
Image Interpolation using Mathematical Morphology

Alessandro Ledda1, Hiêp Q. Luong1, Wilfried Philips1, Valérie De Witte2 and Etienne E. Kerre2

Ghent University, Gent, Belgium
(1) Telin Department, (2) Department of Applied Mathematics & Computer Science

ledda@telin.UGent.be

Abstract

We present a new method for interpolating binary images
that outperforms existing techniques. Bitmapped images
have a specific horizontal and vertical resolution. When
we magnify such an image, we want the resolution to be
increased, allowing more details in the image. However,
these extra details are not present in the original image. A
blowup of the image using simple interpolation will intro-
duce jagged edges, also called “jaggies”.

We present a new interpolation technique “mmINT”,
which avoids these errors. It is based on mathematical mor-
phology, a theoretical framework to alter an image while
preserving the image objects’ geometry. The algorithm de-
tects jaggies in the blown up image and removes them, mak-
ing the edges smoother. This is done by replacing specific
black pixels with white pixels, and vice versa.

The results show that mmINT is a superior technique for
the interpolation of binary images, like logos, diagrams,
cartoons and maps.

1. Introduction

A digital bitmapped image consists of picture elements,
pixels, aligned on a grid. The image resolution is the num-
ber of pixels per row and per column. When the image is
magnified M times, the number of pixels is also increased
(M2 times). But we only know the pixel values of the ori-
ginal pixels. The values of the new pixels must be guessed
using some intelligent calculation.

The easiest way is simply to copy the existing pixel val-
ues to the new neighbouring pixels (figure 1). This is called
pixel replication or nearest neighbour interpolation. Every
old pixel looks like a blown up pixel, introducing unwanted
jagged edges, called jaggies.

Other techniques are for example the bilinear and bicu-
bic interpolation [5]. Here, the (weighted) mean of re-
spectively 4 and 16 closest neighbours is calculated for the
new pixel value. Other linear (or non-adaptive) methods

(a) Original image (b) 4× magnified

Figure 1. Pixel replication creates “jaggies”.

use higher order (piecewise) polynomials, B-splines, trun-
cated or windowed sinc functions, etc. Most of them create
a greyscale image with extra artefacts, like blurring and/or
ringing. These extra artefacts do not occur if the interpola-
tion result is a binary image.

Adaptive or non-linear interpolation methods incorpor-
ate a priori knowledge about images. The edge-based tech-
niques follow a philosophy that no interpolation across the
edges in the image is allowed or interpolation has to be
performed along the edges. This rule is employed for in-
stance in EDI [1], NEDI [6] and AQua [10]. The restora-
tion methods tackle unwanted interpolation artefacts. Some
restoration methods are PDE-based regularization [15], iso-
phote smoothing [9] and level curve mapping [7]. Some
other adaptive methods exploit the self-similarity property
of an image, e.g. iterated function systems [4]. Another
class of adaptive interpolation methods is the example-
based approaches, which map blocks of the low-resolution
image into pre-defined interpolated patches [14, 2]. Adapt-
ive methods still suffer from artefacts: their results often
look segmented, yield important visual degradation in fine
textured areas or random pixels are created in smooth areas.

In this paper we present a novel non-linear interpolation
technique for black-and-white images that performs very
well. In short, we remove the jaggies from a pixel replic-
ated image, by swapping the values of the corner pixels of



�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Figure 2. Schematic example of the basic
morphological operators. Solid line: ori-
ginal object; Dashed line: result object; Disc:
structuring element (cross: origin); Left:
dilation; Right: erosion.

those jagged edges. This technique is based on mathemat-
ical morphology. Therefore we call our new method mmINT
(Mathematical Morphological INTerpolation).

2. Theoretical background

2.1. Morphological operators

Mathematical morphology [12, 13, 3], originally a the-
ory for binary images, is a framework for image processing
based on set theory. An object can be represented as a set,
i.e. the set of the coordinates of all the pixels of the object.
Objects are connected areas of pixels with value 1, whereas
the background pixels have value 0. Morphological image
processing can simplify image data, preserving the objects’
essential shape characteristics, and can eliminate irrelevant
objects.

Binary mathematical morphology is based on two basic
operators: dilation and erosion. They are defined in terms
of a structuring element (short: strel); this is a small win-
dow with an origin that scans the image and alters the pixels
based on the window’s content. A dilation of an image A
with a structuring element B (A⊕B) enlarges the objects (it
increases the number of 1-pixels in the image). An erosion
(A�B) shrinks objects (the number of 1-pixels in the image
decreases) (see figure 2).

The basic morphological operators on set A with strel B
are defined as:

dilation : A ⊕ B =
⋃

�b∈B T�b(A)
erosion : A � B =

⋂
�b∈B T−�b(A) (1)

with T�b(A) the translation of image A over the vector �b.
In other words, the structuring element is positioned over
every object pixel (see figure 2). With a dilation, every pixel
that is part of the strel, positioned at an object pixel, will be
part of the dilated object. With an erosion, only the pixels
where the whole strel is part of the object will be part of the
eroded object.

(a) Strel B (foreground) (b) Strel C (background)

Figure 3. Upper-left corner detection with the
hit-miss transform. Specific structuring ele-
ments are used. The black squares are pixels
of the strel; the cross is the origin of the strel.

The structuring element B can be of any size or shape
(square, cross, disc, line, . . . ) and is chosen depending on
the image and the application. The origin of this strel is also
important, as it states how the strel is positioned relative to
the examined pixel.

2.2. The hit-miss transform

The hit-miss transform “⊗” is a morphological method
used in our algorithm. Two structuring elements are needed:
one for the erosion of object pixels (B), and one for the
erosion of background pixels (C). With this transform it is
possible to detect specific shapes in the image. Its formula
is:

A ⊗ (B,C) = (A � B) ∩ (Ac � C) (2)

with Ac the complement set of A (1 becomes 0 and vice
versa).

For example, if we wish to detect the upper-left corner
of an object, then we erode the image with a structuring
element B like the one in figure 3(a), resulting in A � B
(see figure 4). If an object pixel has a right and lower object
neighbour, then this pixel is kept by the erosion. It is irrelev-
ant if other neighbours are object pixels. We also erode the
complement of the image with the structuring element C,
shown in figure 3(b), resulting in Ac � C. Notice that the
origin of the structuring elements plays an important role:
it sets the position of the possible corner pixel. Here, if the
left and upper neighbour of the pixel are background (in the
original image, foreground in Ac), then this pixel is kept by
the erosion. Whether the pixel itself or its other neighbours
are background pixels is not important.

The intersection of both erosions shows where upper-left
corners are in the image. The result of the hit-miss trans-
form is a set of the foreground pixels with at their right and
below them foreground pixels and at their left and above
them background pixels. We will further refer to this set as
a corner map.



A A � B

Ac Ac � C A ⊗ (B,C)

Figure 4. An example of the hit-miss trans-
form, detecting upper-left corners (using the
strels from figure 3).

3. Methodology

The purpose of mmINT is to remove the jagged edges
from a pixel replicated image, by changing specific object
pixels to background and vice versa. The pixel replication
of figure 5(a) is jagged (see section 3.1). The dotted lines
show the initial orientation. The ideal solution would be to
fill the area between the dotted lines with object pixels and
to have background pixels outside this area. This filling is
done in different iteration steps.

Figure 5(c) shows the first iteration of our method. The
hit-miss transform is used to detect corners in the magnified
image that are possibly jaggies (see section 3.2).

Not all detected corners need to be changed: some are
real corners of image objects, not part of a jagged edge;
other introduce unwanted artefacts. We will discuss the de-
tection and exclusion of these corners in sections 3.3 and
3.4.

We change the value of the pixels (and surrounding
neighbours) that are detected as corners of a jagged edge
using a morphological dilation (section 3.5), with the struc-
turing element depending on the used magnification, the
current iteration step and of course the orientation of the
corner. When changing the values, black becomes white,
and white becomes black.

At this point in the algorithm, the line is not yet com-
pletely smooth. The small arrows in the figure point to
the next set of pixels that need to change value. The ori-
entations of the arrows also show how the pixel swapping
evolves: we start from a corner, but every iteration step the
corner moves away and its shape changes. Therefore we use
different structuring elements for every iteration step (sec-

tion 3.6).
This procedure is repeated until all appropriate changes

have been made. Lines or edges with angles near 0◦ and
90◦ will need more iteration before all jaggies are gone. We
will now discuss the method in more detail.

3.1. Interpolation by pixel replication

First, we magnify the image by an integer factor using
pixel replication (also known as nearest neighbour inter-
polation). Pixel replication is a simple interpolation tech-
nique: it merely copies every pixel to its nearest neighbours.
These neighbouring pixels were not available in the original
low resolution image. As a result, a blocked pattern (jagged
edges or jaggies) is visible (see the filled object in figure 1
for an example). Next, we will remove those jaggies and let
the lines appear less jaggy, like in figure 5.

3.2. Corner detection

If we examine figure 5(b), we notice that the jaggies are
at the locations of object and background corners. We need
the positions of these corners in order to remove the jaggies.

The morphological hit-miss transform is a very useful
tool for corner detection. We choose a couple of structuring
elements that represent an object corner. Figure 3 shows
the structuring elements used for the detection of an upper-
left corner. The other 3 corners (upper-right, lower-left and
lower-right) are detected using rotated versions of these ele-
ments.

We not only look for corners of the objects, but also for
corners of the background. This way, we will have 8 corner
maps (4 object corner maps and 4 background corner maps).

3.3. Corner validation

Not all the corners found with the method described in
section 3.2 will need to be changed. Some corners are real
corners, which have to be retained in the interpolated im-
age. For example, the corners of the door and walls in fig-
ure 6 are real corners. The corners detected at the roof are
jagged corners, because it is a diagonal line.

We have to determine which corner pixels should be af-
fected by the interpolation part (section 3.5) (the jagged
corners) and which not (the real corners). To distinguish
between both, we search for every detected corner pixel one
or more complementary corner pixels. A complementary
corner is a corner of the opposite colour that lies either in
the direct neighbourhood of the corner pixel or at specific
relative coordinates along the direction of the line or edge.
The existence of a complementary corner suggests a jagged
edge. These two types of complementary corners imply two
validation rules to exclude the real corners. We need to



(a) Original image (b) Pixel replicated image (3×)

(c) Partial smoothing of jaggies (d) Interpolated image

Figure 5. The jagged edges have to be removed, by replacing the values of specific pixels. The
dotted lines show the orientation of the original line (a). The dots show the pixels that will change
value after interpolation.

Figure 6. The difference between “jagged
corners” and “real corners” (encircled).

check if the corner pixels satisfy at least one of these two
rules. We will now discuss both validation rules in more
detail.

3.3.1. Validation rule 1: search for complements in a
window. If a thin line with a thickness of 1 pixel in the
original image shows jaggies in the pixel replicated image,
then we can take advantage of corner pixels at the other
side of the line to determine whether or not the jagged edge
has to be interpolated. While the complementary pixels in
section 3.3.2 move away with each iteration, here the com-
plementary pixels move along.

Figure 7 shows a background corner pixel and the union
of all the object corner maps. We take the intersection of
this map union and the dilation of this background corner

Figure 7. Complementary corners in a win-
dow (size 2M – 1). Black dot: background
corner; White dots: object corners.

with a square structuring element (the window in the figure).
If this intersection is not empty, then the corner is a jagged
corner. The same approach is taken for the object corners.

The size of the structuring element is 2M + 1, with M
the used magnification. To classify corners like the upper-
left and lower-right pixel in figure 7 as real corners, size
2M − 1 must be used in the first iteration step. Otherwise,
these pixels lie inside the window around the background
corner pixel and thus will be classified as jagged corners.

The advantage of this method is that jaggies for a thin
line are removed. But it only works for thin lines, since
the algorithm looks at complementary corners in the direct
neighbourhood of the pixel, even at a higher iteration step.
In the case of filled objects (no thin lines), with each iter-
ation step, the possible complementary corners move away
from the examined corner pixel. This corner pixel will be
classified as a real corner and will not be interpolated.



Figure 8. Complementary corners: the back-
ground corner (black dot) has 2 complement-
ary corners (white dots) at specific relative
coordinates.

3.3.2. Validation rule 2: search for specific complements.
A complementary corner pixel is located at specific co-
ordinates relative to the examined corner pixel. These co-
ordinates can be calculated by taking the magnification, the
iteration step and the orientation of the corner into account.
The complementary corner is located M − 1 pixels in one
direction and 1 + (θ− 1)(M − 1) (with θ the iteration step)
pixels in the other direction, with the directions depending
on the corner orientation.

If we have an upper-right corner pixel, then we have to
look for a lower-left corner pixel of the background. Fig-
ure 8 shows a part of a diagonal line, 3× magnified. If the
background corner pixel changes to object, then there must
also change one (or in the first iteration step possibly two,
as in figure 8) object corner pixel to background, in order to
keep the total number of foreground pixels, the global im-
age intensity, (quasi) constant. This complementary pixel
lies in the direction of the line or edge, as stated before.

The advantage of this method is that only one comple-
mentary pixel is needed to determine if the corner pixel is a
real corner or a jagged corner, which means this part of the
algorithm only takes a small amount of calculation time.
The disadvantage is that in the result, some corners that are
part of a jagged edge are not removed because the valida-
tion rule is too strict. Indeed, while removing jaggies along
an edge, the complementary pixels move away from each
other. It is possible that one of these pixels reaches the end
of the edge before the other one does. If at the next iter-
ation step the latter corner is detected, no complementary
pixel will be found anymore and it will be considered a real
corner, although jaggies might still be present.

3.3.3. Combination of the validation rules. By allowing
corners validated by either method 3.3.1 or method 3.3.2,
we can obtain smooth lines and at the same time interpolate
more solid objects. This combination shows better results.
The only disadvantage is an increase in calculation time.

(a) Before interp. (b) Without H-F (c) With H-F

Figure 9. Barely touching pixels could give
artefacts after interpolation. Hole filling (H-F)
prevents this.

3.4. Hole filling

After the previous algorithm steps, some of the corners
detected as jagged corners are not wanted, because they
cause artefacts. We will explain this type of artefacts and
we will remove them. This procedure is performed once,
during the first iteration step.

When we have a line with barely touching pixels, like
in figure 9(a), then some detected corners should not be
there. The encircled pixels in the image are detected as ob-
ject corners, but also their neighbours are detected as back-
ground corners. All these corners will change values later
on (section 3.5), and thus holes will be introduced (see fig-
ure 9(b)).

This hole filling part removes these corners from the
corner maps obtained in section 3.3. We perform a hit-miss
transform on the union of the pixel replicated image with
all corner maps, both from objects and background. Within
this union, we look for cross-like elements with a hole in the
middle; in other words, pixels, whether or not value 1 or 0,
that have four nearest neighbours with value 1. These pixels
are not allowed to change during the interpolation sequence.

This part of the algorithm introduces an asymmetry
between the black and white pixels: the object and back-
ground pixels are not treated in the same way. At this mo-
ment it is important to know which pixels represent the
background and which ones the foreground, because fig-
ure 9(c) would look quite different if the black pixels are
indicated as background. Therefore we count the white and
the black pixels in the image and the colour that is most
present is considered background, which indeed is mostly
the case. The hole filling step adds more foreground pixels
than background pixels to the magnified image.

Another solution is the use of other (more strict) struc-
turing elements for the corner detection. This can exclude
the encircled object pixels in figure 9(a) as corners during
the corner detection step itself, but it will also exclude their
neighbouring background pixels as corners. Therefore this
solution is less desirable.



(a) M = 3 (b) M = 5: the strel (c) M = 7

Figure 10. Not only the corner pixel value
(white dot) will change its value in the inter-
polation part. Depending on the magnifica-
tion, also neighbouring pixels change.

3.5. Interpolation

We now replace background pixels with foreground
pixels, and vice versa. Not only the detected corner pixels
are affected, but also some of their neighbouring pixels, de-
pending on the used magnification.

The principle of the interpolation part is to perform a
morphological dilation with a specific structuring element
on the detected corner pixels, treating each corner map sep-
arately. The result is used as a mask. The pixels in the mask
will be swapped from black to white, or from white to black.

All interpolation structuring elements were designed to
transform the jagged edges or lines into a staircase pattern
with a step size of one pixel. There are differences between
each iteration step and also between odd and even magni-
fications.

3.5.1. Odd magnification. We take a structuring element
(strel) that resembles a corner (figure 10(b)). We dilate the
corners n times with this strel. In the case of an odd mag-
nification M : n = �M

2 � − 1. So, at magnification 3 the
created mask will be identical to the corner map. At magni-
fication 5 also 2 neighbours (the shape of the strel) will be
added to the mask. The values of the pixels in the obtained
mask are swapped.

The structuring element in figure 10 is used for an upper-
left corner. Rotated versions of this strel are used for the
other 3 corners.

3.5.2. Even magnification. For magnification by an even
factor the principle is the same, but the object corner maps
are treated different from the background corner maps, and
this varies in each iteration step. Remember that only mag-
nifications by an integer factor are possible.

In the odd iterations, n = �M
2 � − 1 for the background

and n = �M
2 �− 2 for the objects. In the even iterations, the

situation is reversed: n = �M
2 � − 2 for the background and

n = �M
2 � − 1 for the objects.

Magnification 2 is a special case, because n can have
value −1. When that is the case, those corner pixels will
not change.

B (1st step) B (2nd step) B (3rd step)

C (1st step) C (2nd step) C (3rd step)

Figure 11. The hit-miss structuring elements
are different for every iteration step.

3.6. Higher orders

The former steps will interpolate lines that are tilted
±45◦ (and of course 0◦ and 90◦) correctly, but lines at other
angles are only partly interpolated. This can be seen in fig-
ure 5(c). The jaggies are only removed in the direct neigh-
bourhood of the original corners. Therefore, in order to
obtain better results (figure 5(d)), we repeat the procedure
from step 3.2 on (the corner detection). When the corner
maps are all empty, then all interpolation improvements are
done.

The structuring elements used in the corner detection and
the interpolation sequence will be different for every itera-
tion step. We will now look at the differences with the first
iteration.

3.6.1. Corner detection. As can be seen in figure 5, the
corners are not only shifted, but the shape of the corners
has also changed. In the first iteration step, the shape of
the corners is defined by the structuring elements B and
C in figure 3. After the first iteration, corner pixels (and
neighbouring pixels) are swapped, and thus new corners are
created. Most of these new corners must be kept, so we
cannot use the same strels again.

Therefore the structuring elements for the corner detec-
tion part (section 3.2) have to be altered (see figure 11). In
the first iteration step there are 4 corner orientations, but
from step 2 onwards the strels are less symmetric, which im-
plies now 8 different corner orientations (3 rotational vari-
ants and mirrored versions). The total number of corner
maps (foreground and background) hereby increases from
8 to 16.

3.6.2. Interpolation. Also for the interpolation part other
structuring elements are needed. They are shown in fig-



(a) 1st step (b) 2nd step (c) 3rd step

Figure 12. The interpolation structuring ele-
ment is different for every iteration step.

ure 12. Also here the loss in symmetry implies 8 different
orientations.

3.7. Optimizations

Several options are available to improve the speed of
the algorithm. The first optimization is the localization of
the possible corners in the next iteration. These locations
can be calculated using the magnification and iteration step,
and knowing what kind of corner (which orientation and
whether or not mirrored) the pixel is. For odd magnifica-
tions the displacement is �M

2 � pixels. If the magnification
is even, then the displacement is �M

2 � − 1 for an odd iter-
ation step, and �M

2 � for an even iteration. In the next iter-
ation step, we only perform a hit-miss transform on these
pixels, which reduces the calculation time. This also takes
care of artefacts: only pixels that are expected to be possible
corners will be investigated. Pixels that accidentally satisfy
the hit-miss condition in the next cycle are now excluded.

A second optimization option is to incorporate the hole
filling solution in the corner detection part, using different
structuring elements for the creation of the foreground as
for the background corner maps.

Another speed reduction is the omission of the valida-
tion rule in 3.3.1. But this will give a less satisfying visual
result. A better option is to look at specific coordinates for
a complementary pixel (as in the validation rule in 3.3.2),
instead of using a morphological dilation.

In the not-optimized version of the algorithm, there are
16 different corner maps with each the size of the (mag-
nified) image. These maps contain values 0 and 1, and
only at pixels with value 1 a morphological operation is
performed. If only these 1-pixels are put in lookup tables
that contain their coordinates, the image doesn’t need to be
scanned completely, which means a further reduction of the
calculation time.

Of course it is also possible to stop repeating the al-
gorithm after a certain number of iteration steps, but this
implies a loss in interpolation quality.

4. Results

We compare our technique with the method of [14] and
classical linear interpolation methods [5]. These methods
produce a greyscale image, but this is not always desired,
as binary logos or cartoons often should remain binary. The
greyscale interpolation of a binary image also often looks
blurry. Our technique mmINT only produces a black-and-
white result, so binarization of the output images of the
other techniques is needed in order to compare. We use the
well known Otsu threshold method [11] to define the ideal
threshold for the grey values.

As can be seen in the results in figure 13 for a 3× mag-
nified binary image, our technique is visually better than
other methods. The method HQ [14] also produces quite
good results, but still more jaggies are visible. The contours
in the figure interpolated with mmINT are smoother.

4.1. Statistical results

In order to determine the statistical significance of our
premise that mmINT outperforms other techniques, we per-
formed a traditional PSNR measurement and a small psy-
chovisual experiment.

4.1.1. PSNR calculation. Most quality tests use a reference
image as ground truth. The altered images are compared to
the original image and some value is calculated, mostly the
Peak Signal-to-Noise Ratio (PSNR). In the case of interpol-
ation, no reference image exists: we start with a small im-
age, but the interpolated images are magnified versions of
the original. This problem can be solved by taking an im-
age, scaling it down by subsampling it, and comparing the
interpolation result of this small image with the original fig-
ure. Note that this procedure can cause problems: lines that
are too thin can disappear after subsampling. Also, a line
can have different thicknesses after subsampling, depend-
ing on the position of that line in the image. This affects
the interpolation results. Another caveat for the use of the
PSNR is the fact that the biggest PSNR value does not ne-
cessarily belong to the visually best result.

Table 1 shows the PSNR values for 4 interpolation tech-
niques (mmINT, HQ, pixel replication and a bicubic al-
gorithm). We took 57 different binary images, scaled down
2, 3 and/or 4 times, resulting in a set of 152 downsampled
images. From this table we can conclude that the stand-
ard deviation is too high and the difference between the
PSNR values is too low to draw a clear conclusion. For
example, the PSNR difference between HQ and mmINT
is only about 0.1%. This makes the Peak Signal-to-Noise
Ratio a useless quality measure for the comparison of inter-
polation techniques on binary images.



(a) Original image

(b) Pixel replication (c) mmINT

(d) Bilinear (e) Bicubic

(f) sinc (Blackman-Harris) (g) HQ

Figure 13. Interpolation results with 3× magnification.



Table 1. PSNR calculation for the 4 interpola-
tion techniques. The higher the PSNR value,
the better. The standard deviation is indic-
ated for each result.

Technique Average PSNR
HQ 17.1 ± 2.8

mmINT 17.0 ± 2.8
Bicubic 16.9 ± 2.8

Pixel Replication 16.6 ± 2.6

4.1.2. Ranking experiment. We showed 8 different im-
ages, interpolated with 4 different techniques (mmINT,
HQ, pixel replication and a bicubic algorithm), in random
order to 35 (non-expert) persons. The test images are car-
toons (both line drawings and filled drawings), text, and
maps (containing both line drawings and text). The same
images are used in section 4.1.3.

For this test, we asked our test public to rank the 8 sets of
4 different interpolation techniques in order of preference.
We then calculated the average ranking, as can be seen in
table 2.

The results from this experiment are consistent. mmINT
is always ranked first, followed by HQ, except for text im-
ages. Bicubic and pixel replication follow at a rather big
distance. In the case of the map images (lines and text com-
bined), the pixel replication is preferred to the bicubic inter-
polation.

When we look at figure 14, we notice that the roundings
of the letters “q” and “a” are not that well interpolated by
mmINT. This is because different regions, that are inter-
polated independently, meet each other. This visually less
attractive result explains the outcome of the psychovisual
experiment.

4.1.3. Multidimensional scaling experiment. In [8], the
multidimensional scaling technique (MDS) is explained.
The basic assumption of MDS is that all relevant image
properties (e.g. blur, noise, contrast, . . . ) correlate highly
with geometrical properties of the stimulus positions. The
stimuli are the results of the different tested interpolation
techniques.

For each image, we showed the users 6 pairs of 2 dif-
ferent techniques and they had to give a preference score
for that pair. With the MDS the stimulus was calculated
in 1 dimension, representing a global image quality value
for every technique. Figure 15 shows the stimulus positions
(quality values) for the different techniques for all images
together. The distances between the stimulus positions rep-
resent the dissimilarities between the corresponding stim-
uli. mmINT is clearly superior to the other methods. HQ is
competitive with our interpolation technique. The bicubic

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

Pixel repl. Bicubic HQ mmINT
Q

ua
lit

y 
va

lu
e

Stimulus identification

All types of images

Figure 15. Stimulus position for the 4 inter-
polation techniques, for all 8 test images to-
gether.

and pixel replication method both give much worse results.
If we look at the stimulus graphs for the images separately,
then we can conclude the same as with the ranking exper-
iment (section 4.1.2): HQ seems to work better for text;
mmINT interpolates cartoons, logos and maps better than
the other techniques.

5. Conclusion

Our interpolation method mmINT is a technique based
on mathematical morphology that works very well on bin-
ary images, like logos, cartoons and maps. With a psycho-
visual experiment we have shown that it outperforms exist-
ing techniques. It also works quite well on text, but HQ
performs better for this type of content.

A possible application is the interpolation of segmenta-
tion masks in video motion estimation applications (espe-
cially in object based coding). In the field of digital librar-
ies, interpolation is useful when a low resolution electronic
version of the document already exists. When the original
paper document is not available anymore, or did not exist
at all (like graphics made for a website), then interpolation
is a solution to obtain a high resolution document. It could
also save time to interpolate the digital documents instead
of rescanning all the analog documents at a high resolution.



Table 2. Ranking of the 4 interpolation techniques. A lower number means a more preferred
technique. The standard deviation is indicated for each result. Notations: BC=Bicubic; HQ=HQ;
MM=mmINT; PR=Pixel replication.

Filled 1 Filled 2 Lines 1 Lines 2
1st MM: 1.76 ± 0.68 MM: 1.27 ± 0.45 MM: 1.00 ± 0.00 MM: 1.24 ± 0.43
2nd HQ: 1.84 ± 0.80 HQ: 1.78 ± 0.53 HQ: 2.00 ± 0.00 HQ: 1.84 ± 0.50
3rd BC: 2.43 ± 0.87 BC: 2.97 ± 0.29 BC: 3.08 ± 0.28 BC: 3.11 ± 0.57
4th PR: 3.97 ± 0.16 PR: 3.97 ± 0.16 PR: 3.92 ± 0.28 PR: 3.81 ± 0.40

Text 1 Text 2 Map 1 Map 2
1st HQ: 1.19 ± 0.40 HQ: 1.41 ± 0.69 MM: 1.32 ± 0.53 MM: 1.49 ± 0.61
2nd MM: 2.03 ± 0.44 MM: 1.78 ± 0.53 HQ: 1.76 ± 0.49 HQ: 1.59 ± 0.50
3rd BC: 3.14 ± 0.89 BC: 3.08 ± 0.72 PR: 3.16 ± 0.60 PR: 3.41 ± 0.64
4th PR: 3.65 ± 0.48 PR: 3.73 ± 0.45 BC: 3.76 ± 0.43 BC: 3.51 ± 0.56

(a) Pixel replication (b) mmINT (c) HQ

Figure 14. A text sample interpolated. Problems occur at roundings in letters.

In the future we plan to extend this method to greyscale
and colour images. The idea is to perform the hit-miss trans-
form on a local binarization of the intensity image. At the
interpolation part, the pixels are swapped using a transfer
function.

References

[1] J. Allebach and P. Wong. Edge-directed interpolation. In
Proceedings of the IEEE International Conference on Image
Processing ICIP ’96, volume 3, pages 707–710, Lausanne,
Switzerland, 1996.

[2] W. Freeman, T. Jones, and E. Pasztor. Example-Based
Super-Resolution. IEEE Computer Graphics and Applic-
ations, 22(2):56–65, 2002.

[3] R. Haralick and L. Shapiro. Computer and Robot Vision,
volume 1, chapter 5. Addison-Wesley, 1992.

[4] H. Honda, M. Haseyama, and H. Kitajima. Fractal Interpola-
tion for Natural Images. In Proceedings of the IEEE Interna-
tional Conference on Image Processing ICIP ’99, volume 3,
pages 657–661, Kobe, Japan, 1999.

[5] T. Lehmann, C. Gönner, and K. Spitzer. Survey: Interpol-
ations Methods In Medical Image Processing. IEEE Trans-
actions on Medical Imaging, 18(11):1049–1075, 1999.

[6] X. Li and M. Orchard. New Edge-Directed Interpola-
tion. IEEE Transactions on Image Processing, 10(10):1521–
1527, 2001.

[7] H. Luong, P. De Smet, and W. Philips. Image Interpolation
using Constrained Adaptive Contrast Enhancement Tech-

niques. In Proceedings of the IEEE International Confer-
ence on Image Processing ICIP ’05, pages 998–1001, Gen-
ova, Italy, 2005.

[8] J.-B. Martens. Image Technology Design. Springer, 2003.
[9] B. Morse and D. Schwartzwald. Isophote-Based Interpola-

tion. In Proceedings of the IEEE International Conference
on Image Processing ICIP ’98, pages 227–231, Chicago,
USA, 1998.

[10] D. Muresan and T. Parks. Adaptively quadratic (AQua) im-
age interpolation. IEEE Transactions on Image Processing,
13(5):690–698, 2004.

[11] N. Otsu. A Threshold Selection Method from Gray-Level
Histograms. IEEE Transactions on Systems, Man, and Cy-
bernetics, 9(1):62–66, 1979.

[12] J. Serra. Image Analysis and Mathematical Morphology,
volume 1. Academic Press, New York, 1982.

[13] P. Soille. Morphological Image Analysis: Principles and
Applications. Springer-Verlag, 2nd edition, 2003.

[14] M. Stepin. hq3x Magnification Filter, 2003.
http://www.hiend3d.com/hq3x.html.

[15] D. Tschumperlé. PDE’s Based Regularization of Multival-
ued Images and Applications. PhD thesis, Université de
Nice — Sophia Antipolis, Nice, France, 2002.


