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The problem of automatic detection of image areas appropriate for accurate estimation of additive noise standard deviation (STD)
irrespectively to processed image properties is considered in this paper. For accurate estimation of either image texture or noise
STD, we distinguish two complementary informative maps: noise- (NI-) and texture- (TI-) informative ones. The NI map is
determined and iteratively upgraded based on the Fisher information on noise STD calculated in scanning window (SW) fashion.
Fractional Brownian motion (fBm) model for image texture is used to derive the required Fisher information. To extract final noise
STD from NI map, fBm- and DCT-based estimators are implemented. The performance of these two estimators is comparatively
assessed on large image database for different noise levels. It is also compared with performance of two competitive state-of-the-art
estimators recently published. Utilizing NI map along with DCT-based noise STD estimator has proved to be significantly more
efficient.

1. Introduction

Images formed by multispectral sensors or digital cameras
are subject to undesirable errors including sensor ran-
dom noise, blur, distortions, radiometrical, and geometrical
errors. These effects are to be detected and quantified, either
prior to subsequent image processing, aiming at their com-
pensation (filtering or deblurring) or prior to image low level
information extracting [1]. Sensor random noise is often a
dominant factor degrading image quality [1–3]. Although
there are methods that are able to perform image processing
(segmentation, denoising, edge detection, classification, etc.)
without using a priori knowledge or pre-estimating noise
STD (segmentation methods [4, 5] are interesting examples
of such methods), better performance is usually provided
for techniques that exploit such a priori information or
estimation of noise STD [6]. For example, BM3D filer, one
of the best filters available today [7], requires noise STD to
be known or pre-estimated [8].

It is often desirable to estimate noise STD in a blind
manner. First of all, blind processing allows dealing with a
large amount of data acquired by modern sensors. Second,
potentially, performance of blind methods is higher than
that of a human operator, as they may use subtle difference
between image content and noise that can be not visible
for a human eye. To reach good performance in practice,
a blind estimator of noise STD should satisfy the following
requirements [2]: (1) to provide unbiased estimates with
variance as small as possible; (2) to perform well enough at
different noise levels; (3) to be not sensitive to image content,
that is, to provide appropriate accuracy even for textural
images. These requirements are controversial and it has been
found a difficult problem to satisfy them altogether.

The problem of blind estimation of sensor random noise
STD has been extensively studied by the research community
for the last two decades (see [2] and references therein). It has
been mainly stressed that not all local areas in an observed
image are suitable for providing accurate estimates of noise
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STD. Indeed, it is preferable to use those areas where signal
and noise can be quite easily separated. The easiest situation
for benefiting from such separation is maybe in the spatial
domain. Spatial methods make essential use of the processed
image areas with negligible level of texture spatial variation
compared to the noise level, so-called homogeneous areas
(HA) [3]. As HAs hypothesis could be quite restrictive due
to a limited area of HAs within processed images (authors of
the paper [9] reported 0.6–2% of HAs in Visible InfraRed
Scanner, VIRS-200, hyperspectral image), spatial methods
may fail to provide practically desired accuracy, and may
result in biased noise STD estimates [10] (see results of
testing method [11] by Roger and Arnold in [12]). To
get around these shortcomings, methods operating in the
spectral domain utilize the fact that image texture is known
to be usually smoother than noise. As a result, after applying
suitable decorrelation transform, texture is concentrated in
low frequency transform coefficients in contrast to the noise
which spreads uniformly among low and high transform
coefficients (for spatially uncorrelated noise). DCT [13], 3D
DCT [14], and wavelet [15, 16] transforms have been selected
for this purpose in the past.

Typically, positions of HAs or nonintensive texture areas
are not known in advance [9]. And using nonappropriate
textural areas (even nonintensive ones) for noise STD
estimation may lead to outliers that can degrade the final
noise STD estimate. Performance reduction of both spatial
and spectral state-of the-art estimators for textural images
[10] is mainly explained by aforesaid reason. Two different
ways to cope with this problem have been proposed so far.
The first one is to consider the whole image for noise STD
estimation and to reject outliers that come from textural
areas by a robust postprocessing of local estimates [9].
The main idea consists in splitting an image into small
fragments, calculating for them local means and local STDs
[11, 17]. Then the final noise STD can be estimated either
by robustly fitting linear model to the corresponding scatter
plot [18] or by robust finding the histogram mode of
local variance estimates [11, 19]. However, this approach
fails to provide accurate estimates if HAs and areas with
nonintensive texture cover less than 10–20% of the image
[20].

The second approach is to consider complementary pre-
classification to preliminary determine suitable areas (either
HAs or nonintensive texture areas) [21]. In paper [22], HAs
are selected interactively and manually for hyperspectral
images. But this task is not so easy for large and complex
images and can lead to erroneous selections. Besides it is
labor consuming and requires qualified operators. Automatic
classification of the processed image into textural and homo-
geneous areas [23] or the Automated Local Convergence
Locator (ALCL) proposed in [24] can be considered for
both facilitating and improving HAs selection accuracy [23].
When the obtained classification is effective enough, these
processing stages can contribute to improve the performance
of a noise STD estimation method as it was shown for
method [19] for textural images [25].

However, classification methods may also fail to discrimi-
nate correctly between areas appropriate and nonappropriate

for noise STD estimation, because of the textured features
of the processed image and/or the noise level. In this
case, the discrimination errors lead to outliers and to
performance degradation of the whole procedure, including
classification and noise STD estimation itself. As a result,
preclassification and robust postprocessing stages are to be
used simultaneously [21].

This paper concentrates on the problem of blind
estimation of sensor random noise STD from noisy textured
images. The noise is assumed additive signal-independent
and uncorrelated (i.i.d). Although this model is slightly ide-
alized, it is widely used for images formed by old generation
hyperspectral sensors, color images, and so forth [26]. In this
paper, we propose and describe a new estimation scheme that
belongs to the preclassification approach mentioned above.
Our main goal is to demonstrate the proposed approach
ability to significantly improve noise STD estimation accu-
racy over the state of the art. That is why we have restricted
ourselves to additive noise case for which sophisticated
estimators have been proposed and simulation results are
available in the literature. Note that our approach is not
limited to the additive noise case; the same formalism can be
followed for signal-dependent noise as well as for correlated
noise.

In our approach, we mainly deal with textural images
and texture parameters are estimated as well but only as
a support for the main problem of noise STD estimation.
The approach novelty is that it presumes finding image NI
and TI areas where information is understood in Fisher’s
statistical sense. All detected TI and NI areas compose,
respectively, the two complementary TI and NI maps,
further used to discriminate suitable SW for estimating
either noise or texture parameters. For each image SW,
we calculate Fisher’s information (or Cramér-Rao Lower
Bound, CRLB) on noise STD. Then, the SWs are sorted
according to their decreasing level of information on noise
STD (increasing CRLB). All SWs with information above a
threshold compose NI map and the rest of them compose
TI map. Thus, each SW that belongs to NI map can
provide a noise STD estimate with predefined accuracy
making this map especially useful for contributing to final
noise STD estimation. The proposed CRLB-based approach
also allows estimating potential accuracy of noise STD
estimates for any single SW and for the whole NI map
as well.

In contrast to some classification (or segmentation)
methods where the goal is to classify image content
well enough independently (under some conditions) on
unknown noise level [4, 5], our objective, given any noise
level, is not to classify image content, but simply to obtain
two complementary maps. One map is intended for accurate
noise estimation, the other one; for accurate image texture
model estimation. In our application, for different noise
levels, different NI and TI maps will be (and should be)
obtained.

The main contribution of this paper consists in obtaining
NI map, as defined above, directly from the noisy image.
The problem is that for each SW the proposed CRLB-based
criterion to decide whether this SW belongs to the NI map
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is a function of texture and noise parameters that are both
unknown. To be effective, this CRLB-based criterion needs
to be accurately estimated from a noisy image. The problem
is that it is usually difficult to estimate texture parameters
from a noisy image on one hand and noise parameters
from textural image on the other hand. Indeed, starting
with an initial guess for the NI and TI maps, we can expect
ourselves to accurately estimate texture parameters from TI
map by fixing noise STD (optimistically to a value close to
the true one) and noise STD from NI map by fixing texture
parameters (optimistically to a vector value close to the true
one). But we can hardly expect to accurately estimate both of
them from any SW in the whole image. To solve this practical
issue, we propose to predict unknown texture parameters
for NI map and noise STD for TI map by values estimated
from the respective complementary maps. By doing this,
we hope to obtain quite accurate estimates of texture and
noise parameters available for any SW in the whole image.
Based on this knowledge, both informative maps can be
in turn refined and upgraded by considering CRLB-based
criterion once again. These two stages are iterated for refining
texture parameters and noise STD estimates as well as
respective informative maps until convergence criterion is
reached.

In practice, our method follows a nonlocal approach with
respect to involved parameters. In this, it differs from the
approach in paper [14] where the same nonlocal approach is
used with respect to similar texture patches, as this is basically
exploited in image filtering [27].

We consider 2D fBm-model for describing image texture
with the Hurst exponent, H , translating texture roughness
(correlation structure). We assume that in a neighborhood
of an image pixel, texture Hurst exponent (roughness) varies
only a little. On the contrary, texture amplitude can vary
significantly (change in light conditions is an example),
and it is possible to find both TI and NI SWs within
image local neighborhood. This assumption, though simple
(e.g., it does not take into account image edges), allows
developing maximum likelihood (ML) noise STD estimator
and confirming the practical interest of using TI and NI maps
as additional sources of useful information on both texture
and noise local parameters.

It is important to note that noise STD estimation is
emphasized in the proposed scheme, though texture param-
eters (roughness and amplitude) according to the fBm model
are also estimated for the whole image. These estimates can
be useful for quantifying and classifying image textures
[28].

This paper is organized as follows. Section 2 introduces
the fBm-field model and details of the proposed scheme
based on NI and TI maps to improve texture and noise
parameters estimation accuracy. We introduce Fisher infor-
mation on noise STD in a single SW and explain how it is
utilized for building NI and TI maps. Specific estimators are
defined for texture parameters and noise STD in, respectively,
NI and TI maps. In Section 3, we comparatively assess the
proposed noise STD estimators on large database of real-
life images with other state-of-the-art estimators. Finally, in
Section 4, we conclude the work.

2. Noise STD Estimation Based on Texture- and
Noise-Informative Maps

2.1. The Proposed Approach. We denote by y(t, s) an
observed image for which we assume additive noise model

y(t, s) = x(t, s) + n(t, s), (1)

where x(t, s) is the corresponding noise-free image at pixel
position (t, s) and n(t, s) is a normally distributed spatially
uncorrelated random field with zero mean and variance σ2

n .
When solving the problem of blind noise STD estimation

in an N × N SW fashion, we would like to determine which
SWs should be used for noise STD estimation and which
should be rejected. Let us discuss this task from the Fisher’s
information point of view. We assign a Fisher’s information
for noise STD estimation ISTD to each SW. By setting a
threshold on ISTD, it is possible to divide all image SWs
into two groups: (1) SWs with ISTD above the threshold and
(2) SWs with ISTD below the threshold. The first group of
SWs corresponds to HAs or areas with nonintensive texture
that allow to accurately estimate noise STD, provided texture
parameters are known. Thus, we call them NI SWs. The
second group of SWs corresponds to textural areas. Such
areas are noninformative for noise STD estimation, but they
are able to provide helpful and quite accurate information on
image texture parameters. Thus we call them TI SWs. All NI
and TI SWs compose NI and TI maps, respectively.

Only those SWs that belong to the NI map should
be basically used for noise STD estimation (see discussion
below in Section 2.3). The use of SWs from the TI map
would lead to overbiased estimates due to strong outliers
[2]. As image areas that correspond to NI and TI maps
are not known in advance, finding NI SWs is a crucial
primary task for blind noise parameters estimation. To solve
this problem, ISTD should be estimated in SWs fashion
directly from noisy image. Note that Fisher information is
a function of both texture and noise true parameters which
are all unknown. Unfortunately, these parameters cannot be
accurately estimated from a single SW: a given informative
map can only provide accurate estimates either for texture
parameters or noise STD.

To overcome this difficulty, we propose on one hand,
to predict texture parameters in NI map with parameters
estimated from neighboring TI map. On the other hand,
noise STD in TI map is to be estimated from NI map (see
Figure 1). By making use of such an alternative estimation
scheme, it seems possible to estimate quite accurately
both noise and texture parameters for the whole image
allowing reliable Fisher information calculation and further
discriminating between NI/TI SWs.

In the proposed scheme, the estimation of either texture
parameters or noise STD depends on both informative maps.
The calculation of Fisher information and the determination
of both informative maps, in turn, depend on texture
parameters and noise STD. An iterative algorithm is to be
used which successively refines texture and noise parameters
estimates and both informative maps until convergence is
reached (convergence is reached when noise STD estimates
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Figure 1: General idea of the proposed noise STD estimation
scheme.

do not change significantly between two successive itera-
tions).

To implement the proposed alternative scheme, we need
(1) to introduce suitable parametrical model for image
texture; (2) to define the corresponding Fisher information
(or CRLB) for noise STD estimation from a single SW
and to discriminate between TI/NI SWs; (3) to implement
ML estimators for texture parameters in a TI SW (fixing
noise STD) and for noise STD in a NI SW (fixing texture
parameters); (4) to predict texture parameters and noise STD
for SWs that belong to the complementary maps based on
obtained ML estimates.

2.2. Fractional Brownian Motion Model for Image Texture.
We introduce fBm model for image texture in an N × N
SW centered at (t0, s0) : x(t, s) = BH(t, s) + m(t0,s0), t =
t0 − Nh, . . . , t0 + Nh, s = s0 − Nh, . . . , s0 + Nh, where BH(t, s)
is 2D fBm field, m(t0,s0) is a mean bias, Nh is a half size of the
SW, N = 2Nh + 1. This model has been successfully used for
texture description, analysis and classification [29].

By definition [30, 31], BH(t, s) is a nonstationary
isotropic Gaussian process with origin at the point (0,0),
BH(0, 0) = 0, with correlation function given by

〈BH(t, s) · BH(t1, s1)〉

= 0.5σ2
x

(√
t2 + s2

2H
+
√
t2
1 + s2

1

2H

−
√

(t − t1)2 + (s− s1)2
2H
)

,

(2)

where H ∈ (0, 1) is the Hurst exponent describing fBm
texture roughness: H → 0 for rough texture, H → 1 for
smooth one, σ2

x is the variance of increment of fBm process
on unit distance that describes fBm amplitude.

2.3. CRLB on Noise STD in a Single SW. We define an NY×1,
NY = N2, sample vector Y (vectors and matrices are in bold
throughout the paper) consisting of pixels within N × N
SW centered at (t0, s0). As we do not know the original
coordinates (t, s) of fBm process, we should translate them
to the point (t0, s0). This can be done by transformation
∆BH(t, s) = BH(t, s) − BH(t0, s0) (that eliminates unknown
m(t0,s0)) or as ∆Y = Y − y(t0, s0)1 where 1 is an N∆Y ×

1 unitary vector. In this case, the central element y(t0, s0)
should be removed from Y leading to N∆Y× 1, N∆Y = N2− 1
sample ∆Y. The logarithmic likelihood function (LF) for the
sample ∆Y (omitting a constant) is given by

lnL(∆Y; θ) = −1

2

[
∆YTR−1

∆Y∆Y + ln|R∆Y|
]

, (3)

where θ = (σx,H , σn) is the fBm-field parameter vector to
be estimated, R∆Y = 0.5σ2

x RH + σ2
n(I + J) is the N∆Y × N∆Y

correlation matrix of ∆Y defined by (2) and (1), I is N∆Y ×
N∆Y identity matrix, J is N∆Y × N∆Y unit matrix, RH is the
N∆Y × N∆Y correlation matrix of unknown noiseless sample
∆X normalized by the factor

√
2/σx. True values of the model

parameters are denoted as θ0 = (σx0,H0, σn0).
The Fisher information about the parameter vector θ in

the sample ∆Y is given by Fisher matrix Iθ :

Iθ =

⎛
⎜⎜⎝

Iσxσx IσxH Iσxσn

IσxH IHH IHσn

Iσxσn IHσn Iσnσn

⎞
⎟⎟⎠,

where Iθiθ j =
1

2
tr

(
R−1
∆Y

∂R∆Y

∂θi
R−1
∆Y

∂R∆Y

∂θ j

)
.

(4)

The Cramer-Rao lower bound (CRLB) on noise STD
estimate σ2

σn gives the smallest variance reachable by an unbi-
ased estimator. In case of perfectly known Hurst exponent,
σ2
σn is obtained as the element (2, 2) of the inverse of the

matrix
(
Iσxσx Iσxσn
Iσxσn Iσnσn

)
:

σ2
σn =

Iσxσx
Iσxσx Iσnσn − 2I2

σxσn

. (5)

When the texture Hurst exponent is known with an error
∆H , noise STD estimate will be biased by

∆σ = ∆H ·
(
IσnH Iσxσx − Iσnσx IσxH
Iσxσx Iσnσn − 2I2

σxσn

)
. (6)

In our case, the Hurst exponent value for a given SW is
predicted from the neighboring SWs, and we assume ∆H to
be zero mean random variable with variance σ2

H . In this case,
by combining (5) and variance of (6), we obtain CRLB σ2

σn
through the elements of Fisher information matrix Iθ as

σ2
σn =

Iσxσx
Iσxσx Iσnσn − 2I2

σxσn

+ σ2
H ·
(
IσnH Iσxσx − Iσnσx IσxH
Iσxσx Iσnσn − 2I2

σxσn

)2

.

(7)

We propose to use relative CRLB σ2
σn·rel = σ2

σn /σ
2
n to

discriminate between NI and TI SWs as

SWtype(t0, s0) =

⎧⎨
⎩

“NI”, σσn·rel ·(t0,s0) < σσn·rel ·max;

“TI”, σσn·rel ·(t0,s0) ≥ σσn·rel ·max.
(8)

To set σσn·rel ·max, we require a noise STD estimation
error from a single NI SW to be less than its true value:
3σσn·rel ·max σn0 < σn0 or σσn·rel ·max < 1/3 (otherwise, noise
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Figure 2: Dependence of noise STD estimates on relative CRLB
σ2
σn·rel for the image 14 from the TID2008 database. (a) Sample STD,
σ̂sample, within a 7× 7 SW versus σσn·rel; (b) distribution of σ̂sample for
three cases: σσn·rel ≤ σσn·rel ·max (black curve), σσn·rel > 2 · σσn·rel ·max

(green curve) and σσn·rel > 4 · σσn·rel ·max (blue curve).

STD estimates are expected to follow undesirable non-
Gaussian distribution). In our experiments, we set
σσn·rel ·max = 0.25.

The utility of relative CRLB σ2
σn·rel for noise STD

estimation problem is illustrated in Figure 2. Figure 2(a)
shows sample STD, σ̂sample, within a 7 × 7 SW versus σσn·rel

for all nonoverlapping SWs of the test image 14 from
TID2008 database (Figure 4(b); for database description see
the beginning of Section 3). True noise STD used in our
experiment, σn0 = 8.06, is shown as horizontal red line.
It can be observed that sample STD is close to the true
value for small σσn·rel increasing fast with σσn·rel. Analysis
of distributions of the sample STD for NI SWs (σσn·rel ≤
σσn·rel ·max, black plot in Figure 2(b)) and TI SWs (green and
blue plots in Figure 2(b) corresponds to σσn·rel > 2·σσn·rel ·max

and σσn·rel > 4 · σσn·rel ·max, resp.) shows that TI SWs should
not be used for noise STD estimation. On the contrary, the
distribution for NI SWs is close to the desirable one: it is
centered close to the true value (marked by dashed vertical
line) and with significantly shorter right-hand tail.

2.4. ML Estimators for Texture Parameters and Noise STD. To
implement the detector (8), the parameter vector θ is to be
estimated for the whole image (for both NI and TI SWs).
The goal of the first stage of our algorithm is to estimate θ

for SWs that belong to TI map. As TI SWs do not provide
information on noise STD, we fix noise STD equal to either
an initial guess σ̂n = σ̂n·i=0 or previously estimated value
σ̂n = σ̂n·i−1. Note that in the additive noise case, σ̂n is the same
for all SWs. Hereafter, index i denotes a current iteration of
the algorithm. Initial guess for the estimation σ̂n·i=0 can be
obtained as the minimum of sample STD estimates over all
image nonoverlapping SWs.

The ML estimator of fBm-model parameters, H and σx,
in a single TI SW (SWtype·i−1(t0, s0) = “TI”) is given as

[
σ̂x·(t0,s0)·i, Ĥ(t0,s0)·i, σn = σ̂n

]
= arg min

σx≥0, 0≤H≤1

[lnL(∆Y; θ)].

(9)

Here SWtype·i−1(t0, s0) is an estimate of informative map
obtained at the previous iteration i − 1. Initially, when
i = 0, the entire image is considered to be TI. Thus, for

each TI SW we estimate the parameter vector as θ̂TI =
(σ̂x·(t0,s0)·i, Ĥ(t0,s0)·i, σ̂n).

Next, the goal of the second stage is to estimate θ for all
NI SWs (SWtype·i−1(t0, s0) = “NI”). In this case, we can use
the estimate σ̂n = σ̂n·i−1 for noise STD as well. Following the

discussion above, the Hurst exponent, Ĥpr·(t0,s0)·i, in the NI
SWs centered at (t0, s0) is predicted from all current TI SWs
in the neighborhood of pixel (t0, s0) by simple averaging:

Ĥpr·(t0,s0)·i =
1

|Ω|
∑

(t,s)∈Ω
Ĥ(t0,s0)·i, (10)

where Ω = {(t, s), t /= t0, s /= s0, |t − t0| < Na, |s − s0| < Na,
SWtype·i−1(t, s) = “TI”}, Na limits the averaging support. We
select Na = 2 · N meaning that 5 × 5 nonoverlapping SWs

are used. In case |Ω| = 0, we fix Ĥpr·(t0,s0)·i = ĤTI·mean,

where ĤTI·mean is the Hurst exponent estimates average over
all current TI SWs.

It is assumed that the value H describing texture
roughness is slowly varying with spatial coordinates (e.g., the
same H value can be used to describe a large uniform textural
area) and, thus, it can be predicted by (10). On the contrary,
σx describing texture amplitude can vary significantly from
SW to SW and should be estimated directly from the data as

(
σ̂x·(t0,s0)·i,H = Ĥpr·(t0,s0)·i, σn = σ̂n·i−1

)

= arg min
σx≥0

[lnL(∆Y; θ)].
(11)

As a result, for each NI SW we estimate the parameter

vector as θ̂NI = (σ̂x·(t0,s0)·i, Ĥpr·(t0,s0)·i, σ̂n).
At this stage, we have θ estimated for the whole image.

To estimate the CRLB σ̂2
σn·(t0,s0)·i by (7), the value of σ2

H still
remains unknown. This value can be estimated from TI map
by taking variance of difference between the Hurst exponent
estimates obtained by (9) and (10):

σ2
H·i = D

(
Ĥpr·(t0,s0)·i − Ĥ(t0,s0)·i

)
, (12)

where D(·) is the variance operator and variance is calculated
over all current TI SWs (SWtype·i−1(t0, s0) = “TI”).

Having vector θ estimated for all NI and TI SWs, we

obtain CRLB σ̂2
σn·(t0,s0)·i in these SWs by substituting θ = θ̂TI

or θ = θ̂NI and σ2
H = σ2

H·i into (4) and (7). Finally, we can
update discriminative map SWtype·i−1(t0, s0) obtained at the
previous stage to current SWtype·i(t0, s0) map by (8).

The goal of the next stage is to estimate image noise
STD from NI SWs. Texture parameters are fixed and equal
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to the previously estimated vector θ̂NI. For the updated
SWtype·i(t0, s0) map, we define the ML estimator of noise STD
in a single NI SW (SWtype·i(t0, s0) = “NI”) as

(
σ̂x·(t0,s0)·i,H = Ĥpr·(t0,s0)·i, σ̂n·(t0,s0)·i

)
=arg min

σx≥0,σn≥0

[lnL(∆Y; θ)].

(13)

To solve constrained optimization problems (9), (11),
and (13), we have used the Han-Powell optimization method
described in [32]. This method belongs to the quasi-
Newton group and, therefore, it provides high (superlinear)
convergence speed which is important for the considered
application. In addition, this method includes quadratic
programming step for which efficient standard procedures
are available.

Finally, we update the current noise STD estimate for
the whole image by calculating a weighted average over all
current NI SWs:

σ̂n·i =

(∑
SWtype·i(t0,s0)=“NI”

(
σ̂n·(t0,s0)·i/σ̂

2
σn·(t0,s0)·i

))

σ̂2
σn·NI

,

σ̂2
σn·NI =

⎛
⎜⎝

∑

SWtype·i(t0,s0)=“NI”

σ̂−2
σn·(t0,s0)·i

⎞
⎟⎠
−1

,

(14)

where σ̂2
σn·NI is estimated CRLB on additive noise STD

estimate σ̂n·i from the whole NI map.
For comparison purpose, in addition to the fBm-based

estimator (14), let us consider also DCT-based estimator
at STD estimation stage of our algorithm. STD estimators
based on DCT have demonstrated themselves to be quite
accurate for high complexity images [14, 33], that is why we
expect this approach to perform well within our framework.
The additionally proposed estimator performs as follows. For
each NI SW, we apply 7 × 7 DCT and consider only the
six highest frequency coefficients with indices (7, 7), (6, 7),
(7, 6), (6, 6), (5, 7), and (7, 5). These DCT coefficients are
almost insensitive to image content because of two reasons.
First, they are calculated for NI SWs. Second, high frequency
components of orthogonal transforms are known to be less
influenced by image content than low frequency ones [15].
These DCT coefficients are collected from all NI scanning
windows (SWtype·i(t0, s0) = “NI”) and the final noise STD
estimate, σ̂n·i, is obtained as sample STD of the formed array
of DCT coefficients.

The use of six coefficients allows estimating noise STD
in each SW with fixed relative STD 1/

√
2 · 6 ≈ 0.29. This is

in agreement with the earlier selected threshold σσn·rel ·max =
0.25.

Before proceeding further, we would like to emphasize
the meaning and practical importance of σ̂2

σn·NI value pro-
vided within our scheme. On one hand, it establishes one
possible theoretical lower bound on noise STD estimate
variance from a given image. On the other hand, it can be
estimated directly from a noisy image making it practically
interesting since no reference image is needed for deriving
σ̂2
σn·NI. In the experimental part of the paper, we will provide

|σ̂n·i−1 − σ̂n·i| < ε
Noi = i + 1 Yes

σ̂n

1. Estimate noise STD in each SW belonging to the

current noise-informative map using (13)

2. Update global noise STD estimate by (14) or using

DCT-based estimator

Noise STD estimation stage4

1. Update relative CRLB on noise STD in each SW

using (7)
2. Discriminate between NI and TI SWs according to

the comparison of relative CRLB on noise STD with

some predefined threshold using (8)

Update NI/TI decision map3

Texture parameters estimation stage2

1. Fix noise STD. Estimate texture parameters by (9) for

each SW belonging to current TI map

2. Estimate Hurst exponent for SWs belonging to

current NI map using (10)

3. Estimate texture parameters by (11) for each SW

belonging to current NI map

Start with TI map as the whole image

Initialize global guess for noise STD

Initialization stage1

Figure 3: Generalized scheme of the proposed iterative noise STD
estimation algorithm.

some results showing how close to this bound our and two
state-of-the-art noise STD estimators (BM3D and SBIQ, see
details in Section 3) are.

2.5. Estimator Structure and Convergence. The generalized
scheme of the proposed iterative noise STD estimation
algorithm is given in Figure 3.

To understand the algorithm convergence, let us consider
an extreme case for which noise intensity is negligible with
respect to texture intensity in TI areas (local SNR approaches
infinity where local SNR is defined as the σ2

x /σ
2
n ratio)

and texture intensity is negligible with respect to noise
intensity in NI areas (local SNR approaches zero). Then, an
error in initial noise STD estimation slightly influences the
Hurst exponent estimates obtained by (9) and (10). In turn,
small error in H estimates have little effect on noise STD
estimates derived according to (13) and (14) or by using
DCT. Therefore, after one algorithm iteration, initial noise
STD error reduces and rapidly converges with iterations.
In the more realistic case, for which local SNRs in TI and
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NI areas take high and low values with respect to unity,
convergence is also reached but with a smaller rate.

3. Accuracy Analysis of Noise STD Estimation
Using TID2008 Database

For analysis purpose, the database TID2008 [34] was chosen
(available at http://ponomarenko.info/tid2008.htm). This
choice is mainly explained by the following reasons. First,
TID2008 comprises 25 color images with low level of self-
noise. 24 images are taken from Kodak image database
http://r0k.us/graphics/kodak/ and one is artificially synthe-
sized (the 25th). All images are of equal size of 512 ×
384 pixels. The database includes images with different
content. Some of them have quite large homogeneous
areas, the others are quite textural. This allows testing
the proposed estimator for images with different content.
Second, the database includes images corrupted by additive
white Gaussian noise with variance 65, 130, 260, and 520.
From practical point of view, the first two cases are of interest.
The noisy images with smaller noise variance values can be
generated based on practically noise-free reference images
provided in the database. Third, the TID2008 database has
been used to evaluate performance of several state-of-the-art
noise STD estimators [10, 14, 35]. Thus, the testing results
reported previously can be used for comparisons.

In this section, we analyze performance of two versions
of the proposed noise STD estimator (later referred to as
NI+fBm or NI+DCT depending on which algorithm is used
for noise STD estimation from NI map: fBm- or DCT
based). Their respective performance is then compared to
two state-of-the-art estimators: the BM3D estimator based
on nonlocal 3D DCT transform [14] and the segmentation-
based interquantile estimator (below it is referred to as SBIQ
[35]). Here we would like to thank A. Foi for passing us the
results for the BM3D estimator for noise variance equal to 25
and 130.

Color images in TID2008 are represented by 24 bit data
arrays, so for each color component the image values are
bounded above and below by Imax = 255 and Imin = 0,
respectively. As a result, noisy images in significantly dark or
bright areas become clipped. As clipping effect deviates noise
distribution from Gaussian and makes its variance smaller,
this leads to negatively biased noise STD estimates [36]. To
alleviate this effect, we have detected and removed from
further consideration SWs affected by clipping effects. This
has been carried out using the following rule: a SW is rejected
if more than 10% of its pixels have intensity equal to Imin or
Imax.

Let us start by presenting examples of NI and TI maps
obtained at convergence (4 iterations were needed to obtain
these maps). Figures 4(a) and 4(b) give examples for noisy
test images 13 and 14 (σ2

n0 = 65), respectively. Color and
gray tones are associated to NI and TI SWs, respectively.
One can see that the NI maps are mainly comprised of
HAs (sky in Figure 4(a) and boat surface in Figure 4(b)) and
areas with nonintensive texture (nonintensive forest pattern
in Figure 4(a) and water surface in Figures 4(a) and 4(b)). On

the contrary, TI maps include textural areas (intensive forest
pattern in Figure 4(a) and intensive water pattern in Figures
4(a) and 4(b)) and edges.

The Hurst exponent estimates, Ĥr·(t0,s0), obtained for the
reference image 13 (considered as noise-free) are displayed as
a map in Figure 4(c). Figure 4(d) displays the corresponding

Ĥpr·(t0,s0) map with areas affected by the clipping effect shown

as black. It can be well observed that Ĥpr·(t0,s0) map is a

smoothed version of the Ĥr·(t0,s0) map. Similar observations
hold for other images from TID2008 database. These results
demonstrate possibility of using (10) for H prediction in NI
areas.

The properties of NI map are illustrated in Figure 5 for
the image 14 and σ2

n0 = 65. First, Figure 5(a) compares the
empirical probability density functions (pdf) of two noise
local STD estimates obtained for 7× 7 NI SWs. The first pdf
is for fBm-based estimates σ̂x·(t0,s0) given by (13) (shown in
black color). The second pdf relates to sample STD estimates
for the six highest DCT frequency coefficients, σ̂DCT·(t0,s0)

(shown in green color). The third pdf corresponds to the
standard sample STD (shown in blue color).

As it is seen, the standard sample STD pdf is significantly
shifted with respect to the true value of noise STD. This is
due to influence of low intensity texture (there are practically
no really homogeneous areas in real-life images). Both fBm-
and DCT-based estimates are almost unbiased. The only
difference is that the fBm-based estimates have notably
smaller variance compared to the DCT-based estimates. To
highlight this difference, Figure 5(b) shows the correspond-
ing empirical pdfs of noise STD estimates normalized by

(
σ̂x·(t0,s0) − σn0

)

σ̂σn·(t0,s0)
,

(
σ̂DCT·(t0,s0) − σn0

)

σ̂σn·(t0,s0)
. (15)

The normalized estimates can be considered as Gaussian-
like distributed random variables with variance close to unity
for the fBm-based estimates (theoretical pdf N(0, 1) is shown
for comparison as red curve). Estimation variance for DCT-
based method is about 2.5 times larger. This difference in
estimation accuracy is explained by the fact that the DCT-
based estimator uses only six coefficients in each NI SW.
Thus, in homogeneous NI SWs, where up to 7 ·7 = 49 pixels
can be used for noise STD estimation in 7 × 7 SW, accuracy
of the DCT-based estimator is lower than CRLB σ̂σn·(t0,s0).
On the contrary, our fBm-based estimator allows estimating
noise STD with accuracy close to CRLB σ̂σn·(t0,s0) in each NI
SW.

As the estimated CRLB value, σ̂σn·(t0,s0), is close to the
actual STD of σ̂x·(t0,s0) estimates in each NI SWs, we can
expect CRLB σ̂2

σn·NI (14) to be a valid estimate of the potential
variance of the global noise STD estimate that can be
obtained from NI maps.

One can expect that the accuracy for all methods depends
upon image complexity and noise variance. Image complex-
ity can be, in particular, characterized by the number of
detected NI SWs NNI or, more generally, by the ratio NNI·rel =
NNI/NSW, where NSW is the total number of nonoverlapping
SWs. Thus, let us consider NNI·rel for different images in
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Figure 4: NI maps for the test images 13 and 14 (NI SWs are marked by magenta, TI are in gray tones, σ2
n0 = 65) (a) and (b); Ĥr map for the

test image 13, black and white colors corresponds to H = 0 and H = 1, respectively, (c); Ĥpr map for noisy image 13, σ2
n0 = 65 (d).

TID2008 keeping in mind that the larger NNI·rel should
produce better accuracy of noise variance estimation.

Values NNI·rel for all images of TID2008 database and for
σ2
n0 = 25, 65 and 130 are shown in Figure 6. NNI·rel varies

from 80% for images comprised of large homogeneous areas
like (3, 4, or 23) to 1% for the highly textural image 13. This
explains why it is difficult to provide high accuracy of blind
estimation of noise STD for textural images.

Note that NI map also depends on noise variance. In
general, NNI increases with σ2

n0 due to reduced influence of
image texture. For example, if σ2

n0 increases from 25 to 130,
NNI on the average increases by 2.2 times (in particular, by
11 times for image 13 and by 1.02 times for the synthetic
image 25). As a result, we expect noise variance estimators
to be more efficient for larger σ2

n0. This fact is well known in
practice for different estimators [10].

Within the proposed approach, the CRLB σ̂2
σn·NI can

characterize this tendency quantitatively. Let us consider
the relative CRLB σ2

σn·NI·rel = σ2
σn·NI/σ

2
n0. Under assumption

of Gaussian distribution of noise STD estimates and their
unbiasedness, relative CRLB determines potential 99.7%
interval for σ̂n as σ̂n ∈ σn0 · [1−3 · σσn·NI·rel, 1 + 3 · σσn·NI·rel].
The values of σσn·NI·rel obtained for images in TID2008
database are given in Figure 7. It can be observed from this
figure that σσn·NI·rel steadily decreases if σ2

n0 becomes larger.
For example, with σ2

n0 increasing from 25 to 130, σσn·NI·rel, on

the average, reduces by 1.6 times. Averaging above is done
for all images of the considered database. Average values of
σσn·NI·rel are equal to 0.27% for σ2

n = 130 and to 0.45%
for σ2

n = 25. This means that for σ2
n0 = 130, noise STD

estimates in the ideal case should belong to a very narrow
range 11.4 · [1 − 3 · 0.0027, 1 + 3 · 0.0027] ≈ [11.3, 11.5].
Similarly, for σ2

n0 = 25 this interval becomes 5 · [1 − 3 ·
0.0045, 1 + 3 · 0.0045] ≈ [4.93, 5.07].

Let us now test the performance of the NI+fBm,
NI+DCT, BM3D, and SBIQ noise STD estimators for all
images of the TID2008 database. Initially, our estimator has
been applied to all 25 reference images of the TID2008
database in order to estimate noise that originally affects the
database images considered almost noise-free. The results of
noise STD estimation by NI+DCT for reference images, σ̂r ,
are consistent for all considered images, varying from 0.3
to 2.

In Figure 8, convergence of NI+DCT estimator for the
red channel of image 14 is shown. The true noise STD is
σn0 = 8.06 (σ2

n0 = 65) and it is marked by dashed thin
horizontal line. The black curve corresponds to the situation
when initial guess σ̂n·i=0 was selected as described above in
Section 2: the minimal sample STD estimate over all image
nonoverlapping SWs has been used as σ̂n·i=0. In this case,
five iterations are needed for the algorithm to converge from
initial guess (σ̂n·i=0 ≈ 7.0) to the final STD value 8.15.
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Figure 5: Distributions (empirical pdfs) of the noise STD estimates
for 7 × 7 NI SWs: (a) pdf of σ̂x·(t0 ,s0) estimates (black curve); pdf
of sample STD for the DCT based method (green curve); pdf of
standard sample STD (green curve). The true value σn0 is marked as
dashed vertical line; (b) pdf of the normalized noise STD estimates
for fBm and DCT-based estimators. True noise STD is marked by
dashed vertical line.

Experiments show that our algorithm converges in 3 to 6
iterations in most cases. Texture parameters estimation is the
most computationally intensive part as the corresponding
parameters need to be estimated for the whole image: the
total time cost for 384 by 512 image on Intel Core (TM) 2
Duo (1.66 GHz) CPU varies from 3 to 10 minutes depending
on image complexity.

To demonstrate the robustness of the estimator with
respect to possible large initial error of noise STD estimation,
the same estimator was tested for two other initial guesses:
σ̂n·i=0 = 16.0 and σ̂n·i=0 = 4.0. In both cases, the estimator
has converged to the same noise STD final estimate, but it
has taken more iterations (six iterations instead of four).

Next, we have considered additive noise case with three
different noise STDs: σ2

n0 = 25, 65 and 130. Recall that for
the noisy images for σ2

n0 = 65 and σ2
n0 = 130 are directly

available from the TID2008 database. The noisy images for
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Figure 6: The number of NI SWs, NNI·rel versus image index k for
the TID2008 database for noise variance σ2

n0 = 25 (blue curve), 65
(red curve) and 130 (black curve).
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Figure 7: Noise STD estimation accuracy σσn·NI·rel versus image
index k for the TID2008 database for noise variance σ2

n0 equal to
25 (blue curve), 65 (red curve), and 130 (black curve).
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Figure 8: Convergence of NI+DCT noise STD estimator. Initial
guess for noise STD σ̂n·i=0 ≈ 7.0 (black curve), σ̂n·i=0 = 16.0 (blue
curve) and σ̂n·i=0 = 4.0 (red curve).

σ2
n0 = 25 have been generated by adding synthetic noise

with the corresponding variance followed by quantization
and clipping to the range from 0 to 255. As the obtained
noisy images contain both the reference images noise and
the synthetic noise subsequently added, the resulting noise
STD is slightly larger than σn0. Therefore, the estimates for all

considered methods have been corrected as σ̂c =
√
σ̂2 − σ̂2

r .
The empirical pdfs of the obtained estimates are pre-

sented in Figure 9 for three noise variances for the proposed
NI+fBm and NI+DCT estimators (in black and red colors,
resp.), the BM3D estimator (in green color) and SBIQ esti-
mator (in blue color). The corresponding mean (Mean(σ̂c))
and STD (STD(σ̂c)) of the obtained estimates over the whole
TID2008 database are given in Table 1.

Analysis of data in Table 1 and Figure 9 shows that all
estimators provide quite accurate estimates. The SBIQ esti-
mator produces outlying estimates (not shown in Figure 9
but taken into account in Table 1) for the textural image 13
and images 6 and 20. The latter outliers are mainly due to
clipping effect influence [35].
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Table 1: Mean and STD of additive noise STD estimates σ̂c for TID2008 database.

Mean(σ̂c)/STD(σ̂c) σ2
n0 = 25 (σn0 = 5) σ2

n0 = 65 (σn0 = 8.06) σ2
n0 = 130 (σn0 = 11.40)

NI+fBm 5.00/0.120 7.96/0.156 11.35/0.183

NI+DCT 5.01/0.060 8.05/0.098 11.41/0.121

BM3D 5.06/0.128 —no data available— 11.50/0.196

SBIQ —no data available— 8.29/1.372 11.29/1.59
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Figure 9: Empirical pdfs of STD estimates σ̂c obtained for the whole
TID2008 database by (1) NI+fBm (in black color); (2) NI+DCT (in
red color); (3) BM3D (in green color); (4) SBIQ (in blue color);
noise variances are equal to σ2

n0 = 130 (a), σ2
n0 = 65 (b), and σ2

n0 = 25
(c). The true noise STD is marked by dashed vertical line in all plots.

According to Table 1, for the SBIQ estimator the STD (σ̂c)
takes the largest value ≈1.3–1.5 and Mean(σ̂c) is biased by
about 5% (for σ2

n0 = 65). The BM3D and NI+fBm estimators
show similar performance, reducing STD(σ̂c) by about 5–
8 times compared to SBIQ. Mean(σ̂c) is biased by only
≈1%. The NI+DCT estimator improves these results even
further. STD(σ̂c) reduces by about 1.5–2 times as compared
to its value for BM3D and NI+fBm; mean(σ̂c) bias becomes
negligible (<0.4%). Note that for the NI+DCT estimator the
actual ranges of σ̂c variation are only approximately 2 times
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Figure 10: The empirical pdfs of the normalized noise STD
estimates σ̂norm. Color settings are as in Figure 9.

wider than the ones determined by CRLB ([11.3, 11.5] for
σ2
n0 = 130 and [4.93, 5.07] for σ2

n0 = 25). Thus, very accurate
estimation is provided for all images of the considered
database irrespectively to noise STD value.

Potentially the method NI+fBm is expected to out-
perform NI+DCT estimator (see Figure 5). However, the
simulation results have not shown this. The reason seems
to be the following. Within the NI+fBm approach, both
noise STD and Hurst exponent are estimated jointly with
mutual influence on each other. Then, the errors in Hurst
exponent prediction lead to additional errors of STD esti-
mation, which, consequently, results in accuracy reduction
of NI+fBm technique. On the contrary, within NI+DCT
approach the Hurst exponent estimates are used only at NI
map forming stage, and they do not directly influence the
STD estimation stage.

Availability of CRLB σ̂2
σn·NI allows presenting noise STD

estimated in the normalized form as

σ̂norm =
(σ̂c − σn0)

σ̂σn·NI
. (16)

Considering σ2
σn·NI as potential noise STD estimation

accuracy, σ̂norm for an efficient unbiased estimator should
approach normal distribution with zero mean and unit vari-
ance. Then, it becomes possible to compare the considered
estimators to the efficient one.

Figure 10 presents four empirical pdfs of σ̂norm for the
NI+fBm and NI+DCT, BM3D and SBIQ estimators (color
settings are as in Figure 9). These pdfs have been obtained
for all images and all analyzed noise variances. It is seen that
the pdf of σ̂norm for NI+DCT estimator follows Gaussian-like
distribution with the mean equal to 0.22 and STD equal to
3.16. The pdf of σ̂norm for the BM3D (NI+fBm) estimator
is nonsymmetrical with mode close to zero, mean equal
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2.30 (−2.60) and STD equal to 5.31 (6.29). The empirical
pdf for the SBIQ method is also nonsymmetrical one with
heavy right and left tails. Its mean equals to −2.24 and its
STD is 39.25 (taking into account the outliers mentioned
above).

We see that accuracy of all considered estimators is quite
far from σ2

σn·NI. Their statistical efficiency with respect to this
bound can be expressed as

e = 100% · Ne∑Ne

i=1 σ̂
2
norm ·i

, (17)

where the sum for each estimator is calculated over all Ne

available estimates. For the proposed estimators, we obtain
eNI DCT = 10.01% and eNI fBm = 2.17%. One has eBM3D =
3.00% for the BM3D estimator and eSBIQ = 0.07% for
the SBIQ. These results show that the proposed NI+DCT
estimator is by 3 times more efficient that the state-of-the-art
BM3D estimator, although performance of STD estimators
can be further improved considerably. Thus, there is a room
for further improvement and research in the area of noise
STD blind estimation.

4. Conclusion

In this paper, a novel approach to image noise STD
estimation has been proposed. It is mainly based on iterative
separation of the processed image into two areas: noise-
informative one that is able to provide information on noise
STD and texture-informative area that allows estimating
texture correlation structure or roughness. The 2D fBm
model has been used as the model for image texture.

Such separation provides several advantages. First, it
allows solving two complementary problems: to obtain
accurate texture parameters for noisy part of the image and
accurate noise parameters for textural part of the image, thus
making both texture and noise parameters available for the
whole image. Second, using texture and noise parameters,
the Fisher information that a single SW contains about
noise STD (or CRLB σ2

σn on noise STD estimates) has been
determined to refine current NI and TI maps.

The experiments on TID2008 database have shown that
separation on NI and TI maps can be successfully carried
out for real-life images. NI maps for these images may
occupy from 1 to 80% of image area depending on their
homogeneity. The relative area of the NI map increases with
noise variance.

Availability of CRLB σ2
σn allows determining potential

variance of additive noise STD estimation from the whole
NI map. We have used this bound to compare the efficiency
of our estimators to that of two state-of-the-art estimators:
BM3D and SBIQ method. We found NI+DCT estimator to
significantly outperform the BM3D and SBIQ estimators.
At the same time, the designed NI+DCT estimator provides
noise STD estimates with STD approximately 3 times larger
than the estimated potential STD σ̂σn·NI. Thus, the design of
more efficient noise STD estimator is challenging.
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