
Image Indexing Using Color Correlograms

Jing Huang� S Ravi Kumary Mandar Mitraz Wei-Jing Zhux Ramin Zabih�

Cornell University
Ithaca, NY 14853

Abstract

We define a new image feature called the color correlo-
gram and use it for image indexing and comparison. This
feature distills the spatial correlation of colors, and is both
effective and inexpensive for content-based image retrieval.
The correlogramrobustly tolerates large changes in appear-
ance and shape caused by changes in viewing positions,
camera zooms, etc. Experimental evidence suggests that
this new feature outperforms not only the traditional color
histogram method but also the recently proposed histogram
refinement methods for image indexing/retrieval.

1. Introduction

With the rapid proliferation of the internet and the world-
wide-web, the amount of digital image data accessible to
users has grown enormously. Image databasesare becoming
larger and more widespread, and there is a growing need for
effective and efficient image retrieval (IR) systems.

Most IR systems adopt the following two-step approach
to search image databases: (i) (indexing) for each image
in a database, a feature vector capturing certain essential
properties of the image is computed and stored in a feature-
base, and (ii) (searching) given a query image, its feature
vector is computed, compared to the feature vectors in the
featurebase, and images most similar to the query image are
returned to the user. An overview of such systems can be
found in [1].

For a retrieval system to be successful, the feature vector
f�I� for an image I should have certain desirable qualities:

�Supported by NSF grant ASC-8902827, and by DARPA under a con-
tract monitored by ARL. huang@cs.cornell.edu

ySupported by ONR Young Investigator Award N00014-93-1-
0590, NSF grant DMI-91157199, and CAREER grant CCR-9624552.
ravi@cs.cornell.edu

zSupported by NSF grant IRI-9300124. mitra@cs.cornell.edu
xSupported by DOE Grant DEFG02-89ER45405.

wjzhu@msc.cornell.edu
�Supported by DARPA under a contract monitored by ARL.

rdz@cs.cornell.edu

(i) jf�I�� f�I��j should be large if and only if I and I � are
not “similar”, (ii) f��� should be fast to compute, and (iii)
f�I� should be small in size.

Color histograms are commonly used as feature vectors
for images [14, 3, 7, 9]. A color histogram describes the
global color distribution in an image. It is easy to compute
and is insensitive to small changes in viewing positions.
However, it does not include any spatial information , and
is therefore liable to false positives. This problem is espe-
cially acute for large databases. Moreover, the histogram
is not robust to large appearance changes. For instance,
the pairs of images shown in Figure 3 (photographs of the
same scene taken from different viewpoints) are branded dis-
similar by histogram methods. Recently several approaches
have attempted to incorporate spatial information with color
[13, 12, 10, 8]. Most of them divide the image into regions
while the recent color coherent vector (CCV) method uses a
histogram-refinement approach. CCVs are easy to compute
and appear to perform much better than color histograms
[8].

Our Approach. In this paper, we propose a new color
feature for image indexing/retrieval called the color correl-
ogram. The highlights of this feature are: (i) it includes the
spatial correlation of colors, (ii) it can be used to describe
the global distribution of local spatial correlation of colors;
(iii) it is easy to compute, and (iv) the size of the feature is
fairly small. Our experiments show that this new feature can
outperform both the traditional histogram method and the
recently proposed histogram refinement methods for image
indexing/retrieval.

Informally, a color correlogram of an image is a table in-
dexed by color pairs, where the k-th entry for hi� ji specifies
the probability of finding a pixel of color j at a distance k
from a pixel of color i in the image. Such an image feature
turns out to be robust in tolerating large changes in appear-
ance of the same scene caused by changes in viewing posi-
tions, changes in the background scene, partial occlusions,
camera zoom that causes radical changes in shape, etc. (see
Figure 3 for examples). We provide efficient algorithms to
compute the correlogram.



We also investigate a different distance measure to com-
pare feature vectors. The L1 distance measure, used
commonly to compare vectors, considers the absolute
component-wise differences between vectors. The rela-
tive distance measure we use calculates relative differences
instead and in most cases performs better than the abso-
lute measure. The improvement is significant especially for
histogram-based methods.

We conduct experiments using a large database of 14,554
images and evaluate our techniques using quantitative cri-
teria. The objective nature of these measures enables us to
fairly compare different methods.

Related Work. Several schemes for using spatial infor-
mation about colors to improve upon the histogram method
have been proposed recently. One common approach is to
divide images into subregions and impose positional con-
straints on the image comparison (image partitioning). An-
other approach is to augment histograms with local spatial
properties (histogram refinement).

Smith and Chang [12] partition an image into binary
color sets. They first select all colors that are “sufficiently”
present in a region. The colors for a region are represented
by a binary color set that is computed using histogram back-
projection [14]. The binary color sets and their location
information constitute the feature. Stricker and Dimai [13]
divide an image into five fixed overlapping regions and
extract the first three color moments of each region to form
a feature vector for the image. The storage requirements for
this method are low. The use of overlapping regions makes
the feature vectors relatively insensitive to small rotations
or translations.

Pass and Zabih [8] use another approach. They partition
histogram bins by the spatial coherence of pixels. A pixel
is coherent if it is a part of some “sizable” similar-colored
region, and incoherent otherwise. A color coherence vector
(CCV) represents this classification for each color in the
image. CCVs are fast to compute and appear to perform
better than histograms. The notion of CCV is also extended
in [8], by using additional feature(s) to further refine the
CCV-refined histogram. One such extension uses the center
of the image (the centermost 75% of the pixels are defined
as the “center”) as the additional feature. The enhanced
CCV is called CCV with successive refinement (CCV/C)
and performs better than CCV.

The color correlogram is neither an image partitioning
method nor a histogram refinement method. Unlike purely
local properties, such as pixel position, gradient direction, or
purely global properties, such as color distribution, correl-
ograms take into account the local color spatial correlation
as well as the global distribution of this spatial correlation.
While any scheme that is based on purely local proper-
ties is likely to be sensitive to large appearance changes,
correlograms are more stable to these changes; while any

scheme that is based on purely global properties is suscep-
tible to false positive matches, correlograms prove to be
effective for content-based image retrieval from a large im-
age database.

2. The Correlogram

A color correlogram (henceforth correlogram) expresses
how the spatial correlation of pairs of colors changes with
distance (the term “correlogram” is adapted from spatial data
analysis [15]). A color histogram (henceforth histogram)
captures only the color distribution in an image and does
not include any spatial correlation information.

Notation. Let I be an n � n image. (For simplicity, we
assume that the image is square.) The colors in I are quan-
tized into m colors c1� � � � � cm. (In practice, m is deemed
to be a constant and hence we drop it from our running time
analysis.)

For a pixel p � �x� y� � I, let I�p� denote its color.

Let Ic Δ
� fp j I�p� � cg. Thus, the notation p � Ic

is synonymous with p � I�I�p� � c. For convenience,
we use the L�-norm to measure the distance between pix-
els, i.e., for pixels p1 � �x1� y1�� p2 � �x2� y2�, we define

jp1 � p2j Δ
� maxfjx1 � x2j� jy1 � y2jg. We denote the set

f1� 2� � � � � ng by �n�.

Definitions. The histogram h of I is defined for i � �m�
by

hci�I� Δ
� n2 � Pr

p�I
�p � Ici �� �1�

For any pixel in the image, hci�I��n2 gives the probability
that the color of the pixel is ci.

Let a distance d � �n� be fixed a priori. Then, the
correlogram of I is defined for i� j � �m�� k � �d� as

��k�ci�cj
�I� Δ

� Pr
p1�Ici �p2�I

�p2 � Icj j jp1 � p2j � k�� �2�

Given any pixel of color ci in the image, ��k�ci�cj gives the
probability that a pixel at distance k away from the given
pixel is of color cj . Note that the size of the correlogram is
O�m2d�. The autocorrelogram of I captures spatial corre-
lation between identical colors only and is defined by

��k�
c �I� Δ

� ��k�c�c �I�� �3�

This information is a subset of the correlogram and requires
only O�md� space.

While choosing d to define the correlogram, we need
to address the following issue. A large d would result in
expensive computation and large storage requirements. A
small d might compromise the quality of the feature. We
consider this tradeoff in section 5.

2



Example. Consider the simple case when m � 2 and
n � 8. Two sample images are shown in Figure 1. The
autocorrelograms corresponding to these two images are
shown in Figure 2. The change of autocorrelation of the
foreground color with distance is perceptibly different for
these images. Note that it is difficult to distinguish between
these two images using histograms or CCVs.

Figure 1. Sample images: image 1, image 2.

image 1, background

image 2, background

image 1, foreground

image 2, foreground

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

distance

au
to

co
rre

lo
gr

am

Figure 2. Autocorrelograms for images in Fig-
ure 1.

In the following sections, we look at some efficient al-
gorithms to compute the correlogram. Our algorithms are
amenable to easy parallelization. Thus, the computation of
the correlogram could be enormously speeded up.

First, to compute the correlogram, it suffices to compute
the following count (similar to the cooccurrence matrix de-
fined in [5] for texture analysis of gray images)

Γ�k�
ci�cj

�I� Δ
�
��fp1 � Ici � p2 � Icj j jp1 � p2j � kg�� �4�

for, ��k�ci�cj �I� � Γ�k�
ci�cj �I���hci�I� � 8k�. The denominator

is the total number of pixels at distance k from any pixel of
color ci. (The factor 8k is due to the properties ofL�-norm.)
The naive algorithm would be to consider each p1 � I of
color ci and for each k � �d�, count all p2 � I of color
cj with jp1 � p2j � k. Unfortunately, this takes O�n2d2�
time. To obviate this expensive computation, we define the

quantities

�c�h�x�y��k�
Δ
� jf�x� i� y� � Ic j 0 � i � kgj �5�

�c�v�x�y��k�
Δ
� jf�x� y � j� � Ic j 0 � j � kgj �6�

which count the number of pixels of a given color within
a given distance from a fixed pixel in the positive horizon-
tal/vertical directions.

Our algorithms work by first computing �cj �vp and �cj �hp .
The following two sections give separate algorithms for the
case when d is small (running time is O�n2d�) and when d
is large (running time is O�n3d��3� where � � �2� 3� is the
exponent of the fastest algorithm for matrix multiplication).

2.1. Dynamic Programming: when d is small

The following equation is easy to check

�c�h�x�y��k� � �c�h�x�y��k � 1� � �c�h�x�k�y��0� �7�

with the initial condition

�c�hp �0� � 1 if p � Ic and 0 otherwise.

Now, �c�hp �k� is computed for all p � I and for each k �
1� � � � � d using Equation 7. The correctness of this algorithm
is obvious. Since we do O�n2� work for each k, the total
time taken is O�n2d�.

In a similar manner,�c�vp can also be computed efficiently.
Now, ignoring boundaries, we have

Γ�k�
ci�cj

�I� �
X

�x�y��Ici

�
�
cj �h

�x�k�y�k��2k� � �
cj �h

�x�k�y�k��2k�

� �
cj �v

�x�k�y�k�1��2k� 2� � �
cj �v

�x�k�y�k�1��2k � 2�
�

This computation takes just O�n2� time.
The hidden constants in the overall running time of

O�n2d� are very small and hence this algorithm is extremely
efficient in practice for small d.

2.2. Matrix Multiplication: when d is large

When d is, say, O�n�, the dynamic programming algo-
rithm given in the previous section is sub-optimal. We resort
to a more sophisticated dynamic program – algorithms for
fast matrix multiplication. We now sketch the main ideas
involved.

The first observation is an alternate way to compute
�c�hp �k� via matrix multiplication. Let Ic be an n � n 0-1
matrix such that Ic�p� � 1 �� I�p� � c. Now, de-
fine N1 to be the n� nd matrix whose �nk � y�-th column

3



y � �n�� k � �d� is given by �

y�1z �� �
0� � � � � 0�

kz �� �
1� � � � � 1� 0� � � � � 0�T .

It is easy to see that �IcN1��x� nk � y� � �c�h�x�y��k�.
Now, the second observation is to use another nd�dma-

trix N2 that will accumulate
Pn

x�1 �
c�h

�x�k�y�k��2k� from the
product IcN1 for each distance k � �d� and column y � �n�,
To accrue this sum, the k-th column in N2 looks (approxi-
mately) like �1� 2� � � � � 2k�1� 2k�1� � � � � 2k�1� 2k� � � � � 1�.
When IcN1 is right-multiplied by N2, the resulting n � d
product represents the above sum, i.e., ��IcN1�N2��y� k� �Pn

x�1 �
c�h
�x�k�y�k��2k�.

Note that �IcN1�N2 � Ic�N1N2�. In other words,
N1N2 � N is a fixed n � d matrix. So, the algorithm
will precompute N for a given n and use the fast matrix
multiplication to compute IcN . By adding each column in
this product, we can get

P
�x�y��I �

c�h

�x�k�y�k��2k�, the first

term in the equation for Γ�k�
ci�cj �I�. Using similar ideas, the

other three terms can be computed.
The total time taken by this algorithm is the time taken to

multiply Ic andN , i.e., an n�n 0-1 matrix and a fixedn�d
integer matrix. Using a block d � d matrix multiplication,
this can be achieved in time O�n3d��3� where � � �2� 3� is
the exponent for the fastest matrix multiplication algorithm
(for instance, for Strassen’s algorithm, � 	 2�7). With the
availability of fast hardware to perform matrix multiplica-
tion, this method promises to be attractive. One could also
use several existing optimal techniques which parallelize
matrix multiplication to implement this algorithm efficiently
in practice.

3. Distance Measures

The image retrieval problem is the following: let D be
an image database and Q be the query image. Obtain a
permutation of the images in D based on Q, i.e., assign
rank�I� � �jDj� for each I � D, using some notion of
similarity to Q. This problem is usually solved by sorting
the images Q� � D. according to jf�Q�� � f�Q�j, where
f��� is a function computing feature vectors of images and
j � j is some distance measure defined on feature vectors.

The L1 and L2 distance measures are commonly used
when comparing two feature vectors. In practice, the L1

distance measure performs better than the L2 distance mea-
sure because the former is statistically more robust to outliers
[11]. Hafner et al. [4] suggest using a more sophisticated
quadratic form of distance measure, which tries to capture
the perceptual similarity between any two colors. To avoid
intensive computation of quadratic functions, they propose
to use low-dimensional color features as filters before using
the quadratic form for the distance measure.

We will use the L1 distance measure for comparing his-
tograms and correlograms because it is simple and robust.

The following formulae are used to compute the distance
between images I and I �:

jI � I �jh�L1

Δ
�

X
i��m�

jhci�I�� hci�I ��j (8)

jI � I �j��L1

Δ
�

X
i�j��m��k��d�

j��k�ci�cj
�I�� ��k�ci�cj

�I ��j (9)

From these equations, it is clear that the contributions of
different colors to the dissimilarity are equally weighted.
Intuitively, however, this contribution should be weighted
to take into account some additional factors.

Example. Consider two pairs of images hI1�I2i and
hI �1�I �2i. Let hci�I1� � 1000, hci�I2� � 1050, hci�I �1� �
100, and hci�I �2� � 150. Even though the absolute dif-
ference in the pixel count for color bucket i is 50 in both
cases, clearly the difference is more significant for the sec-
ond pair of images. Thus, the difference jhci�I�� hci�I ��j
in Equation (8) should be given more importance if jhci�I��
hci�I ��j is small and vice versa. We could therefore replace
the expression jhci�I�� hci�I ��j in Equation 8 by

jhci�I�� hci�I ��j
1 � hci�I� � hci�I ��

(10)

(the 1 in the denominator prevents division by zero).
This intuition has theoretical justification in [6] which

suggests that sometimes, a “relative” measure of distance
d� is better. For 	 
 0� r� s 
 0, d� is defined by

d��r� s� �
jr � sj

	� r � s
� �11�

It is straightforward to verify that (i) d� is a metric, (ii) for
r� s 
 0, d��r� s� � �0� 1�, and (iii) for 0 � r � s � t,
d��r� s� � d��r� t�, d��s� t� � d��r� t�.

d� can be applied to feature vectors also. We have set
	 � 1. So the d1 distance measure for histograms and
correlograms is:

jI � I �jh�d1

Δ
�

X
i��m�

jhci�I�� hci�I ��j
1 � hci�I� � hci�I ��

(12)

jI � I �j��d1

Δ
�

X
i�j��m��k��d�

j��k�ci�cj �I�� �
�k�
ci�cj �I ��j

1 � ��k�ci�cj �I� � ��k�ci�cj �I ��
(13)

4. Performance Measures

Ranking Measures. Let fQ1� � � � �Qqg be the set of query
images. For a queryQi, letQ�i be the unique correct answer.
We use two performance measures:

4



1. r-measure of a method which sums up over all queries,
the rank of the correct answer, i.e.,

Pq
i�1 rank�Q�i�. We

also use the average r-measure which is the r-measure
divided by the number of queries q.

2. p1-measure of a method which is
Pq

i�1 1� rank�Q�i�,
i.e., the sum (over all queries) of the precision at recall
equal to 1. The average p1-measure is the p1-measure
divided by q.

Images ranked at the top contribute more to the p1-measure.
Note that a method is good if it has a low r-measure and a
high p1-measure.

Recall vs. Scope. Let Q be a query and let Q�
1� � � � �Q�a

be multiple “answers” to the query (Q is called a category
query). Now, the recall r is defined for a scope, to be s 
 0
as jfQ�i j rank�Q�i� � sgj�a. This measure is simpler than
the traditional recall vs. precision but still evaluates the
effectiveness of the retrieval [12].

5. Experimental Methodology

5.1. Efficiency Considerations

As image databases grow in size, retrieval systems need
to address efficiency issues in addition to the issue of re-
trieval effectiveness. We investigate several general meth-
ods to improve the efficiency of indexing and searching,
without compromising effectiveness.

Parallelization. The construction of a featurebase for an
image database is readily parallelizable. We can divide the
database into several parts, construct featurebases for these
parts in parallel, and finally combine them into a single
featurebase for the entire database.

Partial Correlograms. In order to reduce space and time
requirements, we choose a small value of d. This does not
impair the quality of correlograms or autocorrelograms very
much because in an image, local correlations between colors
are more significant than global correlations. Sometimes, it
is preferable to work with distance sets, where a distance
set D is a subset of �d�. We can thus cut down storage
requirements, while still using a large d. Note that the
algorithms can be modified to handle the case whenD � �d�.

Though in theory the size of a correlogram is O�m2d�
(the size of an autocorrelogram is O�md�), we observe that
the feature vector is often sparse. This sparsity could be
exploited to cut down storage and speed up computations.

Filtering. A good balance between effectiveness and ef-
ficiency can be obtained by adopting a two-pass approach
[4]. First, we retrieve a set of N images using an inexpen-
sive search algorithm; next, a more sophisticated matching
technique is used to compare only these images to the query.

The initial ranking of the images could be poor, but if we
ensure that the initial set contains the answer images, these
images are likely to be highly ranked in the final ranking.
The choice of N is important here: the initially retrieved set
should be large enough to contain the answers and should
be small enough so that the total retrieval time is reduced.

5.2. Experimental Setup

We have implemented correlograms and autocorrelo-
grams on a large image database and use them for image
retrieval. The parameters of our experiments are listed be-
low.

Database. The database consists of 14,554 color JPEG
images of size 232 � 168. This includes 11,667 images
used in Chabot [7], 1,440 images used in QBIC [3], 1,005
images from Corel, a few groups of images in PhotoCD
format, and a number of MPEG video frames from the web.
The database is thus quite heterogeneous.

Featurebase. We consider the RGB colorspace with color
quantization into 64 colors. To improve performance, we
first smooth the images by a small amount. We compute
the autocorrelogram, histogram, CCV, and CCV/C for each
image in the database. (We did not have to compute the cor-
relogram here, as the autocorrelogram itself was sufficient
to produce good results.) We use the dynamic programming
algorithm with the distance set D � f1� 3� 5� 7g for com-
puting the autocorrelograms. For such a small-sized D, the
computation time is small. The size of this feature is also
the same as that of CCV/C. We construct the featurebase in
parallel.

Queries. Our query set consists of 77 queries, each
with a unique correct answer. The queries are chosen
to represent various situations like different views of the
same scene, large changes in appearance, small light-
ing changes, spatial translations, etc. Examples of some
queries and answers (and the rankings according to the
histogram, CCV, CCV/C, and autocorrelogram methods)
are shown in Figure 3 (color images are available at
ftp.cs.cornell.edu/pub/huang/images). We use both the L1

and d1 distance measures for comparing feature vectors and
use the sparsity of the feature vectors to speed up process-
ing. The query response time for autocorrelograms is under
2 sec on a Sparc-20 workstation. We also ran 4 category
queries, each with a 
 1 answers – Query 1 (a � 22 owl
images), Query 2 (a � 17 fox images), Query 3 (a � 6
movie scenes), and Query 4 (a � 6 moving car images).

6. Results

r- and p1-measures. The overall performance of the au-
tocorrelogram, histogram, CCV, and CCV/C using 64 color

5



hist: 367. ccv: 230. CCV/C: 245. auto: 1.

hist: 310. ccv: 177. CCV/C: 160. auto: 6.

hist: 119. ccv: 36. CCV/C: 25. auto: 2.

hist: 388. ccv: 393. CCV/C: 314. auto: 2.

Figure 3. Sample queries and answers with ranks for various methods. (Lower ranks are better.)

bins is compared in Table 1. The L1 distance measure is
used. We can see that autocorrelograms perform the best

Method hist ccv CCV/C auto

r-measure 6301 3934 3272 172
avg. r-measure 82 51 42 2
p1-measure 21.25 27.54 31.60 58.03

avg. p1-measure 0.28 0.36 0.41 0.75

Table 1. Performance of various methods.

both in the r- and p1-measures.
For 73 out of 77 queries, autocorrelograms perform as

well as or better than histograms. The change in the rank of
the correct answer, averaged over all queries, is an improve-
ment of 80 positions. In the cases where autocorrelograms
perform better than color histograms, the average improve-
ment in rank is 104 positions. In the four cases where color
histograms perform better, the average improvement is just
two positions. Autocorrelograms, however, still rank the
correct answers within top six in these cases.

We adopt the approach used in [8] to analyze the statis-
tical significance of the improvements. We formulate the
null hypothesis H0 which states that the autocorrelogram
method is as likely to cause a negative change in rank as
a non-negative one. Under H0, the expected number of
negative changes is M � 38�5, with a standard deviation
� �

p
77�2 	 4�39. The actual number of negative changes

is 4, which is less than M � 7�. We can reject H0 at more
than 99�9% standard significance level.

For 67 out of 77 queries, autocorrelograms perform as
well as or better than CCV/C. On an average, the autocorrel-
ogram method ranks the correct answer 40 positions higher.
In the cases where autocorrelograms perform better than

CCV/C, the average improvement in rank is 66 positions.
In the ten cases where CCV/C perform better, the average
improvement is two positions. Autocorrelograms, however,
still rank the correct answers within top 12 in these cases.
Again, statistical analysis suggests that autocorrelograms
are better than CCV/C.

From a user’s point of view, these results can be inter-
preted as follows: given a query, the user is guaranteed to
locate the correct answer by just checking the top two search
results (on average) using autocorrelograms. On the other
hand, the user needs to check at least the top 80 search re-
sults (on average) to locate the correct answer in the case
of histogram (or top 40 search results for the CCV/C). In
practice, this suggests that the former is a more “usable”
image retrieval scheme than the latter two.

Recall Comparison. Table 2 shows the performance of
three features on our four category queries. TheL1 distance
measure is used. Once again, autocorrelograms perform the
best.

Relative Distance Results. Table 3 compares the results
obtained using d1 andL1 distance measures on different fea-
tures (64 colors). Using the d1 distance measure is clearly
superior. The improvement is specially noticeable for his-
tograms and CCV/C. A closer examination of the results
shows, however, that there are instances where the d1 dis-
tance measure performs poorly compared to the L1 distance
measure on histograms and CCV/C. It seems that the failure
of the d1 measure is related to large changes in overall image
brightness. Autocorrelograms, however, are not affected by
d1 in such cases. Nor does d1 improve the performance of
autocorrelograms much. In other words, autocorrelograms
seem indifferent to the d1 distance measure. We need to
formally investigate these issues in greater detail.

Filtering Results. The r-measure improves from 172 to

6



Recall
Query 1 Query 2

Scope hist CCV/C auto hist CCV/C auto
10 .14 .19 .24 .13 .19 .38
30 .19 .19 .38 .31 .38 .63
50 .19 .24 .57 .31 .38 .75

Recall
Query 3 Query 4

Scope hist CCV/C auto hist CCV/C auto
10 .20 .20 1.0 .20 .20 .60
30 .40 .20 1.0 .20 .20 .80
50 .40 .60 1.0 .20 .20 .80

Table 2. Scope vs. recall results for category
queries. (Larger numbers are better.)

Method� hist CCV/C auto hist CCV/C auto
Measure 
 L1 distance measure d1 distance measure

r 6301 3272 172 926 326 164
avg. r 82 42 2 12 4 2
p1 21.3 31.6 58.0 47.9 52.1 59.9

avg. p1 0.28 0.41 0.75 0.62 0.68 0.78

Table 3. Comparison of L1 and d1

166 and p1-measure from 58.03 to 58.60 when a histogram
filter (with d1 distance measure) is used before using the au-
tocorrelogram (with L1 distance measure). This improve-
ment is because of the elimination of false positives. As
anticipated, the query response time is reduced since we
compare the query to the autocorrelograms of only a small
filtered subset of the featurebase.

7. Conclusions and Future Work

We have described a new image feature that can be used
to index and compare images. Since this feature captures
the spatial correlation of colors in an image, it is effective in
discriminating images. It thus rectifies the major drawbacks
of the classical histogram method. The correlogram can also
be computed efficiently. Our experiments on a large image
database evaluated using fair performance measures show
that the correlogram performs very well.

The correlogram is powerful and needs to be explored in
further detail. One practical question is, can the correlogram
be compressed with only a minor loss in quality? It will also
be interesting to study the use of correlograms for target

search and open-ended browsing of image databases [2].
Some of our results show that when there is a large light-

ing change between a query and its correct answer, autocor-
relograms rank the answer within the top 15 (in these cases,
the histogram and CCV/C fail). It will be interesting to try
correlograms on color spaceswhich are stable under lighting
change and are also perceptually uniform. Our experiments
so far have been based on color quantization in the RGB
colorspace.

Acknowledgments. We are grateful to R. Rubinfeld and A. Sing-
hal for their very helpful comments. We thank D. Coppersmith for
his answer to our question regarding fast rectangular matrix mul-
tiplication. Finally, we would like to thank G. Pass who provided
us with the framework for the IR system used in our experiments.

References

[1] Content-based image retrieval systems. IEEE Computer,
28(9), 1995.

[2] I. J. Cox et al. PicHunter: Bayesian relevance feedback
for image retrieval. International Conference on Pattern
Recognition, 1996.

[3] M. Flickner et al. Query by image and video content: The
QBIC system. IEEE Computer, 28(9):23–32, 1995.

[4] J. Hafner et al. Efficient color histogram indexing for
quadratic form distance functions. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17(7):729–736,
1995.

[5] R. M. Haralick. Statistical and structural approaches to tex-
ture. Proceedings of IEEE, 67(5):786–804, 1979.

[6] D. Haussler. Decision theoretic generalization of the PAC
model for neural net and other learning applications. Infor-
mation and Computation, 100:78–150, 1992.

[7] V. Ogle and M. Stonebraker. Chabot: Retrieval from a re-
lational database of images. IEEE Computer, 28(9):40–48,
1995.

[8] G. Pass and R. Zabih. Histogram refinement for content-
based image retrieval. IEEE Workshop on Applications of
Computer Vision, pages 96–102, 1996.

[9] A. Pentland, R. Picard, and S. Sclaroff. Photobook: Content-
based manipulation of image databases. International Jour-
nal of Computer Vision, 18(3):233–254, 1996.

[10] R. Rickman and J. Stonham. Content-based image retrieval
using color tuple histograms. SPIE proceedings, 2670:2–7,
1996.

[11] P. J. Rousseeuw and A. M. Leroy. Robust Regression and
Outlier Detection. John Wiley & Sons, 1987.

[12] J. Smith and S-F. Chang. Tools and techniques for color
image retrieval. SPIE proceedings, 2670:1630–1639, 1996.

[13] M. Stricker and A. Dimai. Color indexing with weak spatial
constraints. SPIE proceedings, 2670:29–40, 1996.

[14] M. Swain and D. Ballard. Color indexing. International
Journal of Computer Vision, 7(1):11–32, 1991.

[15] G. J. G. Upton and B. Fingleton. Spatial Data Analysis by
Example. Vol I. John Wiley & Sons, 1985.

7


