rather than point clouds. In ad-
dition to depth, ToF cameras deliver registered reflectance
images of the same size and reliability values of depth mea-
surements.

The main disadvantages of ToF cameras are their low
resolution and significant acquisition noise. Although both
resolution and quality are gradually improving, they are in-
herently limited by chip size and small active illumination
energy, respectively. The highest currently available ToF ca-
mera resolution is QVGA (320 × 240), with VGA (640 ×

480) being a target of future development. (See [89] for a
systematic analysis of ground truth datasets and evaluation
methods to assess the quality of ToF imaging data.)

Table 1 compares ToF cameras to three main image-
based methods in terms of basic features. Stereo vision (SV)
and structured light (SL) need to solve the correspondence,
or matching, problem; the other two methods – photomet-
ric stereo (PS) and ToF – are correspondence-free. Of the
four techniques, only ToF does not require extrinsic calibra-
tion. SV is a passive method, the rest use active illumination.
This allows them to work with textureless surfaces when SV
fails. On the other hand, distinct, strong textures facilitate
the operation of SV but can deteriorate the performance of
the active methods, especially when different textures cover
the surface and its reflectance varies.

The active methods operate well in low lighting condi-
tions when scene illumination is poor. Not surprisingly, pas-
sive stereo fails when visibility is low. The situation reverses
for bright lighting that can prevent the operation of PS and
reduce the performance of SL and ToF. In particular, bright
lighting can increase ambient light noise in ToF [28] if am-
bient light contains the same wavelength as camera light. (A
more recent report [75] claims that the bright lighting per-
formance of ToF is good.) High-reflectivity surfaces can be
a problem for all of the methods.

PS is efficient for neither outdoor nor dynamic scenes.
SL can cope with time-varying surfaces, but currently it is
not applied in outdoor conditions. Both SV and ToF can be
used outdoor and applied to dynamic scenes, although the
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Table 1 Comparison of four techniques for depth measurement.

stereo vision photometric stereo structured light ToF camera

correspondence yes no yes no
extrinsic calibration yes yes yes no
active illumination no yes yes yes

weak texture performance weak good good good
strong texture performance good medium medium medium

low light performance weak good good good
bright light performance good weak medium/weak medium

outdoor scene yes no no yes?
dynamic scene yes no yes yes

image resolution camera dependent camera dependent camera dependent low
depth accuracy mm to cm mm µm to cm mm to cm

outdoor applicability of ToF cameras can be limited by their
illumination energy and range [22,16], as well as by ambi-
ent light. Image resolution of the first three techniques de-
pends on the camera and can be high, contrary to ToF cam-
eras whose resolution is low. Depth accuracy of SV depends
on the baseline and is comparable to that of ToF [75]. The
other two techniques, especially SL, can yield higher accu-
racy.

From the comparison in Table 1, we observe that ToF
cameras and passive stereo vision have complementary fea-
tures. In particular, the influence of surface texture and illu-
mination on the performance of the two techniques is just
the opposite. As discussed in Section 4, this complementar-
ity of ToF sensing and stereo has motivated researchers to
combine the two sources of depth data in order to enhance
applicability, accuracy and robustness of 3D vision systems.

ToF cameras have numerous applications. The related
surveys [29,28] conclude that the most exploited feature of
the cameras is their ability to operate without moving parts
while providing depth maps at high frame rates. This ca-
pability greatly simplifies the solution of a critical task of
3D vision, the foreground-background separation. ToF cam-
eras are exploited in robot vision [55] for navigation [135,
21,128,145] and 3D pose estimation and mapping [101,85,
34].

Further important application areas are 3D reconstruc-
tion of objects and environments [17,27,6,31,67,63], com-
puter graphics [122,103,65] and 3DTV [120,118,133,134,
78]. (See study [116] for a recent survey of depth sensing
for 3D television.) ToF cameras are applied in various tasks
related to recognition and tracking of people [40,7,64] and
parts of human body: hand [79,91], head [35] and face [91,
108]. Alenya et al. [1] use colour and ToF camera data to
build 3D models of leaves for automated plant measure-
ment. Additional applications are discussed in the recent
book [37].

3 Upsampling with stereo and with multiple

measurements

Low resolution and low signal-to-noise ratio are the two
main disadvantages of ToF depth imagery. The goal of depth
image upsampling is to increase the resolution and simul-
taneously improve image quality, in particular, near depth
edges where surface discontinuities tend to result in erro-
neous or missing measurements [28]. In some applications,
such as mixed reality, game industry and 3DTV, the depth
edge areas are especially important because they determine
occlusion and disocclusion of moving actors.

Approaches to depth upsampling can be categorised into
three main classes [24]. In this survey, we discuss image-
guided upsampling when a high-resolution optical image
registered with a low-resolution depth image is used to refine
the depth. However, for completeness we will now briefly
discuss the other two classes, as well.

Note that most of the ToF depth upsampling methods
surveyed in this paper deal with lateral depth enhancement.
As already mentioned, some techniques for RGBD data pro-
cessing [144,95,44] enhance fine shape details by calculat-
ing surface normals.

ToF–stereo fusion combines ToF depth with multicam-
era stereo data. A recent survey of this type of depth upsam-
pling is available in [90]. Hansard et al. [45] discuss some
variants of this approach and provide a comparative eval-
uation of several methods. The important issue of register-
ing the ToF camera and the stereo data is also addressed.
By mapping ToF depth values to the disparities of a high-
resolution camera pair, it is possible to simultaneously up-
sample the depth values and improve the quality of the dis-
parities [39]. Kim et al. [63] address the problem of sparsely
textured surfaces and self-occlusions in stereo vision by fus-
ing multicamera stereo data with multiview ToF sensor mea-
surements. The method yields dense and detailed 3D models
of scenes challenging for stereo alone while enhancing the
ToF depth images. Zhu et al. [150,149,151] also explore the
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complementary features of ToF cameras and stereo in order
to improve accuracy and robustness.

Yang et al. [141] present a setup that combines a ToF
depth camera with three stereo cameras and report on GPU-
based, fast stereo depth frame grabbing and real-time ToF
depth upsampling. The system fails in large surface regions
of dark (e.g., black) colour that cause troubles to both stereo
and ToF cameras. Bartczak and Koch [5] combine multiple
high-resolution colour views with a ToF camera to obtain
dense depths maps of a scene. Similar input data are used by
Li et al. [73] who present a joint learning-based method ex-
ploiting differential features of the observed surface. Kang
and Ho [60,51] report on a system that contains multiple
depth and colour cameras.

Hahne and Alexa [41,42] claim that combination of ToF
camera and stereo vision can provide enhanced depth data
even without precise calibration. Kuhnert and Stommel [67]
fuse ToF depth data with stereo data for real-time indoor
3D environment reconstruction in mobile robotics. Further
methods are discussed in the recent survey [90]. A drawback
of ToF–stereo is that it still inherits critical problems of pas-
sive stereo vision: the correspondence problem, the problem
of textureless surfaces, and the problem of occlusions.

A natural way to improve resolution is to combine mul-
tiple measurements of an object. In optical imaging, numer-
ous studies are devoted to super-resolution [131,129] or up-
sampling [23] of colour images. Fusing multiple ToF depth
measurements into one image is sometimes referred to as
temporal and spatial upsampling [24]. This type of depth
upsampling is less widespread than ToF–stereo fusion and
image-guided methods.

Hahne and Alexa [43] obtain enhanced depth images
by adaptively combining several images taken with differ-
ent exposure (integration) times. Their method is inspired
by techniques applied in high dynamic range (HDR) imag-
ing where different measures of image quality are used as
weights for adaptive colour image fusion. For depth image
fusion, the method [43] uses local measures of depth con-
trast, well-exposedness, surface smoothness, and uncertainty
defined via signal entropy.

In [115,15], the authors acquire multiple depth images
of a static scene from different viewpoints and merge them
into a single depth map of higher resolution. An advantage
of such approaches is that it does not need a sensor of an-
other type. Working with depth images only allows one to
avoid the so-called ‘texture copying problem’ of sensor fu-
sion when contrast image textures tend to ‘imprint’ onto the
upsampled depth image. This negative effect will be dis-
cussed later in relation to image-guided upsampling. A limi-
tation of the methods [115,15] is that only static objects can
be measured.

Mac Aodha et al. [83] use a training dataset of high-
resolution depth images for patch-based upsampling of a

low-resolution depth image. Although theoretically attrac-
tive, the method is too time-consuming for most applica-
tions. A somewhat similar patch-based approach is presented
by Hornacek et al. [52] who exploit patch-wise self-similarity
of a scene and search for patch correspondences within the
input depth image. The method [52] aims at single image
based upsampling while the algorithm [83] needs a large
collection of high-resolution exemplars to search in. A draw-
back of the method [52] is that it relies on patch correspon-
dences which may be difficult to obtain, especially for less
characteristic surface regions.

Riegler et al. [104] use a deep network for single depth
map super-resolution. The same problem is addressed in [3]
using the Discrete Wavelet Transform and in [84] using sub-
dictionaries of exemplars constructed from example depth
maps. Finally, the patent [61] describes a method for com-
bined depth filtering and resolution refinement.

4 Image-guided depth upsampling

In this section, we provide a survey of depth upsampling
based on a single optical image assuming calibrated and
fused depth and colour data. As discussed later, precise cali-
bration and sensor fusion are essential for good upsampling.
Similarly to the ToF-stereo fusion survey [90], we classify
the methods as local or global. The former category applies
local filtering while the latter uses global optimisation. The
approaches that fall in neither of the two classes are dis-
cussed separately.

We start the presentation of the methods by illustrating
the upsampling problem, discussing its difficulties and in-
troducing the notations. Fig. 1 shows an example of success-
ful upsampling of a high-quality depth image of low resolu-
tion. The input depth and colour images are from the Mid-
dlebury stereo dataset [110]. The original high-resolution
depth image was acquired with structured light, then artifi-
cially downsampled to get the low-resolution image shown
in Fig. 1. Small parts of depth data (dark regions) are lost.
The upsampled depth is smooth and very similar to the orig-
inal high-resolution data used as the ground truth. In the
Middlebury data, depth discontinuities match well the cor-
responding edges of the colour image. This dataset is of-
ten used for quantitative comparative evaluation of image-
guided upsampling techniques.

For real-world data, the upsampling problem is more
complicated than for the Middlebury data. Fig. 2 illustrates
the negative features of depth images captured by ToF cam-
eras1. The original depth resolution is very low compared
to that of the colour image. When resized to the size of the
colour image, the depth image clearly shows its deficien-
cies: a part of the data is lost due to low resolution; some

1 Data courtesy of Zinemath Zrt [152].
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input depth and colour images upsampled depth ground-truth depth

Fig. 1 Sample Middlebury data, the upsampled depth and the ground truth.

shapes, e.g., the heads, are distorted. Despite the calibration,
the contours of the depth image do not always coincide with
those of the colour image. There are erroneous and missing
measurements along the depth edges, in the dark region on
the top, and in the background between the chair and the
poster.

To use a high-resolution image for depth upsampling,
one needs to relate image features to depth features. A basic
assumption exploited by most upsampling methods is that
image edges are related to depth edges, that is, to surfaces
discontinuities. It is often assumed [18,33,81,97,98,74,24]
that smooth depth regions exhibit themselves as smooth in-
tensity/colour regions, while depth edges underlie intensity
edges. We will call this condition the depth-intensity edge

coincidence assumption.

Clearly, the assumption is violated in the regions of high-
contrast texture and on the border of a strong shadow. Some
studies [139,123] relax it in order to circumvent the prob-
lems discussed below and avoid the resulting artefacts. How-
ever, depth edges are in any case a sensitive issue. Since im-
age features are the only data available for upsampling, one
has to find a balance between the edge coincidence assump-
tion and other priors. This balance is data-dependent, which
may necessitate adaptive parameter tuning of an upsampling
algorithm.

Precise camera calibration is crucial for the applications
that require good-quality depth images, in general, and accu-
rate depth discontinuities, in particular. Techniques and en-
gineering tools used to calibrate ToF cameras and enhance
their quality are discussed in numerous studies [77,50,45,
99,102,72,58]. Procedures for joint calibration of a ToF cam-
era and an intensity camera are described in [97,98,24,132].
Many researchers apply the well-known calibration meth-
od [147]. A ToF camera calibration toolbox implementing
the method presented in [69] is available at the web site [68].

Inaccurate registration of depth and intensity images due
to imprecise calibration results in deterioration of the up-
sampled depth. Schwarz et al. [117] propose an error mod-

el for ToF sensor fusion and analyse relation between the
model and inaccuracies in camera calibration and depth mea-
surements. Xu et al. [137] address the problem of misalign-
ment correction in the context of depth image-based render-
ing. Fig. 3 illustrates the effect of misalignment on depth up-
sampling. The discrepancy between the depth and intensity
images is artificially introduced by a relative shift of two,
five and ten pixels. As the shift grows, the depth borders be-
come blurred and coarse.

Because of the optical radial distortion typical for many
cameras, the discrepancy between the input images tends to
grow with the distance from image centre. Fig. 4 shows an
example of this phenomenon. The shape of the person in
the centre of the scene in Fig. 4a is quite precise, with even
fine details such as fingers being upsampled correctly. When
the person moves to the periphery of the scene (Fig. 4b),
his shape, e.g., in the region of the neck, becomes visibly
distorted due to the growing misalignment.

Avoiding depth blur to preserve contrast depth edges
is a major issue of upsampling methods. Because of the
depth-intensity edge coincidence assumption, this issue is
related to the texture copying (transfer) problem. Contrast
image textures tend to exhibit themselves in the upsampled
depth image as illustrated in Fig. 5 where textured regions
cause visible perturbation in the refined depth. This disturb-
ing phenomenon and possible remedies are discussed in the
papers [139,123]. Further typical problems of image-guided
depth upsampling are mentioned in Section 6.

In the sequel, we use the following notations:

D Input (depth) image.
D̂ Filtered / Upsampled image.
∇D Gradient image.
Ĩ Guide / Reference image.
p, q, . . . 2D pixel coordinates.
‖p− q‖ Distance between pixels p and q.
p↓, q↓, . . . Low-resolution coordinates, possibly fractional.
Ω(p) A window around pixel p.
Dq D value of pixel q.
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input depth and colour images resized depth upsampled depth

Fig. 2 Data captured in a studio: the original depth and colour images, the depth image resized to colour image size, and the upsampled depth.

2 pixels 5 pixels 10 pixels

Fig. 3 The effect of imprecise calibration on depth upsampling. The discrepancy between the input depth and colour images is 2, 5 and 10 pixels,
respectively.

(a) (b)

Fig. 4 The effect of optical radial distortion on depth upsampling.

‖Dp − Dq‖ Absolute difference of image values.
f, g, h, . . . Gaussian kernel functions.
kp Location-dependent normalisation factor: sum

of weights in Ω(p).

4.1 Local methods

Image-guided ToF depth upsampling can be based on a sin-
gle image or a video. Techniques using video rely on similar
principles but they may exploit video redundancy and ad-
ditional constraints such as motion coherence, also called
temporal consistency. We will briefly discuss video-based
approaches separately in Section 4.4.

The local methods use different forms of convolution
with location-dependent weights W (p, q):

D̂p =
1

kp

∑

q

W (p, q) Dq, (1)

where
∑

q

stands for
∑

q∈Ω(p)

and kp =
∑

q

W (p, q) .

Upsampling techniques have to combine two different
kinds of spatial data, ToF depth and intensity, or colour.
When video is available, the temporal dimension should also
be taken into account. Upsampling techniques based on fil-
tering in spatial or spatio-temporal domain are often vari-
ants and extensions of the bilateral filter [130]. A bilateral
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colour image upsampled depth ground truth

Fig. 5 The texture transfer problem in depth upsampling.

filter WB (p, q) applies two Gaussian kernels, a spatial (or
domain) one and a range one. The spatial kernel g weights
the distance from the filter center while the range kernel f
weights the absolute difference between the image value in
the center and the value in a point of the window:

D̂p =
1

kp

∑

q

WB (p, q) Dq, (2)

where

WB (p, q) = f (‖Dp − Dq‖) g (‖p− q‖) . (3)

The bilateral filter can be efficiently implemented in con-
stant and real time [100,140] which makes its practical ap-
plication especially attractive. The reader is referred to the
book [96] for a detailed discussion of bilateral filtering.

The idea of bilateral filtering has been extended in differ-
ent ways. A joint (or cross) bilateral filter applies the range
kernel to a second, guidance image Ĩ rather than to the input
image D:

WJB (p, q) = f
(∥

∥Ĩp − Ĩq
∥

∥

)

g (‖p− q‖) . (4)

Note that D and Ĩ have the same resolution.
Joint bilateral filters have been successfully used in a

wide range of tasks including the Joint Bilateral Upsampling
(JBU) of depth images [66]. The input depth image D is as-
sumed to be of lower resolution than the guidance image Ĩ,
thus the filter processes low-resolution pixel coordinates q↓.
For values at fractional image coordinates, interpolation is
assumed.

D̂p =
1

kp

∑

q↓

WJBU (p, q) Dq↓ , (5)

where

WJBU (p, q) = f
(∥

∥Ĩp − Ĩq
∥

∥

)

g (‖p↓ − q↓‖) . (6)

Further attempts to combine different criteria and en-
hance the result of upsampling led to the use of multilat-
eral [146,80], rather than bilateral, filters. In particular, add-
ing the median filter to the bilateral framework can improve
the robustness of the method. The weighted median filter is
defined as

D̂p = argmin
b

∑

q

W (p, q) |b− Dq| . (7)

The weighted median minimises the total weighted photo-
metric distance from the central pixel to the other pixels of
the window. (See [143] for a tutorial on weighted median fil-
tering.) The Joint Bilateral Median (JBM) upsampling filter
combines the median with WJBU :

D̂p = argmin
b

∑

q↓

WJBU (p, q)
∣

∣b− Dq↓

∣

∣ , (8)

where WJBU is defined in (6).
Fig. 6 illustrates the difference between the Joint Bilat-

eral and the Joint Bilateral Median upsampling filters. In
both methods, bilateral weights are used. The main differ-
ence stems from the different effects of the weighted average
of JB and the weighted median of JBM. While the former
results in gradual blending and finer variation in depth, the
latter allows for more drastic transitions and provides more
contrast depth edges. The JB upsampling follows colour vari-
ations and is likely to result in depth interpolation. The JBM
upsampling is more resistant to colour variations and out-
liers. This results in less depth interpolation and less texture
transfer.

Chan et al. [12] propose an upsampling scheme based on
the composite joint bilateral filter that locally adapts to the
noise level and the smoothness of the depth function. The
noise-aware filter [12] is defined as

D̂p =
1

kp

∑

q↓

g (‖p↓ − q↓‖) (9)

·
[

αpf1
(∥

∥Ĩp − Ĩq
∥

∥

)

+ (1− αp) f2
(∥

∥Dp↓
− Dq↓

∥

∥

)]

Dq↓ ,
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Joint Bilateral Joint Bilateral Median

Fig. 6 Comparison of JB and JBM upsamplings.

where f1 and f2 are Gaussian kernels. Via the local context-
sensitive parameter αp, the method blends the standard JBU
(αp = 1) and an edge-preserving smoothing depth filter in-
dependent from colour data (αp = 0). Such solution can
potentially reduce artefacts such as texture copying. Fu and
Zhou [30] propose a combination of the noise-aware filter
and a weighted mode filter with adaptive support window.

Riemens et al. [105] present a multi-step (multiresolu-
tion) implementation of JBU that doubles the depth resolu-
tion at each step. Garcia et al. [33] enhance the joint bilat-
eral upsampling by taking into account the low reliability of
depth values near depth edges. The pixel weighted average
strategy [33] relies on the credibility map that depends on
the depth gradient magnitude

∥

∥∇Dq↓

∥

∥:

D̂p =
1

kp

∑

q↓

h
(
∥

∥∇Dq↓

∥

∥

)

WJBU (p, q) Dq↓ , (10)

The credibility map h
(∥

∥∇Dq↓

∥

∥

)

prefers locations of mod-
erate depth changes. (Recall h is a Gaussian kernel.) The
filter (10) tries to average over smooth surfaces while avoid-
ing averaging across depth edges.

Yang et al. [142] apply the joint bilateral filter to a cost
volume that measures the distance between potential depth
candidates and the ToF depth image resized to the colour im-
age size. The filter enforces the consistence of the cost val-
ues and the colour values. The upsampling problem is for-
mulated as adaptive cost aggregation, a strategy frequently
used in stereo matching [111,36]. To improve the robustness
of the method [142] and its performance at depth edges, the
authors add the weighted median filter and propose a mul-
tilateral framework [139]. The improved method [139] is
implemented on a GPU to build a real-time high-resolution
depth capturing system. Another cost-volume based tech-
nique using self-similarity matching is presented in the stu-
dy [32].

The Non-Local Means (NLM) filter [9,2] can be viewed
as a generalisation of the bilateral filter. In the photomet-
ric term of the bilateral similarity kernel, the bilateral fil-
ter uses point-wise intensity/colour difference while NLM
uses patch-wise difference. Similarly, the geometric term of
NLM relies on distance between patches rather than points.

NLM allows for large (theoretically, infinite) distances re-
sulting in strong contribution from distant patches. In this
sense, NLM is theoretically a non-local filter. However, in
practice the search for patches is limited to some neighbour-
hood, that is, the method is still more or less local. The pho-
tometric term assigns Gaussian weights to distant patch pix-
els, which gives greater importance to patch centres. See the
recent survey [86] for a discussion of the NLM filter.

NLM has been successfully applied to depth upsamp-
ling [53] and enhancement [53,138]. The method proposed
by Huhle et al. [53] applies the colour NLM filter includ-
ing depth outlier detection and removal. The paper [53] dis-
cusses the interdependence between surface texturing and
smoothing. The authors point out that the correspondence of
depth and image pixels may change due to the displacement
of the reconstructed point. Further cases of the application
of NLM to depth upsampling will be discussed below in re-
lation to global methods.

4.2 Global methods

The early paper [18] presents an application of Markov Ran-
dom Field (MRF) to depth upsampling using a high-resoluti-
on colour image. The two-layer MRF is defined via the quad-
ratic difference between measured and estimated depths, a
depth smoothing prior, and the weighting factors that relate
image edges to depth edges. This formulation leads to a least
square optimisation problem which is solved by the conju-
gate gradient algorithm. Lu et al. [81] use a linear cost term
(truncated absolute difference) since the quadratic cost is
less robust to outliers. Their formulation of the MRF-based
depth upsampling problem includes adaptive elements and
is solved by the loopy belief propagation. Choi et al. [14]
use quadratic terms in the proposed MRF energy and apply
both discrete and continuous optimisation in a multiresolu-
tion framework.

A number of approaches [24,97,98] apply an optimisa-
tion algorithm to an upsampling cost function not related to
an MRF. Such cost functions often contain terms similar to
those used by the MRF-based methods. Ferstl et al. [24] de-
fine an energy functional that combines a standard quadratic
depth data term with a regularising Total Generalised Vari-
ation [8] term and an anisotropic diffusion term that relates
image gradients to depth gradients. As discussed in [4], ani-
sotropic diffusion is closely related to bilateral filtering and
adaptive smoothing. The primal-dual optimisation algorithm
is used to minimise the energy functional. A MATLAB code
of the upsampling approach [24], as well as synthetic and
real benchmark data are available on the web site of the
project [106].

Park et al. [97,98] apply an MRF to detect and remove
outliers in depth data prior to upsampling. However, their
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optimisation approach to upsampling does not rely on Mar-
kov Random Fields. The functional formulated in [97,98]
includes a quadratic data term, a smoothness term and a
Non-Local Means regularising term. The smoothness term
combines segmentation, colour, edge saliency and depth in-
formation. The NLM regularising term is defined with the
help of an anisotropic structure-aware filter. This term helps
preserve local structure and fine details in presence of sig-
nificant noise.

4.3 Other methods

Segmentation of colour and depth images can be used for
upsampling either separately [127] or in combination with
other tools. Tallon et al. [127] propose an upsampling and
noise reduction method based on joint segmentation of depth
and intensity into regions of homogeneous colour and depth.
Conditional mode estimation is used to detect and correct
regions with inconsistent features. Soh et al. [123] point out
that the image-depth edge coincidence assumption may oc-
casionally be invalid. They oversegment the colour image
to obtain image super-pixels and use them for depth edge
refinement. Then a maximum a posteriori probability [88]
MRF framework is used to further enhance the depth.

Li et al. [74] develop a Bayesian approach to depth im-
age upsampling that accounts for intrinsic camera errors.
The method simulates uncertainty of depth and colour mea-
surements by a Gaussian and a spatial-anisotropic kernel,
respectively. The scene is assumed to be piecewise planar.
The Random Sample Consensus (RANSAC) algorithm [25]
is applied to select inliers for each plane model. An objec-
tive function combining depth and colour data terms is in-
troduced and optimised to obtain the refined depth.

A promising research direction is the application of deep
learning in order to avoid explicit filter construction and
hand-designed objective functions. Li et al. [76] use a Con-
volutional Neural Network (CNN) to build a joint filter for
depth upsampling. To enhance the depth image, Hui et al. [54]
use a deep multi-scale convolutional network that learns high-
resolution features in the optical image.

Most of the above mentioned studies compare the pro-
posed method to existing techniques. Often, images from
the Middlebury stereo dataset [110] containing the ground
truth depth are used for quantitative comparison. The evalu-
ation study by Langmann et al. [71] uses images from [110]
as well as manually labelled ToF camera and colour data.
The study compares a number of image-guided upsampling
methods including bilateral filters, MRF optimisation [18]
and the cost volume-based technique [142]. In Section 5 de-
voted to comparative evaluation studies, we will discuss the
main conclusions of the paper [71].

first frame

second frame

Fig. 7 Illustration of video-based depth upsampling. For each frame,
the upper row shows the resized depth image and the corresponding
optical image. The lower row shows upsampling results without (left)
and with (right) temporal coherence.

4.4 Video-based depth upsampling

In this section, we briefly discuss the depth upsampling me-
thods that use video rather than a single image. As already
mentioned, the two categories of methods are based on the
same assumptions and principles, but the video-based tech-
niques may apply additional constraints. Fig. 7 illustrates the
process of video-based upsampling. Two frames of a colour
video sequence and a synchronised depth video sequence
are demonstrated along with two different upsampling re-
sults. For the first result shown on the left-hand side, each
frame was processed separately. (Compare to Fig. 2 where
another single-image based upsampling algorithm was ap-
plied.) The method that yields the second result utilises tem-
poral coherence with optical flow2. One can observe that the
second result is, generally, better, except for a few locations
such as the blurred contour of the person in the background.

To obtain depth video, Choi et al. [13] apply motion-
compensated frame interpolation and the composite Joint
Bilateral Upsampling procedure [12]. Dolson et al. [19] con-
sider dynamic scenes and do not use the assumption of iden-
tical frame rate of the two video streams. They present a

2 The methods have been developed by the authors of this survey.
The algorithms are presented in [20].
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Gaussian framework for multidimensional extension of 2D
bilateral filter in space and time. A fast GPU implementation
is discussed.

Xian et al. [136] consider synchronised depth and opti-
cal video cameras and propose upsampling solution imple-
mented on a GPU in real time on the frame-by-frame ba-
sis without temporal processing. Their multilateral filter is
inspired by the composite Joint Bilateral Upsampling pro-
cedure [12]. Kim et al. [62] propose a depth video upsam-
pling method that also operates on the frame-by-frame basis.
They use an adaptive bilateral filter taking into account the
low signal-to-noise ratio of ToF camera data. The problem
of texture copying is addressed.

Richardt et al. [103] consider the task of video-based up-
sampling in the context of computer graphics applications,
such as video relighting, geometry-based abstraction and sty-
lisation, and rendering. The depth data are first pre-process-
ed to remove typical artefacts. Then a dual-joint bilateral
filter is applied to upsample the depth. Finally, a spatio-
temporal filter is used that blends the spatial and tempo-
ral components. A blending parameter specifies the degree
of depth propagation from the previous to the current time
steps using motion compensation.

Min et al. [87] propose a weighted mode filter based
on a joint histogram. The temporal coherence of the depth
video is achieved by extending the method to the neighbor-
ing frames. Optical flow supported by a patch-based flow re-
liability measure is used for motion estimation and compen-
sation. In the studies [118–120], the authors view the depth
upsampling process as a weighted energy optimisation prob-
lem constrained by temporal coherence. The space-time re-
dundancy of intensity and depth is exploited in [59].

Vosters et al. [133] evaluate and compare several effi-
cient video depth upsampling methods in terms of depth
accuracy and interpolation quality in the context of 3DTV.
They also present an analysis of computational complex-
ity and runtime for GPU implementations of the methods.
In a further study [134], the authors discuss 3DTV require-
ments for a high-quality depth map and propose a subsam-
pling method based on the algorithms [87] and [33]. The
study [134] also provides a benchmark and qualitative anal-
ysis of temporal post-processing methods in depth upsam-
pling for 3DTV.

5 Comparative evaluation studies

We have already mentioned several studies that introduce
novel methods for depth upsampling and compare them to
a number of alternative techniques. In this section, we dis-
cuss these experimental performance evaluation results in
more detail and summarise the conclusions of the compara-
tive evaluations.

The survey of ToF-stereo fusion [90] has a section de-
voted to the evaluation of fusion methods. Different bench-
mark datasets and performance metrics are discussed. In re-
lation to the Middlebury dataset [110], the authors criticise
the often used approach when the original high-resolution
ground truth depth is simply downsampled and some noise
is added to the obtained depth map. Two additional aspects,
sensor data alignment and ToF sensor simulation [89] are
considered to generate more realistic synthetic ToF images.
The authors provide a collection of datasets at their web
site [48].

Hansard et al. [45] compare different variants of ToF-
stereo fusion using the stereo algorithm [11] based on the
seed growing principle. Two real and three synthetic datasets
are used in the tests that evaluate the original method [11]
with colour image seeds and fusion algorithms with ToF
depth seeds and various cost functions combining image and
depth likelihoods. It is demonstrated that depth-guided seed
growing yields significantly better results than the original
stereo algorithm.

Park et al. [97] compare their NLM filtering method for
image-guided depth upsampling to several state-of-the-art
techniques. Quantitative test results for noise-free and noisy
synthetic data are provided. Three datasets based on the Mid-
dlebury benchmark [110] are used. The input low-resolution
depth images are downsampled Middlebury images for four
different downsampling factors.

For the noise-free synthetic data, the method [97] is com-
pared to the MRF-based approach [18], the bilateral filtering
with volume cost refinement [142], and the guided image fil-
tering [47]. The method [97] yields the highest accuracy in
all cases, although the difference between the best result and
the second best one is often minor.

As discussed in the study [90], performance on ideal
data is not really indicative of the practical applicability of
a method. To test robustness to depth noise, Park et al. [97]
add Gaussian noise to the input depth images. In this test,
the noise-aware bilateral filtering [12] is also included. For
the noisy data, the NLM filtering [97] outperforms the other
four methods in seven of the twelve cases. However, the
method [142] provides comparable results as its accuracy
is always close to that of the NLM; in four cases, it is even
better.

Ferstl et al. [24] present test results for both synthetic
and real data. In the first test, the noisy synthetic data of Park
et al. [97] is used. The authors demonstrate that their opti-
misation algorithm outperforms the five methods compared
in [97] in terms of accuracy and speed.

In the second test, the authors use the three real-world
datasets [106] they created. Here the ground truth is mea-
sured by a high-resolution structured light scanner while
the upsampling factor is around 6.25. For the real data, the
method [24] compares favourably to the joint bilateral up-
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sampling [66] and the guided image filtering [47]. The au-
thors provide their benchmarking framework [106] to facil-
itate quantitative comparison of methods on real data.

As already mentioned, the evaluation study by Lang-
mann et al. [71] uses the Middlebury data as well as ground
truth depth data created manually. The authors conclude that
results for the two kinds of data are, generally, consistent.
The only exception is the MRF approach [18] that performs
significantly better on the real data. However, this method
is much slower than the other techniques compared in the
study, e.g., the cost volume technique [142] and the joint
bilateral filter [66]. In terms of depth accuracy, the overall
performance of the joint bilateral upsampling is found to be
the best.

Li et al. [74] compare their algorithm to the joint bilat-
eral upsampling [66], the guided image filtering [47], and
the NLM filtering [97]. Selected noise-free Middlebury data
is used along with sample data from the RGBD Object Data-
set [70]. The former contains objects with curved surfaces,
the latter objects with planar or less curved surfaces. De-
spite the assumption of piecewise planar surfaces used by
the method [74], the results of the quantitative evaluation
indicate its superior performance in terms depth accuracy.
However, the use of noise-free data for curved surfaces and
the very low upsampling rate (×2) set in the tests make the
claim of superior performance less convincing.

In their experiments, Yang et al. [139] compare the pro-
posed joint bilateral median upsampling (JBMU) to the orig-
inal joint bilateral upsampling approach [66] and its exten-
sions [105,53]. To measure the quality of the upsampled
depth images, they calculate the percentage of bad pixels. (A
pixel is called bad if its disparity error exceeds 1.) 37 noise-
free datasets from the Middlebury benchmark are used for
performance evaluation. The upsampling rates of ×4,×16,×64

are tested demonstrating certain improvement in depth qual-
ity compared to the alternative techniques. Also, it is shown
that JBMU is less vulnerable to texture copying.

The experimental studies discussed above often use the
Root Mean Squared Error (RMSE) as the measure of in-
accuracy, i.e, the difference between the upsampled depth
and the ground truth. In general, this approach is accept-
able, but in some applications another measure of accuracy
can be preferable. For example, RMSE accumulated due to
texture transfer is usually small while errors resulting from
depth edge blur can be unproportionally large because of
large depth discontinuities. In applications sensitive to tex-
ture transfer but less sensitive to depth edge blur, one should
consider using a different error metrics.

Most of the comparative evaluation tests either use syn-
thetic data and ignore the problem of sensor data alignment
or solve the problem manually. As discussed in Section 4,
imprecise alignment can lead to significant upsampling er-
rors. In practice, especially in video-based depth upsam-

chair measured depth upsampled depth

Fig. 8 Illustration of the loss of narrow parts in upsampled depth data.

pling, a good automatic solution to the alignment problem
is required.

Local methods such as the filters discussed in Section 4.1
are usually faster and tend to respect fine details. Global con-
sistency is not enforced explicitly, but it can be improved
by multiscale iterative implementation of the filter. Global
methods discussed in Section 4.2 provide better global con-
sistency, often at the expense of higher computational cost
and larger number of terms and parameters to tune. Some
techniques such as cost aggregation [142,139] can be called
‘semi-local’ as they enhance global consistency by aggrega-
tion over support regions. This may involve increased mem-
ory usage and additional computational cost.

6 Discussion and conclusion

In Section 4, we mentioned some of the typical sources of
errors in image-guided depth upsampling. In practice, one
often faces further relevant problems such as the so-called
‘flying pixels’ at depth boundaries [72], flickering in video
frames, occlusions due to disparity between the two cam-
eras, and other sources of missing or outlying data, e.g.,
specular surfaces. Depth enhancement including completion
of missing data [82] is addressed in numerous studies [134].
Below, we discuss two of these sources of errors that can
result in loss or distortion of depth data.

Fig. 8 demonstrates an example of missing upsampled
data for narrow parts of the chair in the background of the
studio scene. (See Fig. 7.) Here, the low resolution of the
depth camera prevents efficient operation of the upsampling
algorithm despite the sufficient resolution of the optical im-
age. When such narrow parts are essential but the depth cam-
era resolution cannot be increased, one can resort to multiple
measurements or detection and dedicated processing of the
critical areas.

Fig. 9 illustrates the difficulty of processing shiny sur-
faces such as the metallic surface of a ladder. The quality of
the upsampled depth is poor because the specific properties
of the surface are not taken into account. While modelling
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ladder upsampled depth

Fig. 9 Illustration of poorly upsampled depth data for shiny surfaces.

of depth imaging systems [113] including analysis and mod-
elling of their noise [94] has already been addressed, much
less attention has been paid to surface-adaptive depth pro-
cessing. We expect that future image-guided depth upsam-
pling approaches will better adapt to scene context including
geometry, reflectance properties, illumination, and motion.

The main purpose of this survey is to provide an intro-
duction to the depth upsampling problem and give short de-
scriptions of approaches. In our opinion, this problem is of
interest beyond the area of ToF camera data processing since
sensor data fusion becomes more and more popular. For ex-
ample, studies in image-based point cloud upsampling [46,
114] apply tools similar or identical to those used by depth
upsampling methods.

We believe that in near future ToF cameras will undergo
fast changes in the direction of higher resolution, increasing
range, better robustness and improved image quality. As a
consequence, their application areas will extend and grow,
leading to more frequent use and lower prices. (ToF cam-
era in Kinect II is a definite step in this direction.) We also
believe that the trend of coupling ToF cameras with other
complementary sensors will persist resulting in growing de-
mand for studies in depth data fusion with other kinds of
data.

For the image processing community to be able to meet
this demand, a critical issue is that of the evaluation and
comparative testing of the proposed methods. Currently, ma-
ny studies assume ideally calibrated data and provide tests
on the Middlebury stereo dataset [110]. Such tests are not
particularly indicative of performance in real applications.
A good, rich benchmark of ToF data acquired in different
real-world conditions is needed. The benchmark [106] pro-
viding datasets for three studio scenes is a step in this di-
rection. The dataset [107] contains depth images and video
sequences acquired by three different sensors. Other impor-
tant related issues to be studied are sensor noise analysis [94]
and sensor fusion error modelling and correction [117,137].
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