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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Image magnification is a common problem in imaging 

applications, requiring interpolation to “read between the 
pixels”. Although many zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmagnificatiodinterpolation al- 
gorithms have been proposed in the literature, all meth- 
ods must suffer to some degree the effects of impefect 
reconstruction-false high-frequency content introduced by 
the underlying original sampling. Most often, these effects 
manifest themselves as jagged contours in the image. This 
paper presents a method for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconstrained smoothing of such 
artifacts that attempts to produce smooth reconstructions 
of the image’s level curves while still maintaining imagej- 
delity. This is similar to other iterative reconstruction algo- 
rithms and to Bayesian restoration techniques, but instead zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof assuming a smoothness prior for the underlying inten- 
s i ty  function it assumes smoothness of the level curves. Re- 
sults show that this technique can produce images whose 
error properties are equivalent to the initial approximation 
(interpolation) used while their contour smoothness is both 
visually and quantitatively improved. 

1. Introduction 

Millions of digital images available today through the In- 
ternet and other sources are frequently downloaded and in- 
tegrated into various types of media. While modern printers 
and displays support fine detail, images available electron- 
ically are rarely of such high resolution. This is especially 
true for home computing, where limited bandwidth often 
makes distribution of high-resolution images impractical. 
Typical screen-resolution images are 72 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 dots per inch 
(dpi) while even low-cost printers are 1200 dpi or higher. 
Although multiresolution formats have been developed for 
distributing images at both screen-displayable and printable 
resolutions, use of such formats is still relatively uncom- 
mon and requires that the high-resolution data be available. 
Thus, many image users are left today with low-resolution 
images displayed or printed on high-resolution devices- 
still looking like low-resolution images. 

Bilinear 

Original Image 

Bicubic Level-Set 

Figure 1. “Monarch” image with 3x magnifi- 
cation. Compare the results of pixel replica- 
tion (sharpest edges, worst jaggies), bilinear 
interpolation (blurred edges, less jaggies), 
bicubic interpolation (sharper edges, worse 
jaggies), and level-set magnification (sharp 
as bicubic interpolation, smoother contours). 

Standard interpolation methods treat the problem primar- 
ily as either fitting a function or filtering (or both) [9,28]. In 
either case, the reconstruction is imperfect, and false high- 
frequency components are introduced into the interpolated 
image [7, 181. As a result, they still show artifacts of the 
original discretization, as indeed all magnification methods 
must to some degree. These artifacts demonstrate them- 
selves most commonly as alignment to the original pixels 
(Figure l).’ This causes what should be smooth contours in 
the image to be jagged-the well known “jaggies”. 

Instead of approaching interpolation as “fitting the func- 
tion”, this paper approaches it as “fitting the visual geom- 
etry”: reconstructing the geometry of the original image’s 

‘Color versions of this and other images in this paper may be found in 
the conference proceedings CD-ROM and on the author’s web site. 
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level curves (spatial curves of constant intensity). Using a 
differential equation, this reconstruction smooths the image 
contours from an initial approximation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhile maintaining 
fidelity to the original lower-resolution image. Thus, it di- 
rectly attacks one of the the most perceptible artifacts of 
image reconstruction and causes the reconstructed image to 
preserve smooth contours in the original. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. Image Interpolation 

Because interpolation attempts to approximate an inten- 
sity function or surface from sampled data, most reconstruc- 
tion methods have their roots in either fitting functions to 
sampled data or in sampling theory. 

Functional interpolation treats an intensity surface as a 
sampled two-dimensional function and attempts to fit this 
function to the samples, often using polynomials of various 
degree (linear, cubic, etc.) [23]. For two-dimensional im- 
ages, these become bilinear and bicubic functions [8]: inter- 
polation in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz then interpolation in y or vice versa. More so- 
phisticated interpolating functions and non-exact fitting of 
the data can be used (e.g., [ 16]), but the idea is the same- 
best-fit functions. While these methods can do a good job of 
approximating the image’s intensity surface, the metric for 
evaluation is typically error in intensity, not visual appeal. 

Filtering approaches often outperform function-fitting 
approaches by recognizing the frequency-domain effects of 
the original sampling [9, 281. These methods attempt to 
undo the spectrum replication caused by sampling by ap- 
proximating the effects of a (physically unrealizable) ideal 
low-pass filter [6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15, 17, 18, 21, 221. Convolution by ap- 
proximations to a sinc function provide reasonable approx- 
imations to such an ideal filter, but again, the objective is to 
minimize pass-through of the offending frequencies rather 
than considering visual properties of the resulting image. 

Edge-directed interpolation algorithms [ 11 fit smooth 
subpixel edges to the image and use these to prevent cross- 
edge interpolation. These methods create sharper edges, 
and by fitting the edge contours spatially rather than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfunc- 
tionally, they also produce smoother edges. While these 
methods in part address the effects of interpolation on vi- 
sual contours, they raise two questions: how do you define 
the edges of interest, and what do you do elsewhere? Rather 
than trying to extract specific image curves for smooth re- 
construction, the method presented here works by recon- 
structing smooth approximations of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall of the image level- 
set contours simultaneously. 

PDE-based approaches to level-set interpolation have 
heen used previously in the literature [4, 5, 14, 191. 
Caselles, et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ]  showed that the only operators satisfy- 
ing certain requirements, particularly closure under inter- 
polation, are those involving second derivatives in the gra- 
dient and tangent directions. One variation of this method 

Figure 2. Isophote reconstruction errors in- 
troduced by interpolation. When a black-and- 
white edge (a, magnified) is bicubicly inter- 
polated (b), it shows artifacts of the original 
sampling. Individual level curves (c, eight lev- 
els) are jagged instead of smooth. When a 
similar edge with more gradual transition (d, 
magnified) is interpolated (e), the isophotes 
(f, 20 levels) are also jagged. 

(minimizing curvature in the gradient direction) can be used 
to smoothly interpolate missing contours between known 
curves or points. However, we want to interpolate the con- 
tours themselves, not between them. Their second vari- 
ation (minimizing curvature in the gradient-tangent direc- 
tion, which we use here) has been used for disocclusion [ 141 
or inpainting [4] with remarkably successful results. How- 
ever, the solution for this equation is not unique [5], requir- 
ing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan additional constraint that minimizes total variation. 
These approaches are also developed only for connected re- 
gions, not filling in contours from isolated points. 

3. Level-Curve Interpolation 

One of the most visually significant geometric proper- 
ties of images is their level curves or isophotes (curves of 
constant intensity). These curves are what give images their 
perceptual contours. Although level curves don’t capture all 
geometric information that one might want in analyzing im- 
age content [ 1 I ] ,  reconstruction of the isophotes produces a 
visually convincing reconstruction of the image. 

Figure 2 shows an example of the effects of interpola- 
tion on isophotes. If a simple black-and-white edge ( 2 4  is 
interpolated bicubicly (2b), the result shows the underlying 
pixel grid. The effects of this interpolation on the isophotes 
can be seen by examining individual level curves in the re- 
construction (2c). 

Performing the same operations on a blurred edge (inter- 
mediate greylevels in the transition) shows similar results. 
Even though each original level curve (2d) is straight, the 
level curves of the resulting reconstruction (2e) are not (2f). 
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Original Isophotes Original Isophotes 
pixel centers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI pixel centers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

lsophote’curvature Srnootheh isophotes 
visible as jagged artifacts 

Figure 3. Constrained level set smoothing. 
Smoothing the level curves as much as pos- 
sible while still maintaining level curve topol- 
ogy and the values at the known pixels pro- 
duces a convincing image reconstruction. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
These examples suggest an alternative approach to image 

reconstruction: smooth fitting of level curves based on the 
original image constraints (Figure 3). This can be phrased 
as a reconstruction/optimization problem: find the set of 
level curves that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 Preserve level set topology, 

Preserve intensities at known positions (pixels), and 

0 Are each as smooth as possible. 

Notice that the problem, when stated in this way, follows 
the general form of a constrained optimization problem and 
uses the common “smoothness” prior [3]. However, it is not 
intensity-surface smoothness but level-set contour smooth- 
ness that serves as the optimization prior. 

Although there is no closed-form solution for these con- 
straints (indeed, no unique solution exists without addi- 
tional constraints), this can be approached iteratively in a 
fashion similar to gradient-descent minimization: 

I .  Begin with an approximation of the magnification by 
using existing interpolation algorithms, and 

2. Iteratively minimize isophote curvature while preserv- 
ing fidelity to the original lower-resolution image. 

We may use any existing interpolation method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas an ini- 
tial approximation, but as with all optimization methods, 
the better the initial approximation, the better the result. In 
particular, level set reconstruction smooths contours while 
preserving edge sharpness, so it is only as sharp as the orig- 
inal approximation used. We now turn to an explanation 
of this second part: the iterative minimization of isophote 
curvature constrained by the sampled image. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. Level Set Manipulation 

At first glance, manipulation of the level curves requires 
explicitly finding and fitting each curve, much as individ- 
ual edges must be found and fitted in edge-directed ap- 
proaches 11. However, such explicit curve-fitting is not 

Increasing the 
intensity here 
movesthe ..., 
lewl CUM 

Decreasing the , intensity here 
moves the 
level curve 

Figure 4. Changes in pixel intensities move 
level curves spatially according to (2). 

necessary. Instead, we can directly manipulate the level 
curve passing through each pixel respectively by manipu- 
lating the intensities at that pixel. 

Osher and Sethian [20,25] have demonstrated curve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAevo- 
lution techniques for manipulating 1 -dimensional curves in 
2-dimensional domains by embedding the curve as a level 
curve of a function $ : IR2 3 IR of two variables. Altering 
this function alters its level curves and thus alters the spe- 
cific level curve that represents the curve of interest. The 
relationship between changing the value of the function q5 
and moving the curve in the direction of its normal is 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF is the speed of movement of the curve in its normal 
direction and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq5t is the change in the embedding function 4 
with respect to time. 

Research by Alvarez, Lions, and Morel [2], Sethian, 
Malladi, and Kimmel [ 1 1, 12,13,25], and others has shown 
that one can extend this to describe how changes in individ- 
ual pixel intensities alter their local level curves. The image 
itself (I) assumes the role of the embedding function 4: 

It = FIIVIII (2) 

By using the negative isophote curvature -K. as the speed 
F, level curves contract at a rate proportional to their 
curvature-places of high curvature contract more quickly 
than smoother parts of the curve (Figure 4): 

(3) It = -K.llVI(( 

This can be used to perform edge-preserving smoothing, 
noise removal and other image enhancement [2, 11,12,13, 
251, and shape evolution and description [lo]. We use a 
constrained form of this to reduce the artifacts of imper- 
fect reconstruction. Whereas other applications of level-set 
smoothing attempt to enhance the original image, we are 
attempting to reconsfruct the original image (warts and all). 

Calculation of the isophote curvature IC similarly does 
not require explicit representation of the level curve. It can 
be calculated from local derivatives of the intensity 1271: 
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Substituting this into (3) and recognizing that JIVII( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(I: + the desired flow is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Constrained Smoothing 

We implement the differential equation in (5) using a 
difference equation based on Euler’s method [23]. In this 
form, the method produces the results expected of level-set 
smoothing: jagged edges are smoothed and thus the recon- 
struction artifacts are diminished. However, standard level- 
set smoothing does more than just smooth jagged edges-it 
also smoothes away features of objects, ultimately shorten- 
ing level curves until they disappear altogether. The result 
is an appealing but oversmoothed image (Figure 6a). 

The method presented in this paper goes beyond sim- 
ple level-set smoothing by imposing additional constraints 
that preserve accuracy to the original image (anchors), pre- 
serve level set topology relative to these anchors, identify 
and smooth jaggies rather than arbitrarily shorten all curves, 
and to generally avoid oversmoothing. The combined ef- 
fects of these constraints are illustrated in Figure 6. 

5.1. Image Anchors 

Curvature flow provides two of our three goals: preser- 
vation of isophote topology and isophote length/curvature 
minimization, but we must add an additional constraint to 
preserve intensities at the original pixels: 

(6) 
0 for an original pixel location zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

It = { -li\lVIII otherwise 

As the level-set contours “ f lo~” ,  they are constrained by 
the unchanging anchor pixels (Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ) .  This is similar to 
constrained curve evolution as presented in  [25]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

anchor 
calculated 
new contour 
(not allowed) 

contour 

Figure 5. Anchor constraint. Original sam- 
pled pixels retain their values during the con- 
tour smoothing process. This preserves fi- 
delity to the original image. 

5.2. Explicit Topology Constraint 

If the level sets are moved too quickly (too large a step 
size for the numerical implementation of (6)), level curves 
may move past their associated anchors. While methods 
for ensuring the stability of level-set smoothing have been 
shown to preserve topology zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[26] and [24], such methods 
require small step sizes that are often too slow for our in- 
tended application. One may preserve the level-set topol- 
ogy of the initial reconstruction, especially relative to low- 
resolution anchors, by introducting an explicit topology 
contraint2 as folIows: 

I. Calculate the desired next-iteration value for all pixels 
based on (6). 

2. For each pixel that is increasing, limit its value to 
less than the lowest next-iteration value of the greater- 
valued neighboring pixels. 

3. Similarly, for each pixel that is decreasing, limit its 
value to more than the largest next-iteration value of 
the lesser-valued neighboring pixels. 

The net effect of this is to ensure that all greater-valued 
neighbors stay larger and all lesser-valued neighbors stay 
smaller, thus preserving topology. 

With this explicit topology constraint, coupled with a 
step-size reduction schedule, reasonable results can be cal- 
culated for color images in as few zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas five iterations. 

5.3. Inflection Constraint 

As pointed out previously in Section 2, there is no unique 
solution to this optimization [5]. This is because there 
are constraints only on the smoothness of the curves them- 
selves, not between the curves. However, we don’t want to 
arbitrarily smooth between the curves as in [4, 141 because 
we want to maintain the sharpness of our original approx- 
imation, By the same token, we don’t want to artificially 
introduce discontinuities either. If allowed to continue con- 
strained only by original-pixel anchors, level-curve short- 
ening flow tends to act like an elastic band shrinking to fit 
a set of nails hammered into a board: the minimum-length 
solution is piecewise linear (Figure 6c). Indeed, if there is 
only a single anchor bounded by a level curve, the curve 
will shrink to this single point. 

It must be remembered then that our goal is to smooth 
contours, not simply shrink them. To smooth jagged con- 
tours while preventing other forms of curve shortening,we 
introduce a constraint that separates jagged contours from 
curves without local inflections. This constraint simply re- 
quires that if a pixel is increasing or decreasing in value, at 

*It must be emphasized that this part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the algorithm is not necessary 
unless one wants to use a more aggressive step size than stability require- 
ments would normally dictate. 

I 
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b) Anchor constraints only 

d) Anchor, topology, and inflection constraints zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 6. Effects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the constraints described in Sections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.1-5.3. Unconstrained level-set smoothing 
oversmooths the image, removing jaggies but losing significant details (a). Anchors help to constrain 
the flow somewhat, but the curves may move past their anchors, producing results similar to uncon- 
strained smoothing (b). Topological constraints allow the anchor pixels to serve their function, even 
with an aggressive step size. However, small closed contours that surround a single pixel are still 
allowed to collapse unconstrained. Likewise, contours between similar-valued pixels are allowed 
to shorten unconstrained until they produce piecewise-linear segments, giving an almost polygonal 
look to some of the contours (c). These problems are addressed by the inflection constraint (d). 

least one of the neighboring pixels must change in the op- 
posite direction. (See Figure 4.) Thus, Jagged contours may 
be smoothed only by simultaneous pulling “in” on convex 
parts and “out” on neighboring concave parts of the curve. 
Already convex curves are not allowed to change. 

separation. In particular, the anchor constraints guarantee 
that any separation is sub-pixel with respect to the original 
image. Smoothing their level sets independently following 
independent interpolation appears to produce color separa- 
tion no worse than the initial interpolation itself. 

5.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAColor Images We have also experimented with a method based on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABel- 
trurnijow [ 1 11, which treats a color image not as three sepa- 
rate 2-dimepional manifolds but as a single 2-dimensional 
manifold in a 5-dimensional space (two spatial plus three 
color dimensions). Our results using this method were, 
however, not appreciably different from those produced by 
treatment of the individual color planes independently. 

Level-set reconstruction can be extended to color im- 
ages by applying the constrained flow to the individual color 
planes separately. Although this would appear to be suscep- 
tible to separation as each plane flows independently, our 
experience is that the constraints are sufficient to limit the 
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6. Results 7. Conclusions and Future Work I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Results ?f level-set smoothing can be seen in Figures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7- 

10. In each case, the image enhanced by constrained level- 
set smoothing preserves the sharpness of the original (bicu- 
bicly interpolated) approximation while reducing artifacts. 

6.1. Quantitative Comparisons 

A standard method for evaluating interpolated images is 
to measure the error introduced by the interpolation as com- 
pared to a “perfect” interpolation. To measure this, we first 
take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa higher-resolution image, reduce it by a factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, then 
enlarge it by the same factor f using reconstruction, and 
compare the reduced-then-magnified image to the original. 

Table 1 shows that the mean squared error for smoothed 
bicubicly interpolated images is only modestly better than 
for bicubic interpolation alone. This is not surprising, 
though. The central idea of level-set reconstruction is to 
produce images that look better while staying true to the 
data. While images smoothed with constrained level-set 
smoothing are not necessarily “more accurate” than such 
images without smoothing, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtheir error is no worse and they 
are more visually appealing. 

To measure this other objective, producing images with 
smoother contours, we also measured the mean absolute 
level-set contour curvature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE{IKI>. This might seem like 
“begging the question’-measuring the property we’re ex- 
plicitly trying to minimize-but it is interesting to compare 
the measurements of this quantity to visual impressions. 
For example, bilinear reconstruction consistently produces 
measurably smoother contours than bicubic reconstruction 
while introducing more error-agreeing with common wis- 
dom that bilinear reconstruction looks “less jagged” but 
“more blurred”. Bicubic reconstruction, using a higher- 
order fit to the original points, introduces less error but also 
produces more jagged contours (Figure 1). In each case, 
bicubic reconstruction followed by level-set smoothing pro- 
duces error results comparable to bicubic reconstruction but 
produces smoother contours. Indeed, the contour-smoothed 
interpolated images consistently produce contours that are 
significantly smoother than bicubic or bilinear reconstruc- 
tion without introducing additional intensity error. 

For comparison, we also compared our results to a 3 x 3 

box-filtered original image. (One must compare to a low- 
pass filtered version of the original because of the low-pass 
filtering required prior to reduced sampling, unless one is 
trying to sharpen as well as interpolate.) Bicubic interpola- 
tion followed by contour smoothing consistently produces 
results that are as smooth as the low-pass filtered original. 

Level set reconstruction, by focusing on visually signif- 
icant properties of interpolation artifacts, can significantly 
improve the results of existing methods for image magni- 
fication. The results have error characteristics comparable 
to the initial interpolation method but with contour smooth- 
ness comparable to the image prior to downsampling. 

As with any iterative optimization technique, level set re- 
construction depends heavily on the initial approximation. 
We have tested level set reconstruction using various initial 
interpolation methods, and in all cases it significantly im- 
proved the results. The effect of: level set reconstruction on 
even better initial approximations should be explored. 

Allebach [ 11 has noted that interpolation should consider 
the original image samples zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas area-based samples, not point 
samples. We are pursuing variations of anchor constraints 
that act as area-average, not point, anchors. 

Another area of continued exploration is to see whether it 
is possible to achieve better results for larger magnifications 
by applying a smaller magnification, performing level set 
reconstruction, more,rnagnification, more level set recon- 
struction, etc. We have tried this by comparing 4x magnifi- 
cation followed by level set smoothing to a process consist- 
ing of 2x magnification, smoothing, 2x magnification, and 
smoothing again. The results are marginally improved, but 
not significantly. However, it does suggest that this might 
be a better way to perform larger magnifications. 
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Figure 7. Comparison of the “monarch” image at 100 dpi (a), magnified to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA300 dpi using bicubic 
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Figure 9. Portions of the “parrots” image mag- 
nified 3x using bicubic interplation (a), then 
smoothed using level set reconstruction (b). 

Figure 10. Portions of the “frymire” magni- 
fied 3x using bicubic interpolation (a), then 
smoothed using level set reconstruction (b). 
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Table 1. Mean squared error and mean contour curvature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E{ 1 ~ 1 ) )  for different reconstruction meth- 
ods. In each case, the measurements agree with visual impression. (See Figures 1 and 7-10.) 
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