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Abstract

Wk define a new image feature called the color correlo-
gram and use it for image indexing and comparison. This
feature distills the spatial correlation of colors, and is both
effective and inexpensivefor content-based imageretrieval.
Thecorrelogramrobustly tolerateslarge changesin appear-
ance and shape caused by changes in viewing positions,
camera zooms, etc. Experimental evidence suggests that
this new feature outperforms not only the traditional color
histogram method but al so the recently proposed histogram
refinement methods for image indexing/retrieval.

1. Introduction

With the rapid proliferation of theinternet and the world-
wide-web, the amount of digital image data accessible to
usershasgrown enormously. |mage databasesare becoming
larger and more widespread, and thereis a growing need for
effective and efficient image retrieval (IR) systems.

Most IR systems adopt the following two-step approach
to search image databases: (i) (indexing) for each image
in a database, a feature vector capturing certain essential
properties of the image is computed and stored in afeature-
base, and (ii) (searching) given a query image, its feature
vector is computed, compared to the feature vectorsin the
featurebase, and images most similar to the query image are
returned to the user. An overview of such systems can be
foundin [1].

For aretrieval system to be successful, the feature vector
f(Z) for animage Z should have certain desirable qualities:
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() |f(ZT)— f(2")| should belargeif and only if Z and Z' are
not “similar”, (ii) f(-) should be fast to compute, and (iii)
f(Z) should be small in size.

Color histograms are commonly used as feature vectors
for images [14, 3, 7, 9]. A color histogram describes the
global color distribution in an image. It is easy to compute
and is insensitive to small changes in viewing positions.
However, it does not include any spatial information , and
is therefore liable to false positives. This problem is espe-
cialy acute for large databases. Moreover, the histogram
is not robust to large appearance changes. For instance,
the pairs of images shown in Figure 3 (photographs of the
same scenetaken from different viewpoints) arebranded dis-
similar by histogram methods. Recently several approaches
have attempted to incorporate spatial information with color
[13, 12, 10, 8]. Most of them divide the image into regions
while the recent color coherent vector (CCV) method usesa
histogram-refinement approach. CCVs are easy to compute
and appear to perform much better than color histograms

(8].

Our Approach. In this paper, we propose a new color
feature for image indexing/retrieval called the color correl-
ogram. The highlights of thisfeature are: (i) it includesthe
gpatial correlation of colors, (ii) it can be used to describe
the global distribution of local spatial correlation of colors;
(iii) it is easy to compute, and (iv) the size of the featureis
fairly small. Our experimentsshow that this new feature can
outperform both the traditional histogram method and the
recently proposed histogram refinement methods for image
indexing/retrieval.

Informally, acolor correlogram of animageisatablein-
dexed by color pairs, wherethe k-th entry for (3, j) specifies
the probability of finding a pixel of color ; at a distance k&
from a pixel of color ¢ in theimage. Such animage feature
turns out to be robust in tolerating large changesin appear-
ance of the same scene caused by changesin viewing posi-
tions, changes in the background scene, partial occlusions,
camerazoom that causesradical changesin shape, etc. (see
Figure 3 for examples). We provide efficient algorithms to
compute the correlogram.



We also investigate a different distance measure to com-
pare feature vectors. The L; distance measure, used
commonly to compare vectors, considers the absolute
component-wise differences between vectors. The rela-
tive distance measure we use cal cul ates rel ative differences
instead and in most cases performs better than the abso-
lute measure. Theimprovement is significant especially for
histogram-based methods.

We conduct experimentsusing alarge database of 14,554
images and evaluate our techniques using quantitative cri-
teria. The objective nature of these measures enables us to
fairly compare different methods.

Related Work. Severa schemes for using spatial infor-
mation about colors to improve upon the histogram method
have been proposed recently. One common approachis to
divide images into subregions and impose positional con-
straints on the image comparison (image partitioning). An-
other approach is to augment histograms with local spatial
properties (histogram refinement).

Smith and Chang [12] partition an image into binary
color sets. They first select all colorsthat are “ sufficiently”
present in aregion. The colors for aregion are represented
by abinary color set that is computed using histogram back-
projection [14]. The binary color sets and their location
information constitute the feature. Stricker and Dimai [13]
divide an image into five fixed overlapping regions and
extract the first three color moments of each region to form
afeature vector for theimage. The storagerequirementsfor
this method are low. The use of overlapping regions makes
the feature vectors relatively insensitive to small rotations
or trandlations.

Pass and Zabih [8] use another approach. They partition
histogram bins by the spatial coherence of pixels. A pixel
is coherent if it is a part of some “sizable” similar-colored
region, and incoherent otherwise. A color coherence vector
(CCV) represents this classification for each color in the
image. CCVs are fast to compute and appear to perform
better than histograms. The notion of CCV isalso extended
in [8], by using additional feature(s) to further refine the
CCV-refined histogram. One such extension usesthe center
of the image (the centermost 75% of the pixels are defined
as the “center”) as the additional feature. The enhanced
CCV is called CCV with successive refinement (CCV/C)
and performs better than CCV.

The color correlogram is neither an image partitioning
method nor a histogram refinement method. Unlike purely
local properties, suchaspixel position, gradient direction, or
purely global properties, such as color distribution, correl-
ograms take into account the local color spatia correlation
aswell asthe global distribution of this spatial correlation.
While any scheme that is based on purely local proper-
ties is likely to be sensitive to large appearance changes,
correlograms are more stable to these changes; while any

schemethat is based on purely global properties is suscep-
tible to false positive matches, correlograms prove to be
effective for content-based image retrieval from alarge im-
age database.

2. The Correlogram

A color correlogram (henceforth correlogram) expresses
how the spatial correlation of pairs of colors changes with
distance (theterm“correlogram” isadapted from spatial data
analysis [15]). A color histogram (henceforth histogram)
captures only the color distribution in an image and does
not include any spatial correlation information.

Notation. LetZ beann x n image. (For simplicity, we
assumethat the imageis square.) The colorsin Z are quan-
tized into m colors ¢y, . .., cp,. (IN practice, m is deemed
to be a constant and hencewe drop it from our running time
analysis.)

For apixel p = (z,y) € Z, let Z(p) denote its color.
Let 7, 2 {p | Z(p) = ¢}. Thus, the notation p € I,
is synonymous with p € Z,Z(p) = c. For convenience,
we use the L .,-norm to measure the distance between pix-
es, i.e, for pixelsp; = (z1,91),p2 = (22,y2), we define

Ip1 — p2| £ max{|z1 — 22|, [y2 — y2|}. We denote the set
{1,2,...,n} by [n].

Definitions. The histogram b of Z is defined for ¢ € [m)]
by
he(T)2n2- PrlpeL.,] (1)
pET

For any pixel in theimage, ., (Z)/n? gives the probability
that the color of the pixel isc¢;.

Let a distance d € [n] be fixed a priori. Then, the
correlogramof 7 isdefinedfor 4, j € [m], k € [d] as

) =

’}/Cz’,cj‘ Pr [pz E ICJ | |pl _pzl = k]' (2)

p1€Z.,,p2€T
Given any pixel of color ¢; in the image, 7&’“)% gives the
probability that a pixel at distance k& away from the given
pixel isof color ¢;. Note that the size of the correlogram is
O(m?d). The autocorrelogramof T captures spatial corre-
lation between identical colors only and is defined by
alP(1) £ 1(2). (3)
Thisinformation isasubset of the correlogram and requires
only O(md) space.

While choosing d to define the correlogram, we need
to address the following issue. A large d would result in
expensive computation and large storage requirements. A
small d might compromise the quality of the feature. We
consider this tradeoff in section 5.



Example. Consider the simple case when m = 2 and
n = 8. Two sample images are shown in Figure 1. The
autocorrelograms corresponding to these two images are
shown in Figure 2. The change of autocorrelation of the
foreground color with distance is perceptibly different for
theseimages. Notethat it is difficult to distinguish between
these two images using histograms or CCVs.

Figure 1. Sample images: image 1, image 2.
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Figure 2. Autocorrelograms for images in Fig-
urel.

In the following sections, we look at some efficient al-
gorithms to compute the correlogram. Our algorithms are
amenableto easy paralelization. Thus, the computation of
the correlogram could be enormously speeded up.

First, to compute the correlogram, it sufficesto compute
the following count (similar to the cooccurrence matrix de-
fined in [5] for texture analysis of gray images)

T (2) 2 |{pr € Lo,y p2 € Lo, | Ip1 —p2l = K} (4)

for, 'yEk)CJ (1) = Fi’f,)cj (Z)/(hc,(T) - 8k). The denominator
isthetotal number of pixelsat distance k£ from any pixel of
color ¢;. (Thefactor 8k isdueto the propertiesof L.,-norm.)
The naive algorithm would be to consider each p1 € 7 of
color ¢; and for each k € [d], count all p, € Z of color
c; With |p1 — pa| = k. Unfortunately, this takes O(n?d?)
time. To obviate this expensive computation, we define the

guantities

AP k)= (@ +iy) €T |0<i<k}| (5

(z,y)

Moy (B = {(my+)) €T |0<j <k} (8)

which count the number of pixels of a given color within
agiven distance from afixed pixel in the positive horizon-
tal/vertical directions.

Our algorithms work by first computing A57** and A37*".
Thefollowing two sections give separate algorithms for the
case when d is small (running time is O(n?d)) and when d
islarge (running timeis O (n3d“~3%) wherew € [2, 3) isthe
exponent of the fastest algorithm for matrix multiplication).

2.1. Dynamic Programming: when 4 issmall

Thefollowing equation is easy to check

Ac,h

Gy R =00 (k=1 + 20, (0 (D)

(z,y) (z+k,y)

with theinitial condition
AZ"(0) = 1if p € Z. and O otherwise.

Now, A%"(k) is computed for all p € 7 and for each k =
1,...,dusing Equation 7. Thecorrectnessof thisagorithm
is obvious. Since we do O(n?) work for each , the total
time taken is O (n?d).

Inasimilar manner, A7* can also be computed efficiently.
Now, ignoring boundaries, we have

cjh cjh
DR CENICO R EAANCY

(zy)€Le,

+ /\(cif’c,y—k-&-l)(zk -2)+ Azi:k,y—k-yl)(zk - 2))

(t)
L, (D)

This computation takesjust O(n?) time.

The hidden constants in the overall running time of
O(n?d) arevery small and hencethisalgorithmisextremely
efficient in practice for small d.

2.2. Matrix Multiplication: when d islarge

When d is, say, O(n), the dynamic programming algo-
rithm givenin the previoussectionis sub-optimal. Weresort
to a more sophisticated dynamic program — agorithms for
fast matrix multiplication. We now sketch the main ideas
involved.

The first observation is an aternate way to compute
Ao (k) viamatrix multiplication. Let 7, beann x n 0-1
matrix such that Z.(p) = 1 <= Z(p) = c. Now, de-
fine N1 to bethen x nd matrix whose (nk + y)-th column



. . - - - N 7~ ; Al
y € [n],k € [d] isgivenby [0,...,0,1,...,1,0,...,07.
It is easy to seethat (Z.N1)[x, nk + y] = A7) (k).

Now, the second observationisto useanother nd x d ma-
trix N that will accumulate>"_ /\f;;ik,wk)(%) fromthe
product Z. N1 for each distance k € [d] and columny € [n],
To accrue this sum, the k-th column in N, looks (approxi-
mately) like[1,2,...,2k+1,2k+1,...,2k+1,2k,...,1].
When 7. N isright-multiplied by N>, the resulting n x d
product representsthe above sum, i.e., ((Z.N1)N2)[y, k] =
22:1 /\(C;:h—k,y—k)(Zk)-

Note that (Z.N1)N2 = Z.(N1Nz). In other words,
NiN, = N isafixed n x d matrix. So, the algorithm
will precompute N for a given n and use the fast matrix
multiplication to compute Z. N. By adding each column in

this product, wecanget 3, )z )\f:_k vik)(2k), thefirst
(k)

term in the equation for T, (7). Using similar ideas, the
other three terms can be computed.

Thetotal time taken by thisalgorithm isthetime takento
multiply Z. and N, i.e., ann x n 0-1 matrix and afixedn x d
integer matrix. Using ablock d x d matrix multiplication,
this can be achievedintime O(n3d“ %) wherew € [2,3) is
the exponent for the fastest matrix multiplication algorithm
(for instance, for Strassen’s agorithm, w = 2.7). With the
availability of fast hardware to perform matrix multiplica-
tion, this method promises to be attractive. One could also
use several existing optimal techniques which parallelize
matrix multiplication toimplement thisalgorithm efficiently
in practice.

3. Distance Measures

The image retrieval problem is the following: let D be
an image database and Q be the query image. Obtain a
permutation of the images in D based on Q, i.e.,, assign
rank(Z) € [|D]] for each Z € D, using some notion of
similarity to Q. This problem is usually solved by sorting
the images Q' € D. according to | f(Q') — f(Q)|, where
f(+) isafunction computing feature vectors of images and
| - | is some distance measure defined on feature vectors.

The L; and L, distance measures are commonly used
when comparing two feature vectors. In practice, the L1
distance measure performs better than the L, distance mea-
surebecausetheformer isstatistically morerobust to outliers
[11]. Hafner et al. [4] suggest using a more sophisticated
quadratic form of distance measure, which tries to capture
the perceptual similarity between any two colors. To avoid
intensive computation of quadratic functions, they propose
to use low-dimensional color features asfilters before using
the quadratic form for the distance measure.

We will usethe L; distance measure for comparing his-
tograms and correl ograms because it is simple and robust.

The following formulae are used to compute the distance
between imagesZ and 7':

T~ Tlnzy 2 Y he(T) — he,(T")] )
1€[m]
A L
Z-Th= > WE @ -8 @) O

i,5€[m],ke(d]

From these equations, it is clear that the contributions of
different colors to the dissimilarity are equally weighted.
Intuitively, however, this contribution should be weighted
to take into account some additional factors.

Example. Consider two pairs of images (Z1,7,) and
(11, T5). Let h,,(T1) = 1000, h.,(T2) = 1050, h,,(T}) =
100, and h,(Z3) = 150. Even though the absolute dif-
ference in the pixel count for color bucket 7 is 50 in both
cases, clearly the difference is more significant for the sec-
ond pair of images. Thus, the difference |A.,(Z) — he¢,(Z")]
in Equation (8) should begiven moreimportanceif |k.,(Z)+
he,(Z")| issmall and vice versa. We could therefore replace
the expression |h.,(Z) — ke, (Z')| in Equation 8 by
he,(T) = he,(T')]
14+ he,(Z) + he, (T7)

(the 1 in the denominator prevents division by zero).

This intuition has theoretical justification in [6] which
suggests that sometimes, a “relative’” measure of distance
d, isbetter. For > 0,7,5 > 0, d,, is defined by

(10)

r — 5|
ptr+s

It is straightforward to verify that (i) d, isametric, (ii) for
r,s > 0,du(r,s) € [0,1), and (iii) for 0 < r < s < ¢,
du(r,s) < du(r,t),du(s,t) < du(r,t).

du(r,s) = (11)

d,, can be applied to feature vectors also. We have set
u = 1. So the d; distance measure for histograms and
correlogramsis:

he,(T) = he,(T')]
77 . A |he, ; 12
Tt s X e
(k) (k) (1
A |’7Ci,cj (I) B '}’c,-,cj (I )l
|I - Ill%dl = Z (k) (k) (13)

i,jE[m],k€[d] 1+ 7eie, () + Yere,; (')

4. Performance M easures

RankingMeasures. Let{Q;,..., Q,} betheset of query
images. For aquery Q;, let Q. bethe unique correct answer.
We use two performance measures:



1. »-measureof amethod which sumsup over al queries,
therank of thecorrect answer, i.e., Y7, rank(Q}). We
also use the average r-measure which is the r-measure
divided by the number of queriesg.

2. p1-measure of a method which is >°¢_, 1/ rank(Q}),
i.e., the sum (over al queries) of the precision at recall
equal to 1. The average p1-measureis the p1-measure
divided by q.

Imagesranked at the top contribute moreto the p;-measure.
Note that a method is good if it has alow r-measure and a
high p;-measure.

Recall vs. Scope. Let Q beaquery and let Q,..., Q)
be multiple “answers’ to the query (Q is caled a category
query). Now, therecall r is defined for ascope, tobes > 0
as|{Q; | rank(Q}) < s}|/a. Thismeasureis simpler than
the traditional recall vs. precision but still evaluates the
effectiveness of the retrieval [12].

5. Experimental M ethodology
5.1. Efficiency Considerations

Asimage databasesgrow in size, retrieval systems need
to address efficiency issues in addition to the issue of re-
trieval effectiveness. We investigate several general meth-
ods to improve the efficiency of indexing and searching,
without compromising effectiveness.

Parallelization. The construction of a featurebase for an
image databaseis readily paralelizable. We can divide the
database into several parts, construct featurebasesfor these
parts in paralel, and finaly combine them into a single
featurebase for the entire database.

Partial Correlograms. In order to reduce space and time
requirements, we choose asmall value of d. This does not
impair thequality of correl ogramsor autocorrelogramsvery
much becausein animage, local correlationsbetween colors
are more significant than global correlations. Sometimes, it
is preferable to work with distance sets, where a distance
set D is a subset of [d]. We can thus cut down storage
requirements, while still using a large d. Note that the
algorithms can be modified to handlethecasewhen D C [d].
Though in theory the size of a correlogram is O(m?d)
(the size of an autocorrelogram is O(md)), we observe that
the feature vector is often sparse. This sparsity could be
exploited to cut down storage and speed up computations.

Filtering. A good baance between effectiveness and ef-
ficiency can be obtained by adopting a two-pass approach
[4]. First, weretrieve aset of V images using an inexpen-
sive search algorithm; next, a more sophisticated matching
techniqueisused to compareonly theseimagesto the query.

The initia ranking of the images could be poor, but if we
ensure that the initial set contains the answer images, these
images are likely to be highly ranked in the final ranking.
Thechoiceof N isimportant here: theinitially retrieved set
should be large enough to contain the answers and should
be small enough so that the total retrieval time is reduced.

5.2. Experimental Setup

We have implemented correlograms and autocorrelo-
grams on a large image database and use them for image
retrieval. The parameters of our experiments are listed be-
low.

Database. The database consists of 14,554 color JPEG
images of size 232 x 168. This includes 11,667 images
used in Chabot [7], 1,440 images used in QBIC [3], 1,005
images from Corel, a few groups of images in PhotoCD
format, and a number of MPEG video frames from the web.
The database is thus quite heterogeneous.

Featurebase. We consider the RGB colorspace with color
guantization into 64 colors. To improve performance, we
first smooth the images by a small amount. We compute
the autocorrelogram, histogram, CCV, and CCV/C for each
imagein the database. (We did not have to computethe cor-
relogram here, as the autocorrelogram itself was sufficient
to produce good results.) We usethe dynamic programming
agorithm with the distance set D = {1,3,5,7} for com-
puting the autocorrel ograms. For such asmall-sized D, the
computation time is small. The size of this feature is also
the same asthat of CCV/C. We construct the featurebasein
parald.

Queries.  Our query set consists of 77 queries, each
with a unique correct answer. The queries are chosen
to represent various situations like different views of the
same scene, large changes in appearance, small light-
ing changes, spatial trandations, etc. Examples of some
gueries and answers (and the rankings according to the
histogram, CCV, CCV/C, and autocorrelogram methods)
are shown in Figure 3 (color images are available at
ftp.cs.cornell.edu/pub/huang/images). We use both the L
and d; distance measuresfor comparing feature vectorsand
use the sparsity of the feature vectors to speed up process-
ing. The query responsetime for autocorrelogramsis under
2 sec on a Sparc-20 workstation. We aso ran 4 category
queries, each with ¢ > 1 answers— Query 1 (a = 22 owl
images), Query 2 (¢ = 17 fox images), Query 3 (¢ = 6
movie scenes), and Query 4 (e = 6 moving car images).

6. Results

r- and p;-measures. The overal performance of the au-
tocorrel ogram, histogram, CCV, and CCV/C using 64 color



hist: 367.  ccv: 230.  CCV/C: 245.

auto: 1.

CCvV/C: 160.

cev: 177.

hist: 310.

auto: 6.

hist: 119. cev: 36. CCVI/C: 25. auto: 2.

hist: 388.

cev: 393.

CCV/C: 314.

auto: 2.

Figure 3. Sample queries and answers with ranks for various methods. (Lower ranks are better.)

bins is compared in Table 1. The L; distance measure is
used. We can see that autocorrelograms perform the best

| Method [ hist | ccv | CCVIC | auto |
r-measure 6301 | 3934 3272 172
avg. r-measure 82 51 42 2
p1-measure 21.25 | 2754 | 31.60 | 58.03

avg. pi-measure || 0.28 | 0.36 0.41 0.75

Table 1. Performance of various methods.

both in the r- and p;-measures.

For 73 out of 77 queries, autocorrelograms perform as
well asor better than histograms. The changein the rank of
the correct answer, averaged over all queries, isanimprove-
ment of 80 positions. In the cases where autocorrelograms
perform better than color histograms, the average improve-
ment in rank is 104 positions. In the four caseswhere color
histograms perform better, the average improvement is just
two positions. Autocorrelograms, however, still rank the
correct answerswithin top six in these cases.

We adopt the approach used in [8] to analyze the statis-
tical significance of the improvements. We formulate the
null hypothesis Hy which states that the autocorrelogram
method is as likely to cause a negative change in rank as
a non-negative one. Under Hy, the expected number of
negative changesis M = 38.5, with a standard deviation
o = +/77/2 ~ 4.39. Theactual number of negative changes
is4, whichislessthan A — 70. We can reject H at more
than 99.9% standard significancelevel.

For 67 out of 77 queries, autocorrelograms perform as
well asor better than CCV/C. On an average, the autocorrel -
ogram method ranksthe correct answer 40 positions higher.
In the cases where autocorrelograms perform better than

CCVI/C, the average improvement in rank is 66 positions.
In the ten cases where CCV/C perform better, the average
improvement istwo positions. Autocorrelograms, however,
gtill rank the correct answers within top 12 in these cases.
Again, statistical analysis suggests that autocorrelograms
are better than CCV/C.

From a user’s point of view, these results can be inter-
preted as follows: given a query, the user is guaranteed to
locate the correct answer by just checkingthetop two search
results (on average) using autocorrelograms. On the other
hand, the user needs to check at least the top 80 search re-
sults (on average) to locate the correct answer in the case
of histogram (or top 40 search results for the CCV/C). In
practice, this suggests that the former is a more “usable”
image retrieval schemethan the latter two.

Recall Comparison. Table 2 shows the performance of
three features on our four category queries. The L; distance
measureisused. Once again, autocorrelogramsperform the
best.

Relative Distance Results. Table 3 compares the results
obtained using d; and L, distance measureson different fea-
tures (64 colors). Using the d; distance measureis clearly
superior. The improvement is specially noticeable for his-
tograms and CCV/C. A closer examination of the results
shows, however, that there are instances where the d; dis-
tance measure performs poorly comparedto the L, distance
measure on histogramsand CCV/C. It seemsthat thefailure
of thed; measureisrelated to large changesin overall image
brightness. Autocorrelograms, however, are not affected by
dy in such cases. Nor does d1 improve the performance of
autocorrelograms much. In other words, autocorrelograms
seem indifferent to the d; distance measure. We need to
formally investigate these issuesin greater detail.

Filtering Results. The r-measure improves from 172 to



Recall
Query 1 Query 2
Scope || hist | CCV/C | auto || hist | CCV/C | auto
10 A4 A9 24 || .13 19 .38
30 A9 A9 38 || 31 .38 .63
50 A9 .24 57 || .31 .38 75
Recall
Query 3 Query 4
Scope || hist | CCV/C | auto || hist | CCV/C | auto
10 .20 .20 10 || .20 .20 .60
30 40 .20 10 || .20 .20 .80
50 40 .60 10 || .20 .20 .80

Table 2. Scope vs. recall results for category
queries. (Larger numbers are better.)

search and open-ended browsing of image databases[2].

Some of our results show that when thereisalargelight-
ing change between a query and its correct answer, autocor-
relograms rank the answer within the top 15 (in these cases,
the histogram and CCV/C fail). It will be interesting to try
correlogramson color spaceswhich are stableunder lighting
change and are al so perceptually uniform. Our experiments
so far have been based on color quantization in the RGB
colorspace.
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the spatial correlation of colorsin animage, it iseffectivein
discriminating images. It thusrectifiesthe major drawbacks
of the classical histogram method. The correlogram canalso
be computed efficiently. Our experiments on alarge image
database evaluated using fair performance measures show
that the correlogram performs very well.

The correlogram is powerful and needsto be explored in
further detail. Onepractical questionis, canthecorrelogram
be compressedwith only aminor lossin quality? It will also
be interesting to study the use of correlograms for target
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