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Abstract

New sets of color models are proposed for object
recognition invariant to a change in view point, object
geometry and illumination. Further, computational
methods are presented to combine color and shape in-
variants to produce a high-dimensional invariant fea-
ture set for discriminatory object recognition.

Ezxperiments on a database of 500 images show
that object recognition based on composite color and
shape invariant features provides excellent recognition
accuracy. Furthermore, object recognition based on
color invariants provides very high recognition accu-
racy whereas object recognition based entirely on shape
inwvariants yields very poor discriminative power.

The image database and the performance of the
recognition scheme can be experienced within Pic-
ToSeek on-line as part of the ZOMAX system at:

http://www.wins.uva.nl/research/isis/zomax/.

1 Introduction

Most of the work on object recognition is based on
matching sets of geometric image features (e.g. edges,
lines and corners) to 3D object models and signifi-
cant progress has been achieved, [5], for example. As
an expression of the difficulty of the general problem,
most of the geometry-based schemes can handle only
simple, flat and rigid man-made objects. Geometric
features are rarely adequate for discriminatory object
recognition of 3-D objects from arbitrary viewpoints.

Color provides powerful information for object
recognition as well. A simple and effective recogni-
tion scheme is to represent and match images on the
basis of color-metric histograms as proposed by Swain
and Ballard [7]. This method is extended by Funt
and Finlayson [2] to make the method illumination
independent by indexing on an invariant set of color
descriptors computed from neighboring points. How-
ever, objects should be composed of flat surfaces and
the method may fail when images are contaminated by
shading cues. Further, Finlayson at al. [1], and Healey

and Slater [4] use illumination-invariant moments for
object recognition. The methods fail, however, when
objects are occluded as the moments are defined as an
integral property on the object as one.

In this paper, our aim is to propose new image fea-
tures for 3D object recognition according to the fol-
lowing criteria: invariance to the geometry of the ob-
ject and illumination conditions, high discriminative
power and low computational effort, and robustness
against fragmented, occluded and overlapping objects.
First, in Section 2, assuming white illumination and
dichromatic reflectance, we propose new color models
invariant to a change in view point, object geometry
and illumination. Also a change in spectral power dis-
tribution of the illumination is considered to propose
a new set of color models which is an invariant for
matte objects. Simple shape invariants are discussed
in Section 3. In Section 4, we propose computational
methods to produce composite color and shape invari-
ant features. Finally, in Section 5, the performance
of different invariant image features is evaluated on a
database of 500 images. No constraints are imposed
on the images in the image database and the imaging
process other than that images should be taken from
multicolored objects.

2 Photometric Color Invariance
Consider an image of an infinitesimal surface patch.
Using the red, green and blue sensors with spectral
sensitivities given by fr(A), fa(A) and fB()\) respec-
tively, to obtain an image of the surface patch illumi-
nated by a SPD of the incident light denoted by e(}),
the measured sensor values will be given by Shafer [6]:

C = my(ii, ) f feMeWep(N)dr+

mg(7, §,7) A Ffe(N)e(N)es(A)dA (1)

for C = {R,G, B} giving the Cth sensor response.
Further, ¢;(A\) and cs(\) are the albedo and Fresnel

reflectance respectively. A denotes the wavelength, 7



is the surface patch normal, §'is the direction of the il-
lumination source, and ¢ is the direction of the viewer.
Geometric terms my and m, denote the geometric de-
pendencies on the body and surface reflection respec-
tively.

2.1 Reflectance with White Illumination

Considering the neutral interface reflection (NIR)
model (assuming that cs(\) has a constant value inde-
pendent of the wavelength) and ”white” illumination,
then e(\) = e and ¢,(\) = ¢5. Then, we propose that
the measured sensor values are given by:

Cw = emy(7i, ke + ems (7, §,7) / fe(N)dr  (2)

for Cy € {Ry, Gy, By} giving the red, green and
blue sensor response under the assumption of a white
light source. ko = [, fo(M)es(A)dA is a compact for-
mulation depending on the sensors and the surface
albedo.

If the integrated white condition holds (as we

L fr(Ndx =
d\ = f, we propose:

assume throughout the paper):

f,\ fG()‘)d)‘ = f)‘ fB()‘)

Cy = emyp(7i, 8) ke + ems(Ti, §,0)cs f (3)

2.2 Color Invariant Color Models

For a given point on a shiny surface, the con-
tribution of the body reflection component C, =
emp(1, §)kc and surface reflection component Cs =
ems(t, §,0)cs f are added together C,, = Cs + Cb.
Hence, the observed colors of the surface must be
inside the triangular color cluster in the RG B-space
formed by the two reflection components [3].

Hence, any expression defining colors on the same
triangle, formed by the two reflection components, in
RG B-space are photometric color invariants for the
dichromatic reflection model with white illumination.
To that end, we propose the following set of color mod-
els:

>ai(Cl — CH)P
>, 4]~ Ciy W

7v;here C} #£ C2, 03 # C’;-l € {R,G,B},i,j,p>1,a €

LP =

Lemma 1 Assuming dichromatic
reflection and white illumination, LP is independent
of the viewpoint, surface orientation, illumination di-

rection, illumination intensity, and highlights.

Proof: By substituting eq. ( 3) in eq. ( 4) we have:

2 ail(em (i, k1) — (ems (7, §kez))?
25 a5 ((ems (7, ks ) — (ems (7, Hkca))?

Z.ai(emb( :5'))19("7021 - kc2)p

>, aj(ems(ii, 5))P ks — kot)? -

(
(ems (7, 8))7 3, ai(ker — keo2)”
(ems(, )P 5, @i og — kos)?
2 ai(kcil - kcf)
Zj aj (kcj3 - kc;l )P
only dependent on the sensors and the material’s albedo.
QED.

For instance, for p = 1, we have the set:
(R—-G) (B—G) (R—G)+(B—G) (R-G)+3(B—G)
(&8 @B m=B) + (R=B)t2(R=c)>

2 2 —a)?2 Q)2
and for p = 2: {Eg g)z, g_g;z,(R C(’?qjé?z G) )
(R=G)*+3(B=G)*

(R=B)Z42(R=C)2 ...} where all elements are photomet-

ric color invariants for objects with dichromatic re-
flectance under white illumination.
We can easily see that hue given by:

V3(G — B)

H(R,G,B):arctan((R_G)+(R_B)) (5)

ranging from [0,27) is a function of an instantiation

. . V3(G—B)
Of LP Wlth p= 1i.e. W
Although any other instantiation of LP could be
taken, in this paper, we concentrate on the photomet-
ric color invariant model ll5l3 uniquely determining

the direction of the linear triangular color cluster: I; =

(R=G)* I (R—B)?
(R=Gy+(R=B)*H(G-B)?* "2 = (R=G)*+(R—B)*+(G-B)*’
G-B
I3 = (R—G)2+ER—B))2+(G—B)2 the set of normalized

color differences which is, similar to H, an invariant
for objects with dichromatic reflectance and white il-
lumination.

2.2.1 Color Invariant Image Features

In this section, we propose different image features
(i.e. edges and corners) derived from the above pro-
posed invariant color models. Although any instan-
tiation of LP could be taken to produce color invari-
ant image features, in this paper, hue is taken as an
instantiation of L? to generate color invariant image
features, because hue is intuitive and well-known in
the color literature.
Color Invariant Edge Pairs:



Due to the circular nature of hue, the standard dif-
ference operator is not suited for computing the dif-
ference between hue values. Therefore, we define the
difference between two hue values h; and h, as follows:

d(h1, h2) = \/(cos h1 — cos h2)? + (sin h1 — sin h2)?  (6)

yielding a difference d(hy, h2) € [0,2] between h; and
ha. Note that the difference is a distance because it
satisfies the metric criteria. To find hue edges we use
an edge detector, currently of the Sobel type, to sup-
press marginally visible edges. Then, for each local
hue maximum, two opposite neighboring points are
computed based on the direction of the gradient to
determine the hue value on the left side of the edge:
IL(Z) = H(Z — A@) and the right side of the edge:
I7(£) = H(Z + Ar). Only computed for image lo-
cation ¥ at the two sides of a local hue maximum.
Furthermore, 7 is the normal to the intensity gradient
at image location Z and A is a preset value (e.g. A =
3 pixels).

To obtain a unique characterization, we impose an
order where I! (%) always points at the maximum hue
value and [7(ZF) at the lesser hue value:

le(Z) =
IL(&) + 2riz(2),
The hue-hue edge pair [.(Z) is quantitative, non-
geometric and viewpoint independent and can be de-
rived from any view of a 3D multicolored object.
Color Invariant Corner Pairs:
A measure of cornerness is defined as the change
of gradient direction along an edge contour, which for
hue H results in:

otherwise

12(&) + 21l (&), if 7(%) < 1L()
Z (M

_H;ZH:EJ: + 2HzHszy - HazzHyy

k(H(Z)) = (HZ + H;)Sﬂ

8)

where the partial derivatives at image location Z take
into account the circular nature of H.

Then, two opposite neighboring points are com-
puted based on the direction of the gradient to de-
termine the hue value on either side of the corner
point yielding the hue-hue corner pair at &: [4(Z) =
H(Z— Ar) and I%(Z) = H(Z+ An), only computed for
image location # at the two sides of a high-curvature
maximum.

Finally, to obtain a unique characterization we de-
fine:

if 17(Z) < 1(%)
le(%) = 9)
le(&) + 2mI7 (),

otherwise

{ 11(3) + 2nlL(2),

2.3 Reflection with Colored Illumination
Consider the body reflection term of the dichro-
matic reflection model defined by eq. ( 1):

Cc:mb(ﬁ,é')/fc()\)e()\)cb()\)d)\ (10)
A
for C = {R,G, B} where C. = {R.,G.,B.} gives

the red, green and blue sensor response of a matte
infinitesimal surface patch under unknown spectral
power distribution of the illumination.

Suppose that the sensor sensitivities of the color
camera are narrow-band with spectral response be ap-
proximated by delta functions fo(A) = §(A—A¢), then
we derive:

Cc = mb(ﬁ,é')e()\c)cb()\c) (11)

2.3.1 Color Constant Color Model for Matte
Surfaces

In this section, we propose a set of new color constant

color models not only independent of the illumination

color but also independent of the object’s geometry.
The set of color constant color models is defined by:

(e ey
(el
expressing the color ratio between two neighboring im-

age locations, where #; and Z5 denote the image loca-
tions of the two neighboring pixels.

P

C # Cs € {R,G,B},pz 1 (12)

Lemma 2 Assuming body reflection, MP is indepen-
dent of the viewpoint, surface orientation, illumina-
tion direction, illumination intensity, and illumina-
tion color.

Proof: If we assume that the SPD of the illumination is
locally constant (at least over the two neighboring loca-
tions from which ratio is computed i.e. ¥ () = e¥2()) ),
then cf. ( 11) in eq. ( 12) we have:

(mb (7, 5’)0601 fA fey ()‘)eyl
(m (72, g)cbcl fA fo (A)ed2
('mg2 It .§‘)cbcz fA o, (A 692 ()\)d)\)p

(mb (n,.?)cbcz fA fo, (A ey1 (A)dx)p ( bCl) (Cbcz)
only dependent on the surface albedo, where §; and %>

A)dA)
AP

(
(

(cf8, )P (ch2, )P

(13)

are two neighboring locations on the object’s surface not
necessarily of the same orientation. QED.

In theory, when #; and ¢ are neighboring locations
on the same uniformly painted surface, the color ratio
MP will be 1. Except along color edges, assuming that
the neighboring locations are at either side of the color
edge, the value of the color ratio will deviate from 1.



2.3.2 Color Constant Image Features

In this paper, the set of color ratio’s is considered
for p = 1. Then, having three color components
of two locations, color ratios obtained from a RGB-

color image are: mj(R®', R™>,G*1 G™) = %,
mo(R™, R¥2, B¥1, B¥2) =
B, m3(G™,G™,B™ B%2) = S8 where
my,mg, m3 € MP with p = 1.

For the ease of exposition, we concentrate on m;
based on RG in the following discussion. Without
loss of generality, all results derived for m; will also
hold for my and ms.

Taking logarithms of both sides of eq. ( 12) results

for m, in:

Inm1(R®1, R®2, G%1,G%?) = In R®1 + InG®2 —In R®> —In G%1

(14)
When these differences are taken between neighbor-
ing pixels in a particular direction, they correspond
to finite-difference differentiation. To find color ratio
edges in images we use the edge detection proposed in
[3] which is currently of the Sobel type.

The results obtained so far for m; hold also for m,
and mg, yielding a 3-tuple (Gm, (%), Gm,(Z),Gm, (L))
denoting the gradient magnitude for every neighbor-
hood centered at & in the image.

3 Shape Invariants
3.1 Similarity Invariant

For image locations 27, 25 and 3, gg() is defined
as the well-known similarity invariant:

ge(21,25,%3) =0 (15)
where 6 is the angle at image coordinate £ between
line #1725 and z1z3.

3.2 Projective Invariant

From the classical projective geometry we know
that the so called cross-ratio is independent of the pro-
jection viewpoint:

sin(01 + 02) sin(02 + 03
sin(02) sin(91 =+ 02 + 93

o o . o )
gP("E 3 L2,T3,T )$5)) = )
16
where 0y, 65,03 are the angles at image coordinate 7]

L0 oo oo o S oo -
between #1275 and £1 23, 1 €3 and 2123, €124 and 2] Z5
respectively.

—~~
~

4 Object Recognition: Histogram For-
mation and Matching
Histograms are created on the basis of the differ-
ent features defined in Section 2 and 3 for each ref-
erence image in the image database by counting the

number of times a discrete color feature occurs in the
image. The histogram from the test image is created
in a similar way. Then, the object recognition process
is reduced to the problem to what extent histogram
H2 derived from the test image Q is similar to a his-
togram HI* constructed for each reference image Iy
in the image database. For comparison reasons in the
literature, similarity between histograms is expressed
by histogram intersection [7].

Let the reference image database consist of a set
{Ik}g:"l of color images. Histograms are created for
each image Ij to represent the distribution of quan-
tized invariant values in a high-dimensional invariant
space. Histograms are formed on the basis of color
invariants, shape invariants and combination of both.

4.1 Color Invariant Histogram Formation

Histograms are constructed on the basis of differ-
ent color features representing the distribution of dis-
crete color feature values in a n-dimensional color fea-
ture space, where n = 3 for lyl5l3 and m;msyms, and
n = 1 for H. For comparison reasons in the liter-
ature, we have also constructed color feature spaces
for RGB and the following standard, color features
derived from RGB: intensity I(R,G,B) = R +
B + G, normalized colors (invariant for matte objects
[3]) T(RaGaB) = ﬁa g(R,G,B) = ﬁa
b(R,G,B) = ﬁ and saturation (invariant for

matte objects [3]): S(R,G,B) =1— %.

We have determined the appropriate bin size for our
application empirically. The histogram bin size used
during histogram formation is ¢ = 32.

Hence, for each test and reference image, 3-
dimensional histograms are created for the RGB,
11513, rgb and m1msms3 color space denoted by Hrag,
Hiyts1s, Hrgs and Homymym, respectively. Furthermore,
1-dimensional histograms are created for I, S and H

denoted by Hy, Hs, and Hg.

4.1.1 Hue-based Histogram Formation

The histogram representing the distribution of hue-
hue edge pairs is given by:

Hi (i) = n(le(F) == i) (17)

only computed for the set of hue edge maxima com-
puted from I. 7 indicates the number of times I.(Z)
equals the value of the histogram index denoted by 4
with l.() given by eq. (7).

The histogram of hue-hue corners is given by:

HE (6) = n(l.(3) == 1) (18)



only computed for the set of hue corners computed
from I and I () is given by eq. ( 9).

4.2 Shape Invariant Histogram Forma-
tion

A 1-dimensional histogram is constructed in a stan-

dard way on the angle axis expressing the distribution

of angles between hue corner triplets mathematically
specified by:

Hi (i) = n(gp (T, T2, 33) == 1) (19)

only computed for #; # &> # ¥3 € CT*, where C'* is
the set of hue corners computed from Ij, and gg() is
given by eq. ( 15).

In a similar way, a 1-dimensional histogram is de-
fined on the cross ratio axis expressing the distribution
of cross ratios between hue corner quintets:

HI ) = n(gp(F1, Bo, T3, T4, F5) == 1) (20)

only computed for &1 # &y # &3 # T4 # &5 € C™* and
gp() is defined by eq. ( 16).

4.3 Composite Color and Shape Invariant
Histogram Formation
A 4-dimensional histogram is created counting the
number of corner triples with hue-hue values i, j and
k generating angle ! (similarity invariant):

Hit (5,5, b, 1) = (le(@1) == i AL(F>) == jA

l(Z3) ==k A g(Z1, T2, T3) ==1) (21)

only computed for ¥} # &» # &3 € C!*, where gg() is
given by eq. ( 15) and A is the the logical AND. Each
histogram bin measures the number of hue-hue corner
triplets generating a certain angle.

In a similar way, a 6-dimensional invariant his-
togram can be constructed considering the cross-ratio
between hue-hue corners:

HE (4, 5,k,1,m,n) = n(le(F1) == iAl(@2) == jAl(T3) ==

lc(54) == lAlc(f5) == m/\gp(ﬂ-)’l,fg,fg,:l-:’4,f5) == n) (22)

5 Experiments

In this section, the different invariant image fea-
tures are evaluated on a database of 500 images. The
data sets on which the experiments will be conducted
are described in Section 5.1. Error measures are given
in 5.2.

5.1 Datasets

The database consists of N; = 500 reference color
images of domestic objects, tools, toys, food cans, art
artifacts etc., all taken from two households. Objects
were recorded in isolation (one per image) with the aid
of the SONY XC-003P CCD color camera (3 chips)
and the Matrox Magic Color frame grabber. The dig-
itization was done in 8 bits per color. Objects were
recorded against a white cardboard background. Two
light sources of average day-light color are used to il-
luminate the objects in the scene.

A second, independent set (the test set) of record-
ings was made of randomly chosen objects already in
the database. These objects, No = 70 in number, were
recorded again (one per image) with a new, arbitrary
position and orientation with respect to the camera
(some recorded upside down, some rotated, some at
different distances (different scale)).

In the experiments, the white cardboard back-
ground as well as the grey, white, dark or nearly col-
orless parts of objects as recorded in the color image
will not be considered in the matching process.

The image database and the performance of the
recognition scheme can be experienced within the
ZOMAX system on-line at:
http://www.wins.uva.nl/research/isis/zomax/.

5.2 Error Measures

For a measure of recognition quality, let rank r@:
denote the position of the correct match for test im-
age Q;, t = 1,..., Ny, in the ordered list of N; match
values. The rank % ranges from r = 1 from a perfect
match to » = N; for the worst possible match.

Then, for one experiment, the average ranking per-

centile is defined by: 7 = (NL2 Zf\fl N&:‘f”)loo%.
The cumulative percentile of test images producing

a rank smaller or equal to j is defined as: X(@j) =
(NL2 41 n(r% == k))100% where n reads as the
number of test images having rank k.

5.3 Results with White Illumination

In this subsection, we report on the recognition ac-
curacy of the matching process for N = 70 test images
and N; = 500 reference images for the various invari-
ant image features. As stated, white lighting is used
during the recording of the reference images in the
image database and the independent test set. How-
ever, the objects were recorded with a new, arbitrary
position and orientation with respect to camera. In
Fig. 1 accumulated ranking percentile is shown for
the various invariant features.

From the results of Fig. 1 we can observe that the
discriminative power of l1lsl3, H and hue-hue edges
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Figure 1: The discriminative power: the cumula-
tive percentile X for H, l1l5l3, rgb, S, mymams,
RGB: HB; HC’; 7'{F and 7"G is gi'l)&’ﬂ by XH: '/Yl1l2ls;
XClCzCa] Xrgb; XS; Xmﬂnzms; XRGB; X‘Hg: X’Hc;
X and Xy, respectively.

Xy, followed by rgb is higher then the other invari-
ants. Furthermore, very high discriminative accuracy
is shown for composite color and shape features Hp
and Hg as 96% of the images are within the first 2
rankings, and 98% within the first 9 rankings.

Hue-hue corners X3, saturation S and color ratio
mymaymg provides slightly worse recognition accuracy.
As expected, the discrimination power of RGB has
the worst performance due to its sensitivity to varying
imaging conditions. Shape-based object recognition
(not within the first 20 rankings and hence not shown
here) yields very poor discriminative power.

5.4 Results with Colored Illumination

Based on the coefficient rule or von Kries model, in
this paper, the change in the illumination color is ap-
proximated by a 3x3 diagonal matrix among the sen-
sor bands and is equal to the multiplication of each
RGB-color band by an independent scalar factor [1].
Note that the diagonal model of illumination change
holds in the case of narrow-band sensors. To measure
the sensitivity of the various image invariant feature in
practice with respect to a change in the color of the il-
lumination, the R, G and B-color bands of each image
of the test set are multiplied by a factor 8y = 3, 2 =1
and 3 = 2—f respectively (i.e. f1 R, 82G and 33 B) by
varying 8 over {0.5,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.5}.
The discrimination power of the histogram matching
process differentiated for the various invariant features
plotted against the illumination color is shown in Fig.
2. For B < 1 the color is reddish whereas bluish for
8> 1.

As expected, only the color ratio mymsms is insen-
sitive to a change in illumination color. From Fig. 2
we can observe that invariant features H, hue-based

Average ranking percentile 7 against ;.
100 3R

9
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85
802
75
70
65

Ta(j) +—
Tra1a1,(J) B
Tas(3) *—
Ts(j) A
TraB(]) *—

(7)) =—

Tmimams

=

L

60 - -
55 - -

50 I I I I I

Figure 2: The discriminative power plotted against
the change B in the color composition of the illumi-
nation spectrum.

composite invariant features, and l;/5l3 which achieved
best recognition accuracy under white illumination,
see Fig. 1, are highly sensitive to a change in illu-
mination color followed by S and RGB. Even for a
slight change in the illumination color, their recogni-
tion potential degrades drastically.

6 Discussion and Conclusion

On the basis of the above reported theory and ex-
periments, it is concluded that the proposed invari-
ant l1l5l3 and (hue-based) composite shape and color
invariant features, followed by H and hue-hue edges
are most appropriate to be used for invariant object
recognition under the constraint of a white illumina-
tion source. When no constraints are imposed on the
imaging conditions (i.e. the most general case), the
newly proposed color ratio mijmsms is most appro-
priate.
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