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Abstract: Image interpolation and denoising are important techniques in

image processing. These methods are inherent to digital image acquisition

as most digital cameras are composed of a 2D grid of heterogeneous imag-

ing sensors. Current polarization imaging employ four different pixelated

polarization filters, commonly referred to as division of focal plane polariza-

tion sensors. The sensors capture only partial information of the true scene,

leading to a loss of spatial resolution as well as inaccuracy of the captured

polarization information. Interpolation is a standard technique to recover the

missing information and increase the accuracy of the captured polarization

information.

Here we focus specifically on Gaussian process regression as a way to

perform a statistical image interpolation, where estimates of sensor noise

are used to improve the accuracy of the estimated pixel information. We

further exploit the inherent grid structure of this data to create a fast exact

algorithm that operates in O
(

N3/2
)

(vs. the naive O
(

N3
)

), thus making the

Gaussian process method computationally tractable for image data. This

modeling advance and the enabling computational advance combine to

produce significant improvements over previously published interpolation

methods for polarimeters, which is most pronounced in cases of low

signal-to-noise ratio (SNR). We provide the comprehensive mathematical

model as well as experimental results of the GP interpolation performance

for division of focal plane polarimeter.
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1. Introduction

Solid state imaging sensors, namely CMOS and CCD cameras, capture two of the three fun-

damental properties of light: intensity and color. The third property of light, polarization, has

been ignored by CMOS and CCD sensor used for daily photography [1, 2, 3, 4]. However, In

nature, many species are capable of sensing polarization properties of light in addition to in-

tensity and color. The visual system in these species combines photoreceptors and specialized

optics capable of filtering the polarization properties of the light field. Recent development in

nanofabrication and nano-photonics has enabled the realization of compact and high resolu-

tion polarization sensors. These sensors, known as division of focal plane polarimeters (DoFP),

monolithically integrate pixelated metallic nanowire filters, acting as polarization filters, with

an array of imaging elements [5]. One of the main advantages of division-of-focal-plane sensors

compared to division-of-time sensors is the capability of capturing polarization information at

every frame. The polarization information captured by this class of sensors can be used to ex-

tract various parameters from an imaged scene, such as microscopy for tumor margin detection

[6], 3-D shape reconstruction from a single image [7], underwater imaging [8], material classi-

fication [9], and cancer diagnosis [10].

The idea of monolithically integrating optical elements with an array of photo sensitive ele-

ments is similar to today’s color sensors, where a Bayer color filter is integrated with an array of

CMOS/CCD pixels. The monolithic integration of optics and imaging elements have allowed

for realization of compact color imaging sensors. Since pixelated color filters are placed on the

imaging plane, spatial resolution is lost up to 4 times for the red and blue channel and 2 times

for the green channel. Interpolation algorithms for color image sensors have been constantly

improving over the last three and half decades, allowing for improvements in color replication

accuracy and recovery of the lost spatial resolution [11, 12]. An important reason for the wide

acceptance of color imaging technologies is the utilization of interpolation algorithms. Since

pixelated color filters are placed on the imaging plane, each sensor only observes partial infor-

mation (one color), and thus it is standard practice to interpolate missing components across

the sensors. Cameras using division of focal plane polarization sensors utilize four pixelated

polarization filters, whose transmission axis is offset by 45 degree from each other (see Fig. 1).

Hence, each pixel represents only 1/4 of the linear polarization information, severely lowering

the resolution of the image and the accuracy of the reconstructed polarization information.1 In-

terpolation techniques allow to estimate the missing pixel orientations across the imaging array,

thereby improving both the accuracy of polarization information and mitigate the loss of spatial

resolution.

1Although the four pixels are spatially next to each other, their instantaneous field of view is different, resulting in

different intensities. The pixels intensities are used to reconstruct the polarization information, such as Stokes vector,

angle and degree of linear polarization.



Fig. 1. Division of focal plane polarization sensors on the imaging plane. Each pixel cap-

tures only 1/4 of the polarization information. Interpolation is needed for recovering the

full camera resolution.

Similar problems were encountered in color imaging sensors, when the Bayer pattern for

pixelated color filters was introduced in the 1970s [13]. In order to recover the loss of spa-

tial resolution in color sensors and improve the accuracy of the captured color information,

various image interpolation algorithms have been developed in the last 30 years. For DoFP,

the common use is of conventional image interpolation algorithms such as bilinear, bicubic,

and bicubic-spline, which are based on space-invariant non-adaptive linear filters [14, 15, 16].

Frequency domain filtering was introduced for band limited images and total elimination of

the reconstruction error was achieved [17]. More advanced algorithms use adaptive algorithms,

such as the new edge-directed interpolation (NEDI) [18], utilize the multi-frame information,

such as [19]. Recently, there has been a growing interest in the use of GP regression for interpo-

lation and denoising of image data for color sensors [20, 21]. GP is a Bayesian nonparametric

statistical method that is a reasonable model for natural image sources [18], and fits well the

DoFP interpolation setting by accounting for heteroscedastic noise and missing data, as we will

discuss next.

Whereas conceptually attractive, exact GP regression suffers from O(N3) runtime for data

size N, making it intractable for image data (N is the number of pixels which is often on the

order of millions for standard cameras). Many authors have studied reductions in complexity

via approximation methods, such as simpler models like kernel convolution [22, 23], moving

averages [24], or fixed numbers of basis functions [25]. A significant amount of research has

also gone into sparse approximations, including covariance tapering [26, 27], conditional in-

dependence to inducing inputs [28, 29], sparse spectrum [30], or a Gaussian Markov random

field approximation [31]. While promising, these methods can have significant approximation

penalties [28, 32]. A smaller number of works investigate reduction in complexity by exploiting

special structure in the data, which avoids the accuracy/efficiency tradeoff at the cost of gener-

ality. Examples of such problems are: equidistant univariate input data where the fast Fourier

transform can be used (e.g., [33]); additive models with efficient message passing routines (e.g.,

[34, 35, 36]); and multiplicative kernels with multidimensional grid input [36], as we discuss

here.

Image data is composed of multiple pixels that lie on a two dimensional grid. The mul-

tidimensional grid input data induces exploitable algorithmic structures for GP models with

multiplicative kernels [36]. 2 We show in Sec. 2 that these conditions, along with the assump-

tion of homogenous noise, admit an efficient algorithm, we named GP-grid, that can be used to

significantly lower the computational cost while still achieving high accuracy.

2GP models with multiplicative kernels and multidimensional grid inputs are constrained to have (i) covariance

structure that separates multiplicatively across its D inputs (see Section 2); and (ii) a restricted input space: input points

x ∈ X can only lie on a multidimensional grid X = X 1 ×X 2 × . . .×X D ⊂ R
D, where X d = {xd

1 ,x
d
2 , . . . ,x

d
|Xd |

} is

the input space of dimension d, 1 ≤ d ≤ D.



However, there are two important cases where two key assumptions break down. First, the in-

put might not lie on a complete grid. This can often occur due to missing values (e.g., malfunc-

tioning sensors), or when analyzing irregular shaped segment of the image. Second, captured

image data often contain heteroscedastic signal-dependent noise [37]. In fact, the heteroscedas-

tic nature of the data is often overlooked by most of the image interpolation techniques in the

literature and can significantly reduce the interpolation accuracy (see Sec. 3). Thus, the second

contribution of this work is to utilize the actual noise statistics of the data acquisition system,

which fits naturally into the GP framework. With these advances, it is possible to significantly

improve both the interpolation and denoising performance over current methods.

In Sec. 2.1 we extend the GP-grid algorithm to handle two limitations of the basic algorithm

by allowing for (i) incomplete data, and (ii) heteroscedastic noise. Certainly these extensions

to standard GP have been used to good purpose in previous GP settings, but their success

can not be replicated in the large N case without additional advances related to this specific

multidimensional grid structure.

The main contribution of this paper is to present an efficient GP inference for improved

interpolation for DoFP polarimeters. The GP statistical inference is able learn the properties of

the data and incorporates an estimation of the sensor noise in order to increase the accuracy of

the polarization information and improve spatial resolution.

1.1. Gaussian Process Regression

Interpolation and denoising are essentially problems of regression where we are interested in

learning the underline true image from the noisy and partial observed data of the captured

image. Gaussian processes offer a powerful statistical framework for regression that is very

flexible to the data. Here we will briefly introduce the GP framework and the main equations

which carry the computational burden of the method.

In brief, GP regression is a Bayesian method for nonparametric regression, where a prior

distribution over continuous functions is specified via a Gaussian process (the use of GP in

machine learning is well described in [29]). A GP is a distribution on functions f over an input

space X (For 2 dimensional image data case X = R
2) such that any finite selection of input

locations x1, . . . ,xN ∈X gives rise to a multivariate Gaussian density over the associated targets,

i.e.,

p( f (x1), . . . , f (xN)) = N (mN ,KN), (1)

where mN = m(x1, . . . ,xN) is the mean vector and KN = {k(xi,x j;θ)}i, j is the covariance ma-

trix, for mean function m(·) and covariance function k(·, · ;θ). Throughout this work, we use

the subscript N to denote that KN has size N ×N. We are specifically interested in the basic

equations for GP regression, which involve two steps. First, for given data y ∈ R
N (making the

standard assumption of zero-mean data, without loss of generality), we calculate the predictive

mean and covariance at L unseen inputs as

µL = KLN
(

KN +σ2
n IN

)−1
y, (2)

ΣL = KL −KLN
(

KN +σ2
n IN

)−1
KNL, (3)

where σ2
n is the variance of the observation noise (the homogeneous noise case, where σ2

n
is constant across all observations), which is assumed to be Gaussian. Because the function

k(·, · ;θ) is parameterized by hyperparameters θ such as amplitude and lengthscale, we must

also consider the log marginal likelihood Z(θ) for model selection:

logZ(θ) =−
1

2

(

y⊤(KN +σ2
n IN)

−1y+ log |KN +σ2
n IN |+N log(2π)

)

. (4)



Here we use this marginal likelihood to optimize over the hyperparameters in the usual way

[29]. The runtime of exact GP regression (henceforth “full-GP”) regression and hyperparam-

eter learning is O(N3) due to the
(

KN +σ2
n IN

)−1
and log |KN +σ2

n IN | terms. The significant

computational and memory costs make GP impractical for many applications such as image

analysis where the number of data points can easily reach the millions. Next, we will show how

we can exploit the inherent structure of our problem setting to allow for very fast computations,

making GP an attractive method for image interpolation and denoising.

2. Fast GP for Image Data

In this Section we present algorithms which exploit the existing structure of the image data

for significant savings in computation and memory, but with the same exact inference achieved

with standard GP inference (using Cholesky decomposition).

Gaussian process inference and learning requires evaluating (K+σ2I)−1y and log |K+σ2I|,
for an N ×N covariance matrix K, a vector of N datapoints y, and noise variance σ2, as in

Equations (2) and (4), respectively. For this purpose, it is standard practice to take the Cholesky

decomposition of (K+σ2I) which requires O
(

N3
)

computations and O
(

N2
)

storage, for a

dataset of size N. However, in the context of image data, there is significant structure on K that

is ignored by taking the Cholesky decomposition.

In [36], it was shown that exact GP inference with multiplicative kernel3 can be done in

O(N
3
2 ) operations (compared to the standard O(N3) operations) for input data that lie on a

grid. The computation stemmed from the fact that:

1. K is a Kronecker product of 2 matrices (a Kronecker matrix) which can undergo eigen-

decomposition with only O(N) storage and O(N
3
2 ) computations

2. The product of Kronecker matrices or their inverses, with a vector u, can be performed

in O(N
3
2 ) operations.

Given the eigendecomposition of K as QVQ⊤, we can re-write (K+σ2I)−1y and log |K+
σ2I| in Eqs. (2) and (4) as

(K+σ2I)−1y = (QVQ⊤+σ2I)−1y (5)

= Q(V+σ2I)−1Q⊤y , (6)

and

log |K+σ2I|= log |QVQ⊤+σ2I|=
N

∑
i=1

log(λi +σ2) , (7)

where λi are the eigenvalues of K, which can be computed in O(N
3
2 ).

Thus we can evaluate the predictive distribution and marginal likelihood in Eqs. (2) and

(4) to perform exact inference and hyperparameter learning, with O(N) storage and O(N
3
2 )

operations.

Unfortunately, for images of focal plane sensors, the above assumptions - (1) a grid-complete

dataset with (2) homogeneous noise σ2
n IN - are too simplistic, and will cause GP-grid to sub-

stantially underfit, resulting in degraded estimation power of the method (this claim will be

substantiated later in Sec. 3). First, incomplete grids often occur due to missing values (e.g.,

malfunctioning sensors), or non-grid input space (e.g., a segment of an image). Second, the

3multiplicative kernel is defined as k(xi,x j) = ∏2
d=1 kd(xd

i ,x
d
j ).



homogeneous noise assumption is not valid a sensor noise is input-dependent and often can be

represented by a linear model which is camera dependent [37].

In the next section we will extend GP-grid to efficiently handle the case of K+D, where K
is not a Kronecker matrix, and D is a positive diagonal matrix of known heteroscedastic noise.

2.1. Inference

Incomplete grids often occur due to missing values (e.g., malfunctioning sensors), or non-grid

input space (e.g., a segment of an image). Previous work in literature tried to handel missing

observation for grid input using either sampling [38], or a series of rank-1 updates [39]; how-

ever, both of these methods incur high runtime cost with the increase of the number of missing

observations.

We will use the notation KM to represent a covariance matrix that was computed using multi-

plicative kernel over an input set χM, |χM|=M, which do need to lie on a complete grid. Hence,

KM is not necessarily a non Kronecker matrix, and can be represented as KM = EKNE⊤, where

the KN is a Kronecker matrix computed from the set χN (χM ⊆ χN) of N inputs that lie on a

complete grid. The E matrix is a selector matrix of size M ×N, choosing the inputs from the

complete-grid space that are also in the incomplete-grid space. The E matrix is a sparse matrix

having only M non-zero elements.

This representation is helpful for matrix vector multiplication because it allows us to project

the incomplete observation vector to the complete grid space yN = E⊤yM , perform all opera-

tions using the properties of the Kronecker matrices, and then project the results back to the

incomplete space.

We use preconditioned conjugate gradients (PCG) [40] to compute
(

KM +D
)−1

y. Each it-

eration of PCG calculates the matrix vector multiplication

(KM +D)v = EKNE⊤v+Dv. (8)

The complexity of matrix vector multiplication of the diagonal and selector matrices is O (N),
hence the complexity of the multiplication above will depend on the matrix vector multipli-

cation of KN . Exploiting the fast multiplication of Kronecker matrices, PCG takes O(JN
3
2 )

total operations (where the number of PCG iterations J ≪ N) to compute
(

KM +D
)−1

y, which

allows for exact inference.

2.2. Learning

For learning (hyperparameter training) we must evaluate the marginal likelihood of Eq. (4).

We cannot efficiently compute the complexity penalty in the marginal likelihood log |KM +D|
because K = KM +D is not a Kronecker matrix. We can alleviate this problem by replacing the

exact logdet complexity with an efficient upperbound. Using an upperbound allows to keep the

computational and memory complexities low while maintaining a low model complexity. We

emphasize that only the log determinant (complexity penalty) term in the marginal likelihood

undergoes a small approximation, and inference remains exact.

In [41], the author showed that for a n×n hermitian positive semidefinite matrices A, B with

eiganvalues α1 ≤ α2 ≤ . . .≤ αn and β1 ≤ β2 ≤ . . .≤ βn, respectively,

|A+B| ≤
n

∏
i=1

(αi +βn+1−i) . (9)

These estimates are best possible in terms of the eigenvalues of A and B. Using Eq. (9), we can



write an upperbound on the complexity penalty as:

log |KM +D| ≤
M

∑
i=1

log
(

λ M
i + dM+1−i

)

, (10)

where di = sort(diag(D))i. However, finding λ M
i , the eigenvalues of KM , is still O

(

N3
)

. We

instead approximate the eigenvalues λ M
i using the eigenvalues of KN , such that λ̃ M

i = M
N λ N

i for

i = 1, . . . ,M [42], which is a particularly good approximation for large M (e.g., M > 1000).

3. Results

Here we show that GP-grid allows for improved accuracy results for division of focal plane

polarimeter compared to other commonly-used interpolation methods.

3.1. Runtime Complexity

First, we compare the runtime complexity of GP-grid from Section 2.1 to both full-GP (naive

implementation of Sec. 1.1 using Cholesky decomposition) and GP-grid with grid-complete

and homogeneous noise. We conduct the comparison using a segment of real image data of a

cone (Fig. 2). We consider only the input locations within the segment (size M), except for GP-

grid homogeneous where we used the entire grid-complete segment (size N). At each iteration

the size of the window N is increased, thereby increasing the number of input locations M
(pixels we did not mask out). Fig. 2 illustrates the time complexity of the three algorithms

as a function of input size (pixels). For every comparison we also note the ratio of unmasked

input to the total window size for each point. The time complexity presented for all algorithms

is for a single calculation of the negative log marginal likelihood (NLML) and its derivatives

(dNLML), which are the needed calculations in GP learning (and which carry the complexity

of the entire GP algorithm). In GP-grid, the noise model is not learned but assumed to be known

from the apparatus used to capture the image [37], which is:

σ2
i = 0.47Ii+ 56.22, (11)

where at location i, σ2
i is the noise variance and Ii is the image intensity. For simplicity, we

assume a general model for all the sensors in the imaging plane. Since we do not have Ii we use

the measured yi instead as an approximation, which is a common heuristic (though it technically

violates the generative model of the GP) of known camera properties that we discuss later in this

work. As can be seen in Fig. 2, GP-grid does inference exactly and scales only superlinearly

with the input size, while full-GP is cubic. While the more general GP-grid (Sec. 2.1) does

slightly increase computational effort, it does so scalably while preserving exact inference, and

we will show that it has significant performance implications that easily warrant this increase.

All other commonly used interpolation methods (e.g., bilinear, bicubic, and bicubic-spline)

scale at least linearly with the data.

3.2. Application to Division of Focal Plane Images

In this section we test GP-grid on real division of focal plane image data, and we demon-

strate improvement in accuracy of polarization (Stokes) parameters compared to commonly-

used methods. For better comparison we used four different scenes, each captured multiple

times using (i) a short shutter speed resulting in low signal-to-noise ratio (SNR) images, and

(ii) a long shutter speed resulting in high SNR images. We acquired hundreds of images for

each scene using a CCD imaging array (Kodak KAI-4022 4MP) and a polarization filter. We

used four polarization filters corresponding to angles: 0, 45, 90, and 135 (see Fig. 3).
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Fig. 2. Runtime complexity of full-GP, GP-grid, and GP-grid homogeneous, for a single

calculation of the negative log marginal likelihood (NLML) and its derivatives. For input,

we used segmented data from the cone image of the right. At every comparison the size of

the segment N (red dotted line) was increased, thereby increasing the input size M (pixels

not masked out). The ratio of input size to the complete grid size (M/N) is shown next

to the GP-grid plot. The slope for the full-GP is 2.6, for GP-grid is 1.0, and for GP-grid

homogeneous is 1.1 (based on the last 8 points). This empirically verifies the improvement

in scaling. Other interpolation methods also scale at least linearly, so the cost of running

GP-grid is constant (the runtime gap is not widening with data).

To extract the noiseless ground-truth (the basis of our comparisons), we averaged over the

majority of the pictures, holding out a small subset for testing. In order to test the interpolation

performance, we interpolated the entire image using only a subset of the image (downsampled

by four). All images are around 40000 pixels, hence, even their down-sampled version will

be impractical for the standard naive GP implementation. The interpolated images were then

compared to their corresponding averaged images for accuracy analysis. The accuracy criterion

we used was the normalized mean square error (NMSE) between the interpolated images and

the average images, defined as:

NMSE(y, ȳ) =
1
N ∑N

i (yi − ȳi)
2

var(ȳ)
, (12)

where ȳ is the data of averaged image.4 Normalization is used in order to compare between

the results of the low and high SNR images since they have a different intensity range. We

compare GP-grid with the common interpolation algorithms: bilinear, bicubic, bicubic-spline

(Bic-sp), NEDI [18], and frequency domain (FD) filter [17]. 5 Although this is by no means an

exhaustive comparison, it does allow for a benchmark for comparison with GP performance.

Note that in all the comparisons we intentionally discarded the border pixels (five pixels width)

so they would be most favorable to non-GP methods as the non-GP methods fail particularly

badly at the edges. Had we included the border pixels, our GP-grid algorithm would perform

even better in comparison to conventional methods.

4If we consider ȳ to be our signal, the NMSE can be seen as an empirical inverse of the SNR.
5The FD filter parameters were chosen such that 95% of the Stokes parameters spectrum of the averaged images

was captured.
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Fig. 3. The original image on the left is passed through four polarization filters with dif-

ferent phases. Over a hundred filtered images are captured. A small subset of the filtered

images is used for the interpolation testing and the rest are averaged to approximate the

noiseless filtered images. The filtered images used for testing are downsampled by four

(using different downsampling patterns) and then interpolated back to original size.

We explore real data using our improved GP-grid model. Performance of course depends

critically on the noise properties of the system, which in captured images is primarily sensor

noise. Other works in the literature consider additional GPs to infer a heteroscedastic noise

model [43, 44], which brings additional computational complexity that is not warranted here.

Instead, the simple model of Eq. (11) works robustly and simply for this purpose. We ran GP-

grid using a multiplicative Matérn( 1
2
) covariance function, and learned the hyperparameters:

lengthscales (l1, l2), signal variance (σ2
f ) [29].

In this section, reconstruction errors are presented from a set of three different images. The

images are segmented into a background image and foreground image, where the foreground

image is the object of interest such as the horse (Fig. 6) or toy (Fig. 7. Reconstruction is per-

formed on both the foreground and background images separately, as well as the entire image.

Segmenting the object of interest from the image and applying the six different interpolation

methods avoids reconstruction errors on the edge boundary between the object and background.

Different illumination conditions were considered for the same scene, effectively emulating dif-

ferent SNR conditions. In total, six different images are analyzed and the normalized squared

mean error is reported. The images chosen for this analysis have both high and low frequency

component in the S0, S1 and S2 image and allow for analysis of images that would be similar to

real-life images.

The first set of results presented is for the “Mug” scene (Fig. 4). The scene is composed of

a bright mug in front of a bright background. The brightness of the images is important as a

brighter image will produce higher luminance and a higher signal in the camera. The top row

of the figure shows a summary of the results for short shutter speed images and the bottom row

shows the results for long shutter speed images. As can be expected, the intensity range of the

low SNR test image on the top is much lower than the high SNR test image on the bottom. Also,

we can see that the normalized error distribution in the low SNR image is significantly higher

than the high SNR image. Following the scheme presented in Fig. 3, we used the interpolated

and averaged images to compute the Stokes parameters

S0 = I0 + I90, S1 = I0 − I90, S2 = I45 − I135. (13)

In the right side of Fig. 4 we show a comparison of the normalized error between the Stokes



parameters calculated using the interpolated images (using different interpolation methods) and

the Stokes parameters calculated from the averaged images. The bar plots allow for easy com-

parisons between the six interpolation methods for each of the Stokes parameters. Note that the

low SNR and high SNR cases must be considered separately since they use different scaling. It

is clear that GP outperformed all the other methods in this scene for each of the Stokes param-

eters. The results of the computed Stokes parameters for the mug scene of Fig. 4 are illustrated

in Fig. 5. Fig. 5 shows the dominance of noise in the reconstruction of common interpolation

algorithms for low SNR images. We averaged 10000 images to produce a ground truth image

where the effective noise is decreased by a factor of around 100 from a single captured image.

The GP interpolation achieves significantly better polarization accuracy in the low SNR case

compared to the other five interpolation methods. The improvement is most evident for the S1

and S2 parameters since they are differentiation operators which are more susceptible to noise.

The frequency domain filtering methods proposed in [17], has the worst reconstruction perfor-

mance due to the fact that the images used for this example are not band limited. Hence, the S1

and S2 images cannot be easily filtered out using a non-adaptive Butterworth filter.

A similar comparison was done for the three additional scenes: Horse (Fig. 6), and Toy

(Fig. 7). Differently than the Mug scene analysis, here we manually separated the comparison

for the object and the background. The reason for the separation is because the two segments

have very different properties (spatial frequencies) and learning on the entire image will result

in a kernel that will be suboptimal on each region separately. Close analysis of the results show

two important facts. First, the improvement was higher for low SNR images than high SNR

images. This is not surprising as all the interpolation methods are excepted to perform well

when the noise level is low compared to the signal level.

Second, S1 and S2 show higher improvement compared to S0 image. This is because the S0

image by construction is less sensitive to noise due to the averaging of several pixels in a given

neighborhood, while S1 and S2 are significantly more sensitive to noise due to taking the differ-

ence between neighboring pixels. In other words, the S0 image has higher SNR compared to S1

and S2 images and in-depth mathematical modeling of the SNR can be found in [37]. Improving

the accuracy of S1 and S2 are especially important because of their nonlinear dependent to the

other polarization parameters: angle of polarization φ = (1/2) tan−1(S2/S1) and the degree of

linear polarization ρ =
√

S2
1 + S2

2/S0.
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Fig. 4. Left column shows the noisy test image before decimation (subsampling) and in-

terpolation. Middle column shows the histogram of the absolute normalized error and the

average NMSE for the captured noisy image compared to the average image. The Stokes

parameters comparison is shown on the right for the six interpolation methods tested. Com-

parison between the six interpolation methods should be considered for each of the Stokes

parameters separately.



Fig. 5. Results of the Stokes parameters for the different interpolation methods of the mug

scene for low and high SNR. The total NMSE of the methods is summarized in Fig. 4. The

left (right) panel shows the results for a high (low) SNR image. The white box indicates the

zoom-in region for each of Stokes parameters results. The first row shows the Stokes pa-

rameters computed on temporally averaged images, which we use as the underline ground

truth. The following rows show the results for the rest of the interpolation methods.

4. Conclusion

GP allows for statistical interpolation that can naturally incorporate the camera noise model.

Overall, the results of our experiments show that the GP framework allows for improved recon-

structions of the Stokes parameters over conventional interpolation methods. Improvement was

most evident in low SNR images where the recovering of S1 and S2 is most difficult, and where

having a good prior can help reduce the effect of the noise.

Another interesting realization that came out of the comparison presented in this paper is

that the Bicubic-spline algorithm performance greatly degrades in the presence of noise. This

result is different than other papers in the literature where the comparison was done on the

averaged images only [15, 16]. The spectral method of [17] was also suboptimal, which is

likely because our tested scenes where not band limited, and the effect of input dependent noise

on the spectrum.

GP becomes tractable for image data by using the GP-grid algorithm we introduce here, and

it is a convenient technology to naturally incorporate our two performance-critical advances:

segmentation (incomplete grids) and a known noise model. As the results show, all of these

advances are important in order for GP to be considered a general framework for image data.

It is common practice in image processing to mix different methods in order to improve the

overall results, e.g., alternate methods close to an edge. Integrating GP-grid together with other

state-of-the-art interpolation methods to achieve further improvement is an interesting topic for

future work.
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Fig. 6. This figure illustrates the results for the segmented horse scene i.e. the toy horse

is segmented from the background and interpolation is only performed on the toy horse

portion of the image. The first two rows show results for the horse object when discarding

the information of the background. The white pixels indicate locations that where not used

in the analysis. The bottom two rows show results when performing interpolation on the

background part of the image, i.e. excluding the horse from the scene. The left column

shows the noisy test images, middle column shows the histogram of the absolute normal-

ized error, and the right column shows a comparison between the six different interpolation

methods tested.
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Fig. 7. Toy Scene. See caption of Fig. 6.
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