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Abstract

As a fundamental and critical task in various visual applications, image matching can identify then correspond the same or

similar structure/content from two or more images. Over the past decades, growing amount and diversity of methods have been

proposed for image matching, particularly with the development of deep learning techniques over the recent years. However,

it may leave several open questions about which method would be a suitable choice for specific applications with respect to

different scenarios and task requirements and how to design better image matching methods with superior performance in

accuracy, robustness and efficiency. This encourages us to conduct a comprehensive and systematic review and analysis for

those classical and latest techniques. Following the feature-based image matching pipeline, we first introduce feature detection,

description, and matching techniques from handcrafted methods to trainable ones and provide an analysis of the development

of these methods in theory and practice. Secondly, we briefly introduce several typical image matching-based applications

for a comprehensive understanding of the significance of image matching. In addition, we also provide a comprehensive

and objective comparison of these classical and latest techniques through extensive experiments on representative datasets.

Finally, we conclude with the current status of image matching technologies and deliver insightful discussions and prospects

for future works. This survey can serve as a reference for (but not limited to) researchers and engineers in image matching

and related fields.
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1 Introduction

Vision-based artificial systems, as widely used to guide

machines to perceive and understand the surroundings for

better decision making, have been playing a significant role

in the age of global automation and artificial intelligence.

However, how to process the perceived information under

specific requirements and understand the differences and/or

relationships among multiple visual targets are crucial topics

in various fields, including computer vision, pattern recog-

nition, image analysis, security, and remote sensing. As a

critical and fundamental problem in these complicated tasks,

image matching, also known as image registration or cor-

respondence, aims to identify then correspond the same or

similar structure/content from two or more images. This tech-

nique is used for high-dimensional structure recovery as well

as information identification and integration, such as 3-D

reconstruction, visual simultaneous localization and map-

ping (VSLAM), image mosaic, image fusion, image retrieval,

target recognition and tracking, as well as change detection,

etc.
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Image matching has rich meaning in pairing two objects,

thus deriving many specific tasks, such as sparse feature

matching, dense matching (like image registration and stereo

matching), patch matching (retrieval), 2-D and 3-D point set

registration, and graph matching. Image matching in general

consists of two parts, namely, the nature of the matched fea-

tures and the matching strategy, which indicate what are used

to match and how to match them, respectively. The ultimate

goals are to geometrically warp the sensed image into the

common spatial coordinate system of the reference image and

align their common area pixel-to-pixel (i.e., image registra-

tion). To this end, a direct strategy, also known as area-based

method, registers two images by using the similarity mea-

surement of the original image pixel intensity or information

after pixel-domain transformation in the sliding windows of

predefined size or even the entire images, without attempting

to detect any salient image structure.

Another classic and widely adopted pipeline called feature-

based method, i.e., feature detection and description, feature

matching, transform model estimation, image resampling

and transformation, has been introduced in the prestigious

survey paper (Zitova and Flusser 2003) and applied in var-

ious fields. The feature-based image matching is popular

due to its flexibility and robustness and the capability of

wide range applications. In particular, feature detection can

extract the distinctive structure from an image, and fea-

ture description may be regarded as an image representation

method that is widely used in image coding and similarity

measurements such as image classification and retrieval. In

addition, due to the strong ability in deep feature acquisition

and non-linear expression, applying deep learning techniques

for image information representation and/or similarity mea-

surement, as well as parameter regression of image pair

transformation, are hot topics in nowadays image matching

community, which have been proven to achieve better match-

ing performance and present greater potential compared with

traditional methods.

In real-world settings, images for matching are usually

taken from the same or similar scene/object while captured

at different times, from different viewpoints or imaging

modalities. In particular, a robust and efficient matching strat-

egy is desirable to establish correct correspondences, thus

stimulating various methods for achieving better efficiency,

robustness and accuracy. Although numerous techniques

have been devised over the decades, developing a unified

framework remains a challenging task in terms of the fol-

lowing aspects:

– Area-based methods that directly match images often

depend on an appropriate patch similarity measurement

for creating pixel level matches between images. They

can be computational expensive and are sensitive to

image distortion, appearance changes by noise, vary-

ing illumination, and different imaging sensors, which

can have negative impact on similarity measurement and

match searching. As a result, usually these methods can

only work well under small rotation, scaling, and local

deformation.

– Feature-based matching methods are often more efficient

and can better handle geometrical deformation. But they

are based on salient feature detection and description, fea-

ture matching, and geometrical model estimation which

can also be challenging. On the one hand, in feature-

based image matching, it is difficult to define and extract

a high percentage and a large number of features belong-

ing to the same positions in 3-D space in the real world

to ensure the matchability. On the other hand, matching

N feature points to N feature points detected in another

image would create a total of N ! possible matchings, and

thousands of features are usually extracted from high-

resolution images and dominated outliers and noise are

typically included in the points sets, which lead to signifi-

cant difficulties for existing matching methods. Although

various local descriptors have been proposed and cou-

pled with detected features to ease the matching process,

the use of local appearance information will unavoid-

ably result in ambiguity and numerous false matches,

especially for images with low quality, repeated contents,

and those undergoing serious nonrigid deformations and

extreme viewpoint changes.

– A predefined transformation model is often required to

indicate the geometrical relation between two images

or point sets. But it may vary on different data and

is unknown beforehand thus hard to model. A sim-

ple parametric model is often insufficient for image

pairs that involve non-rigid transformations caused by

ground surface fluctuation and image viewpoint varia-

tions, multi-targets with different motion properties, and

also local distortions.

– The emergence of deep learning has provided a new way

and has shown great potential to address image match-

ing problems. However, it still faces several challenges.

The option of learning from images for direct registra-

tion or transformation model estimation is limited when

applied to wide baseline image stereo or registration

under complex and serious deformation. The application

of convolutional neural networks (CNNs) onto sparse

point data for matching, registration, and transforma-

tion model estimation is also difficult, because the points

to be matched–known as unstructured or non-Euclidean

data due to their disordered and dispersed nature–make

it difficult to operate and extract the spatial relation-

ships between two or more points (e.g., neighboring

elements, relative positions, and length and angle infor-

mation among multi-points) using a deep convolutional

technique.

123



International Journal of Computer Vision (2021) 129:23–79 25

Fig. 1 Structure of this survey

Existing surveys are focused on different parts of image

matching tasks and fail to cover the literature from the last

decade. For instance, the early reviews (Zitova and Flusser

2003; Tuytelaars and Mikolajczyk 2008; Strecha et al. 2008;

Aanæs et al. 2012; Heinly et al. 2012; Awrangjeb et al.

2012; Li et al. 2015) typically focus on handcrafted meth-

ods, which are not sufficient to provide a valuable reference

for investigating CNN-based methods. Most recent reviews

involve trainable techniques, but they merely cover a single

part of image matching community, either focus on detectors

(Huang et al. 2018; Lenc and Vedaldi 2014) or descriptors

(Balntas et al. 2017; Schonberger et al. 2017) or specific

matching tasks (Ferrante and Paragios 2017; Haskins et al.

2020; Yan et al. 2016b; Maiseli et al. 2017), and many others

pay more attention on related applications (Fan et al. 2019;

Guo et al. 2016; Zheng et al. 2018; Piasco et al. 2018). In this

survey, we aim to provide an up-to-date and comprehensive

summary and assessment of existing image matching meth-

ods, especially for the recently introduced learning-based

methods. More importantly, we have provided a detailed

evaluation and analysis for mainstream methods which are

missing in existing literature.

This survey mainly focuses on feature-based matching,

although patch matching, point set registration, and other

related matching tasks are also reviewed. The overall orga-

nization is presented in Fig. 1; Sects. 2 and 3 describe the

feature detection and description techniques respectively,

from handcrafted methods to trainable ones. Patch match-

ing is classified as a feature description domain, and 3-D

point set features are also reviewed. In Sect. 4, we present

different matching methods, including area-based image

matching, pure point set registration, image descriptor sim-

ilarity matching and mismatch removal, graph matching,

and learning-based methods. Sections 5 and 6 respectively

introduce the image matching-based visual applications and

evaluation metrics, including the performance comparison.

In Sect. 7, we conclude and discuss possible future develop-

ments.

2 Feature Detection

Early image features are annotated manually, which are

still used in some low-quality image matching. With the

development of computer vision and the requirement for

auto-matching approaches, many feature detection methods

have been introduced to extract stable and distinct features

from images.
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2.1 Overview of Feature Detectors

Detected features represent specific semantic structures in

an image or the real world and can be divided into corner

feature (Moravec 1977; Harris et al. 1988; Smith and Brady

1997; Rosten and Drummond 2006; Rublee et al. 2011), blob

feature (Lowe 2004; Bay et al. 2006; Agrawal et al. 2008; Yi

et al. 2016), line/edge (Harris et al. 1988; Smith and Brady

1997; Canny 1987; Perona and Malik 1990), and morpho-

logical region feature (Matas et al. 2004; Mikolajczyk et al.

2005). However, the most popular features that are used for

matching are the points (a.k.a. keypoints or interest points).

The points are easy to extract and define with a simplified

form compared with the line and region features, which can

be roughly classified into corner and blob.

A good interest point must be easy to find and ideally

fast to compute, as an interest point at a good location

is crucial for further feature description and matching. To

promote (i) matchability, (ii) the capability for subsequent

applications, and (iii) matching efficiency and reduction of

storage requirements, many required properties have been

proposed for reliable feature extraction (Zitova and Flusser

2003; Tuytelaars and Mikolajczyk 2008), including repeata-

bility, invariance, robustness and efficiency. The common

idea for feature detection is to construct a feature response to

distinguish salient point, line, and region from one another,

along with flat and nondistinctive image areas. This idea can

be subsequently classified into gradient-, intensity-, second-

order derivative-, contour curvature-, region segmentation-,

and learning-based detectors. In the following, we provide

a comprehensive introduction of feature detectors with these

methods, focusing more on learning-based methods to guide

researchers on how the traditional and trainable detectors

work and give insights on their strengths and weaknesses.

2.2 Corner Features

A corner feature can for example be defined as the crossing

point of two straight lines with the forms of “L”, “T”, “X”, or

a high curvature point of a contour. The common idea of cor-

ner detection is to compute a corner response and distinguish

it from edge, flat, or other less distinctive image areas. Differ-

ent strategies can be utilized for traditional corner searching,

namely, gradient-, intensity-, and contour curvature-based.

Refer to Zitova and Flusser (2003), Li et al. (2015), Tuyte-

laars and Mikolajczyk (2008) and Rosten et al. (2010) for

details.

2.2.1 Gradient-Based Detectors

A gradient-based corner response prefers the use of the first-

order information in image to distinguish the corner feature.

The earliest automatic corner detection method could be

traced to Moravec detector (Moravec 1977), which first intro-

duced the concept of “interest points” to define the distinct

feature points, which are extracted based on the autocor-

relation of the local intensity. This method calculates and

searches the minimum intensity variation of each pixel from

a shifted window in eight directions, and the interest point is

detected if the minimum is superior to the given threshold.

However, the Moravec detector is not invariant to the

direction or image rotation due to the discontinuous compar-

ing directions and sizes. The famous Harris corner detector

(Harris et al. 1988) was introduced to address the anisotropy

and computation complexity problem. The goal of the Har-

ris method is to find the directions of the fastest and lowest

grey-value changes using a two-order moment matrix or an

auto-correlation matrix; thus, it is invariant to orientation and

illumination and has reliable repeatability and distinctive-

ness. Harris was further improved in Shi and Tomasi (1993)

for better tracking performance by making the features more

“spread out” and locating more accurately.

2.2.2 Intensity-Based Detectors

Several template- or intensity comparison-based corner

detectors have been proposed by comparing the intensity

of the surrounding pixels with that of the center pixel to

simplify the image gradient computing. Due to their binary

nature, they are widely used in many modern applications,

particularly some with storage and real-time requirements.

The intensity-based corner detector, namely, smallest uni-

value segment assimilating nucleus (SUSAN) (Smith and

Brady 1997), is based on the brightness similarity between

the local radius region pixels and the nucleus. SUSAN can

be implemented rapidly because it does not require gradient

computation. Many analogous methods have been proposed

based on the concept of brightness comparison, the most

famous of which is the FAST detector (Trajković and Hedley

1998). FAST uses binary comparison with each pixel along

a circle pattern against the central pixel and then determines

more reliable corner features using a machine learning (i.e.,

ID3 tree Quinlan 1986) strategy, which is trained on a large

number of similar scene images and can generate the best

criteria for corner selection.

As an improvement of SUSAN, FAST is extremely effi-

cient with high repeatability and is used more widely. To

improve FAST without loss of efficiency, FAST-ER (Ros-

ten et al. 2010) was introduced to enhance the repeatability

by generalizing the detector based on further pixel intensity

comparison centered on the nucleus. Another improvement

is the AGAST (Mair et al. 2010), in which two more pixel

brightness comparison criteria are defined, after which an

optimal and specialized decision tree is trained in an extended

configuration space, thus rendering the FAST detector more

generic and adaptive. To combine the efficiency of FAST
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and the reliability of the Harris detector, Rublee et al. (2011)

proposed an integrated feature detector and descriptor for

matching called ORB. The ORB uses the Harris response to

select a certain number of FAST corners as the final detected

features. The gray-scale centroid of the local patch and the

center pixel itself are formed as a vector to represent the

main direction of the ORB feature, which helps calculate

the similarity of the binary descriptor in ORB. Recently, a

Sadder-like detector (Aldana-Iuit et al. 2016) has been pro-

posed to extract interest points. In this detector, the saddle

condition is verified efficiently by intensity comparisons on

two concentric rings with certain geometric constraints. The

Sadder detector can achieve higher repeatability and greater

spread out than traditional methods even modern trainable

ones (Komorowski et al. 2018).

2.2.3 Curvature-Based Detectors

Another strategy for corner feature extraction is based on

detected high-level image structures, such as edges, con-

tours, and salient regions. Corner features can be defined

immediately as the midpoint/endpoint or sparse sampling

from an edge or contour (Belongie et al. 2002). These are

subsequently used for shape matching or point registration,

especially for an image pair of less texture or binary type.

The curvature-based strategy aims to extract the corner point

with the maximum curvature searching based on the detected

image curve-like edges. This strategy starts with an edge

extraction and selection method, and the two subsequent

steps are the curve smoothing and curvature estimation. The

corners are finally determined by selecting the curvature

extremum points. In general, an edge detector is often first

in need for contour curvature-based corner detection.

In curve smoothing, the slope and curvature are difficult to

evaluate due to the quantized position of a curve point. Noise

and local deformation in a curve may also lead to a serious

impact on the feature stability and distinctiveness. There-

fore, smoothing methods should be implemented before

or during the curvature calculation to make the curvature

extremum points more distinct from other curve points. Two

smoothing strategies, namely, direct and indirect methods,

are generally utilized. A direct smoothing, such as Gaus-

sian smoothing (Mokhtarian and Suomela 1998; Pinheiro

and Ghanbari 2010), removes noise and may change curve

locations to a certain extent. In comparison, in the indirect

smoothing strategy, e.g., the region of support method or the

chord-length-based method (Ramer 1972; Awrangjeb and Lu

2008), may preserve the curve point locations.

As for curvature estimation, for each point of the smoothed

curve, a significance response measure is needed for corner

searching, i.e., curvature. Curvature estimation methods are

also generally classified as direct and indirect. The former

is based on an algebraic or geometric estimation, such as

cosine, local curvature, and tangential deflection (Mokhtar-

ian and Suomela 1998; Rosenfeld and Weszka 1975; Pinheiro

and Ghanbari 2010). The latter estimates the curvature in an

indirect way and is often used as a significance measure, such

as counting the number of curve points through several mov-

ing rectangles along the curve (Masood and Sarfraz 2007),

using the perpendicular distances from the chord connecting

the two endpoints of the curve to curve points (Ramer 1972),

and other alternatives (Zhang et al. 2010, 2015). Compared

with indirect estimation methods, the direct ones are more

sensitive to noise and local variation due to the less neigh-

boring point consideration.

Finally, corners can be determined with threshold strat-

egy to remove false and indistinctive points (Mokhtarian and

Suomela 1998; Awrangjeb and Lu 2008). Additional details

can be obtained from a contour curvature-based corner survey

(Awrangjeb et al. 2012). In addition and more recently, a mul-

tiscale segmentation-based corner detector, named MSFD

(Mustafa et al. 2018), has been proposed for wide-baseline

scene matching and reconstruction. Feature points in MSFD

are detected at the intersection of the boundaries of three

or more regions by using off-the-shelf segmentation meth-

ods. MSFD can generate rich and accurate corner features

for wide-baseline image matching and high reconstruction

performance.

The above-mentioned corner feature detectors are easily

located in the contour or edge structures of an image (i.e., not

such spread-out or uneven distribution), and are limited by the

scale and affine transformation between two images. Among

the three types of corner detection strategies, the gradient-

based methods are able to locate more accurately, whereas

the intensity-based methods show advantage for efficiency.

The contour curvature-based methods require more compu-

tation but they are a better choice for processing textureless or

binary images, such as infrared and medical images, because

the image cue-based feature descriptors are unworkable for

these types of images and the point-based descriptors are

often coupled for the matching task (i.e., point set registra-

tion or shape matching). Please refer to Sects. 3 and 4 for

details.

2.3 Blob Features

A blob feature is commonly indicated as a local closed region

(e.g., with a regular shape of circle or ellipse), inside which

the pixels are considered similar to one another and are dis-

tinct from the surrounding neighborhoods. The blob feature

can be written in the form of (x, y, θ), with (x, y) being

the pixel coordinate of the feature location and θ indicat-

ing the blob shape information of the feature, including

scale and/or affine. Numerous blob feature detectors have

been introduced over the past decades, and they can be

roughly classified into second-order partial derivative- and
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region segmentation-based detectors. Second-order partial

derivative-based methods are based on the Laplacian scale

selection and/or Hessian matrix calculation for affine invari-

ant. While segmentation-based methods prefer to detect blob

features by segmenting the morphological regions first, then

estimate the affine information with ellipse fitting. Compared

with corner features, blob features are more useful for visual

applications with high precision requirement, because more

image cues are utilized for feature identification and repre-

sentation, thus enabling the blob features to be more accurate

and robust to image transformation.

2.3.1 Second-Order Partial Derivative-Based Detectors

In methods based on second-order partial derivatives, the

Laplacian of Gaussian (LoG) (Lindeberg 1998) is applied

based on scale space theory. Here, the Laplace operator is first

used for edge detection in accordance with the zero crossings

in the second-order differential of an image, and the Gaussian

convolution filtering is then applied as a preprocessing to

reduce noise.

LoG can detect the local extremum point and the area

with normalized response arising from the circular symme-

try of the Gaussian kernel. Different standard deviations of

the Gaussian function can detect the scale-invariant blobs

in different scales by searching the extremum in the multi-

scale space as the final stable blob feature. The difference of

Gaussians (DoG) (Lowe et al. 1999; Lowe 2004) filter can

be used to approximate the LoG filter, and greatly speeds

up the computations. Another classical blob feature detec-

tion strategy is based on the determinant of Hessian (DoH)

(Mikolajczyk and Schmid 2001, 2004). This is more affine

invariant because the eigenvalue and eigenvector of the sec-

ond matrix can be applied to estimate and correct the affine

region.

Interest point detection by using DoG, DoH, and both

has been widely utilized in recent visual applications. The

famous SIFT (Lowe et al. 1999; Lowe 2004) extracts key-

point as the local extrema in a DoG pyramid, filtered using

the Hessian matrix of the local intensity values (the according

description part will be reviewed in the next section). Miko-

lajczyk et al. combined the Harris and Hessian detectors with

the Laplacian and Hessian matrices for scale and affine fea-

ture detection (Mikolajczyk and Schmid 2001, 2004), i.e.,

the Harris/Hessian-Laplacian/affine. SURF (Bay et al. 2006)

accelerates the SIFT by approximating the Hessian matrix-

based detector using Haar wavelet calculation, together with

an integral image strategy, thus simplifying the construction

of a second-order differential template.

Several SIFT- and SURF-based improvements, have been

successively proposed for better property in subsequent

applications. Such improvements include a fully affine invari-

ant SIFT detector (ASIFT) (Morel and Yu 2009), a center-

surround extremum (Agrawal et al. 2008) strategy feature

detector with the Laplace calculation approximated by the

proposed bilateral filtering to enhance the efficiency, and

the efficient approximation of DoH with piecewise triangle

filters in DARTs (Marimon et al. 2010). In addition, a cosine-

modulated Gaussian filter is utilized in the SIFT-ER detector

(Mainali et al. 2013) to obtain high feature detectability with

minimum scale-space localization errors, in which the fil-

terbank system has a highly accurate filter approximation

without any image sub/upsampling. An edge foci-based blob

detector (Zitnick and Ramnath 2011) has also been intro-

duced for the matching task. In this detector, the edge foci is

defined as the point in an image that is roughly equidistant

from the closest edge with orientations perpendicular to this

point.

Unlike the circle-like Gaussian response function, a non-

linear partial differential equation is applied in KAZA

detector for blob feature searching with nonlinear diffu-

sion filtering (Alcantarilla et al. 2012). An accelerated

version called AKAZA (Alcantarilla and Solutions 2011) is

implemented by embedding the fast explicit diffusion in a

pyramidal framework to dramatically speedup feature detec-

tion in nonlinear scale spaces. However, it still suffers from

high computation complexity. Another method is WADE

(Salti et al. 2013), which implements nonlinear feature detec-

tion by a wave propagation function.

2.3.2 Segmentation-Based Detectors

The segmentation-based blob detectors begin with an irreg-

ular region segmentation based on constant pixel intensity or

zero gradient. One of the most famous region segmentation-

based blob feature is maximally stable extremal region

(MSER) (Matas et al. 2004). It extracts regions that remain

stable under a large range of intensity thresholding values.

This approach does not need extra processing for scale esti-

mation, and is robust to large viewpoint changes. The term

“maximally stable” describes the threshold selection process,

given that every extremal region is a connected component of

a watershed image by thresholding. An extension to MSER

was introduced in Kimmel et al. (2011) to exploit shape struc-

ture cues. Other improvements are based on the watershed

regions of principal curvature images (Deng et al. 2007; Fer-

raz and Binefa 2012) or considered color information for a

higher discrimination (Forssén 2007).

Similar to MSER, other segmentation-based features,

such as intensity- and edge-based regions (Tuytelaars and

Van Gool 2004), are also used for affine covariant region

detection. However, feature detection of this type is of less

use for feature matching, and it is gradually developed toward

saliency detection and segmentation in computer vision. Spe-

cific method investigation and comprehensive reviews can be

found in Mikolajczyk et al. (2005) and Li et al. (2015).
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2.4 Learnable Features

Over the recent years, data-driven learning-based methods

have achieved significant progress in general visual pattern

recognition tasks, and have also been applied to image feature

detection. This pipeline can be roughly classified into the

using of classical learning and deep learning.

2.4.1 Classical Learning-Based Detectors

Early from the past decade, classical learning-based meth-

ods, such as decision tree, support vector machine (SVM),

and other classifiers by opposition to Deep Learning, have

already been used in handcrafted keypoint detection (Tra-

jković and Hedley 1998; Strecha et al. 2009; Hartmann et al.

2014; Richardson and Olson 2013). FAST (Trajković and

Hedley 1998) detector was the first attempt to use tradi-

tional learning for reliable and matchable point identification,

and similar strategies have been applied in many subsequent

improvements (Mair et al. 2010; Rublee et al. 2011). Strecha

et al. (2009) trained the Wald-Boost classifier to learn key-

points with high repeatability on pre-aligned training sets.

More recently, Hartmann et al. (2014) showed that it can

be learnt from a structure-from-motion (SfM) pipeline to

predict which candidate points are matchable, thus signifi-

cantly reducing the number of interest points without losing

excessive true matches. Meanwhile, Richardson and Olson

(2013) reported that hand-designed detectors can be learned

by random sampling in the space of convolutional filters and

tried to find the optimal filter using a learning strategy over

frequency-domain constraints. However, classical learning

has only been used for reliable feature selection through clas-

sifier learning, rather than the extraction of interest features

directly from raw images until the emergence of deep learn-

ing.

2.4.2 Deep Learning-Based Detectors

Inspired by the handcrafted feature detectors, a general solu-

tion for CNN-based detection is to construct response maps

to search the interest points in a supervised (Yi et al. 2016;

Verdie et al. 2015; Zhang et al. 2017b), self-supervised

(Zhang and Rusinkiewicz 2018; DeTone et al. 2018), or

unsupervised manner (Lenc and Vedaldi 2016; Savinov et al.

2017; Ono et al. 2018; Georgakis et al. 2018; Barroso-Laguna

et al. 2019). The task is often converted into a regression

problem that can be trained in a differentiable way under

the transformation and imaging condition invariance con-

straints. Supervised methods have shown the benefits of using

anchors (e.g., obtained from SIFT method) to guide their

training, but the performance could be largely restricted by

the method of anchor construction, because the anchor itself

is intrinsically difficult to reasonably define and may pre-

vent the network from proposing new keypoints in case no

anchor exists in the proximity (Barroso-Laguna et al. 2019).

Self-supervised and unsupervised methods train detectors

without any human annotations, and only the geometric con-

straints between two images are required for optimization

guidance; a simple human aid is sometimes asked for pre-

training (DeTone et al. 2018). In addition, many methods

integrate feature detection into the entire matching pipeline

by jointly training with feature description and matching (Yi

et al. 2016; DeTone et al. 2018; Ono et al. 2018; Shen et al.

2019; Dusmanu et al. 2019; Choy et al. 2016; Rocco et al.

2018; Dusmanu et al. 2019; Revaud et al. 2019), which can

enhance the final matching performance and optimize the

entire procedure in an end-to-end manner.

For instance, TILDE (Verdie et al. 2015) trains multiple

piecewise linear regression models to detect repeatable key-

points under drastic imaging changes of weather and lighting

conditions. First, it identifies good keypoint candidates in

multiple training images taken from the same viewpoints

using DoG for training set collection, and then trains a gen-

eral regressor to predict a score map, whose maxima after

non-maximum suppression (NMS) can then be regarded as

the desired interest points.

DetNet (Lenc and Vedaldi 2016) is the first fully general

formulation for learning local covariant features; it casts the

detection task as a regression problem and then derives a

covariance constraint to automatically learn stable anchors

for local feature detection under geometric transformations.

Meanwhile, Quad-net (Savinov et al. 2017) realizes keypoint

detection under transformation-invariant quantile ranking

with a single real-valued response function, enabling it to

learn the detector completely from scratch by optimizing

for a repeatable ranking. A similar detector in Zhang and

Rusinkiewicz (2018) combines this “ranking” loss with a

“peakedness” loss and produces a more repeatable detector.

Zhang et al. (2017b) proposed TCDET detector by defin-

ing a novel formulation based on the new concepts of

“standard patch” and “canonical feature” to place equal focus

on discriminativeness and covariant constraint. The proposed

detector can detect discriminative and repeatable features

under diverse image transformations. Key.Net (Barroso-

Laguna et al. 2019) combines handcrafted and learned CNN

filters within a shallow multiscale architecture and proposes a

light/efficient trainable detector. The handcrafted filters pro-

vide anchor structures for localizing, scoring, and ranking

repeatable features that are fed to learned filters. CNN is used

to represent the scale space by detecting keypoints at differ-

ent levels; the loss function is defined to detect robust feature

points from different scales and maximize the repeatability

score. The affine region-based interest point is also learned

using CNNs in Mishkin et al. (2017, 2018).

The methods of integrating a detector into a matching

pipeline are similar to those solely designed for detection
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reviewed above. The main difference may lie in the way of

training, and the core challenge is to make the entire pro-

cess differentiable. For example, Yi et al. (2016) attempted

to train a detector, an orientation estimator, and a descriptor

jointly based on inputting four patches. Their proposed LIFT

can be regarded as a trainable version of SIFT and requires

supervision from the SfM system for determining the fea-

ture anchor. The training procedure is conducted individually

from descriptor to detector and can use the learned results

to guide the detector training, thus promoting detectability.

Unlike LIFT, SuperPoint (DeTone et al. 2018) introduces

a fully convolutional model by inputting full-sized images

and jointly computing pixel-level interest point locations and

associated descriptors in one forward pass; a synthetic dataset

is constructed for pseudo-ground truth generation and pre-

training, and the homography adaption module enables it to

achieve self-supervised training while promoting detection

repeatability.

LF-Net (Ono et al. 2018) confines the end-to-end pipeline

to one branch to optimize the entire procedure in a dif-

ferentiable way; it also uses a fully convolutional network

operating on full-sized images to generate a rich feature

score map, which can then be used to extract keypoint

locations and the feature attributes, such as scale and ori-

entation; simultaneously, it performs a differentiable form

of NMS, namely, so f targmax , for subpixel location and

increasing the accuracy and saliency of keypoint. Similar

to LF-Net, RF-Net (Shen et al. 2019) selects high-response

pixels as keypoints on multiscales, but the response maps

are constructed by receptive feature maps. Bhowmik et al.

(2020) indicated that increased accuracy for these low-level

matching scores does not necessarily translate to better per-

formance in high-level vision tasks, thus they embedded

the feature detector in a complete vision pipeline, where

the learnable parameters are trained in an end-to-end man-

ner. The authors overcome the discrete nature of keypoint

selection and descriptor matching using principles from rein-

forcement learning. Luo et al. (2020) proposed ASFeat to

explore local shape information of feature points and enhance

the accuracy of points detection, by jointly learning local

feature detectors and descriptors. Another detection-related

learning-based method is to estimate the orientation (Moo Yi

et al. 2016), while the spatial transformation network (STN)

(Jaderberg et al. 2015) could also be a great reference in

deep learning-based detectors for rotation invariance (Yi et al.

2016; Ono et al. 2018).

Unlike local feature descriptors, there is little review on

salient feature detectors, particularly for the recent CNN-

based techniques. To our best knowledge, the most recent

survey (Lenc and Vedaldi 2014) focuses on local feature

detection. It introduces the basic idea of several well-

known methods from handcrafted detectors to accelerated

and learned ones.

2.5 3-D Feature Detectors

Dedicated on 3-D keypoint detectors, Tombari et al. (2013)

provided an excellent survey on the state-of-the-art meth-

ods and a detailed evaluation of their performances. In

brief, the existing methods were divided into two categories,

fixed-scale detectors and adaptive-scale detectors. In both

categories, keypoints are selected as local extrema of a pre-

defined saliency measurement. The difference lies in the

involvement of the scale characteristic, which defines the

support for the subsequent description stage. The fixed-

scale detectors tend to search keypoints at a specific scale

level, which is given as prior information. The adaptive-scale

detectors either extend the scale concept for 2-D images by

adopting a scale space defined on the surface or implement

the traditional scale-space analysis by embedding 3-D data

onto a 2-D plane.

2.5.1 Fixed-Scale Detectors

Chen and Bhanu (2007) introduced the local surface patch

(LSP) method. The saliency of a point in LSP is measured

by its shape index (Dorai and Jain 1997), as defined by the

principal curvatures at the point. Zhong (2009) introduced

the intrinsic shape signature (ISS) method, in which saliency

is derived from the eigenvalue decomposition of the scat-

ter matrix of the support region. In this approach, the ratio

of eigenvalues is used to prune some points, and the final

saliency is determined by the eigenvector. In this way, points

with large variations along each principal direction are iden-

tified. Analogous to ISS, Mian et al. (2010) also utilized the

scatter matrix to prune nondistinctive points but with a differ-

ent curvature-based saliency measurement. Sun et al. (2009)

presented the heat kernel signature (HKS) method, based

on the properties of the heat diffusion process on a shape.

In this method, the saliency measurement is defined by the

restriction of the heat kernel to the temporal domain. The

heat kernel is uniquely determined by the underlying man-

ifold, which makes HKS a compact characterization of the

shape.

2.5.2 Adaptive-Scale Detectors

It is desirable to adaptively fit with the scale in detection.

For this purpose, Unnikrishnan and Hebert (2008) proposed

a Laplace-Beltrami scale space by computing the designed

function on the increasing support around each point. This

function is defined by a novel operator that reflects the local

mean curvature of the underlying shape and provides the

saliency information. Zaharescu et al. (2009) presented the

MeshDoG method, which is analogous to the DoG operator

in the 2-D case (Lowe 2004); nonetheless, the operator is

computed on a scalar function defined on the manifold. The
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output of the DoG operator represents the saliency for key-

points detection. Castellani et al. (2008) also built scale space

using the DoG operator but directly on the 3-D mesh. Mian

et al. (2010) proposed an automatic scale selection technique

for extracting scale invariant features. The scale space is built

by increasing the support size, and automatic scale selection

at each keypoint is performed by using NMS along scale. The

disadvantage of sensitivity to scale of HKS was addressed by

Bronstein and Kokkinos (2010), who used Fourier transform

magnitude to extract a scale-invariant quantity from the HKS

without the need to perform scale selection. Sipiran and Bus-

tos (2011) extended the well-known Harris operator (1988)

into 3-D data with an adaptive-scale determination technique.

Readers are referred to Tombari et al. (2013) for further dis-

cussion on other adaptive-scale detectors. Salti et al. (2015)

devised a learning-based 3-D keypoint detector, whereby the

keypoint detection problem was cast as a binary classifica-

tion problem, to determine whose support can be correctly

matched by a predefined 3-D descriptor.

2.6 Summary

The basic idea of feature detectors is to distinguish the interest

feature from others through the response value, thus leading

to the solutions of two problems: (i) how to define discrimi-

nant patterns in an image, and (ii) how to repeatedly detect the

salient feature under different image conditions and image

qualities (Zhang et al. 2017b). Along with the development of

these detectors, the main improvements and common strate-

gies are related to four aspects, i.e., feature response type and

improvements on efficiency, robustness, and accuracy, which

lead to an increase in the matchability of detected features

and the improved performance of their subsequent applica-

tions.

For traditional methods, using more image cues can result

in better robustness and repeatability, but usually requires

more computational cost. In addition to using low-order fea-

ture detectors, several strategies, such as approximate and

pre-compute, are designed to largely speed up the computa-

tion and maintain the matchability. To ensure the robustness,

scale and affine information estimation is usually required

when searching stable features. While for accuracy enhance-

ment, a local extremal searching for subpixel accuracy and

NMS strategy in pixel and scale space to avoid features

locally gathered, are two popular choices in traditional

pipelines.

As for learning-based detectors, repeatable and salient

keypoints can be extracted based on high-level cues cap-

tured by CNNs, except for intensity, gradient, or second-order

derivative. While the efficiency would largely depend on

the network structure, and early deep learning methods are

often time-consuming. Methods proposed recently, such as

SuperPoint and Key.Net, have already achieved good imple-

mentation in real time while maintaining state-of-the-art

performance. Multiscale sampling or changed receptive field

would make these deep learning-based detectors invariant

to scale, where the scale or rotation information is directly

estimated in networks. They can achieve promising results,

because the deep learning techniques can easily distinguish

the same structures, despite the fact that images suffer from

apparent variance and geometrical transformation. The accu-

racy can be optimized directly in the loss function of the

learning-based methods, and the differentiable form of NMS

is often used for subpixel accuracy location and repeatability

enhancement.

3 Feature Description

Once discriminative interest points are detected from raw

images, a local patch descriptor is required to be coupled

for each feature in order to establish feature correspondence

correctly and efficiently across two or more images. In other

words, the feature descriptors are commonly used to trans-

form the original local information around the interest point

into a stable and discriminative form, usually as a high-

dimensional vector, so that two corresponding features are

as close as possible in the descriptor space, and two non-

corresponding features are as far as possible.

3.1 Overview of Feature Descriptors

The processing procedure of feature description can be

divided into three steps: local low-level feature extrac-

tion, spatial pooling, and feature normalization (Lowe 2004;

Rublee et al. 2011; Brown et al. 2010). First, the low-level

information of a local image region has to be extracted. This

information consists of pixel intensity and gradient or is

obtained from a series of steerable filters. Subsequently, the

local patch is divided into several parts and the local informa-

tion is pooled in each part, then concatenate them by using

pooling methods, such as rectangular gridding (Lowe 2004),

polar gridding (Mikolajczyk and Schmid 2005), Gaussian

sampling (Tola et al. 2010), and others (Rublee et al. 2011);

the joint feature representation is transformed into a more dis-

criminative one that may preserve significant information in

a simplified form for better matching performance. Finally,

a descriptor is obtained from the normalized results of the

pooled local information, which aims to map the aggregated

results into a long vector of either floating-point or binary

values for easily evaluating the similarity between image fea-

tures.

Similar to feature detectors, existing descriptors are pro-

posed and improved to become highly robust, efficient, and

discriminant for addressing image matching problems. Esti-

mating a good size and orientation for a cropped image

123



32 International Journal of Computer Vision (2021) 129:23–79

patch is core problems in the task of feature description

and matching. By correctly identifying the size and orien-

tation, the matching methods can be robust and invariant to

global and/or local deformations, such as rotation and scal-

ing. The original intention of feature description is focused

on discrimination enhancement compared with direct simi-

larity measurement using raw image information. Numerous

well-designed descriptors can improve the discrimination

and matching performance, by using pooling parameter

optimization, sampling rule design, or the use of machine

learning and deep learning techniques.

Feature description has drawn increasing attention. Descrip-

tors can be regarded as distinguishable and robust representa-

tions for given images and are widely used not only in image

matching but also in image coding for image retrieval, face

recognition, and other tasks that are based on image similar-

ity measurements. However, direct similarity measurements

for two image patches using raw image information will be

regarded as an area-based image matching method, which

will be reviewed in the next section. As for image patch-based

feature descriptors, we will review the traditional ones, i.e.,

floating and binary descriptors, in terms of their data types.

A new subsection will be added for the recent data-driven

methods, including classical machine learning- and emerg-

ing deep learning-based methods. We will comprehensively

review handcrafted and learning-based feature description

methods and show the connections among these methods

to provide useful instructions for the readers toward their

further research, especially for developing better description

approaches using deep learning/CNN techniques. In addi-

tion, we will also review the 3-D feature descriptors, where

features are typically obtained from point data without any

image pixel information but with spatial position relation-

ships (e.g., 3-D point cloud registration).

3.2 Handcrafted Feature Descriptors

Handcrafted feature descriptors often depend on expert pri-

ori knowledge, which are still widely used in many visual

applications. Following the construction procedure of a tra-

ditional local descriptor, the first step is to extract low-level

information, which can be briefly classified into image gradi-

ent and intensity. Subsequently, the commonly used pooling

and normalizing strategies, such as statistic and comparison,

are applied to generate long and simple vectors for discrim-

inative description with respect to the data type (float or

binary). Therefore, handcrafted descriptors mostly rely on

the knowledge of their authors, and description strategies

can be classified into gradient statistic-, local binary pat-

tern statistic-, local intensity comparison- and local intensity

order statistic-based methods.

3.2.1 Gradient Statistic-Based Descriptors

Gradient statistic methods are often used to form float

type descriptors such as the histogram of oriented gradients

(HOG) (Dalal and Triggs 2005) as introduced in SIFT (Lowe

et al. 1999; Lowe 2004) and its improvement versions (Bay

et al. 2006; Morel and Yu 2009; Dong and Soatto 2015; Tola

et al. 2010), and they are still widely used in several modern

visual tasks. In SIFT, feature scale and orientation are respec-

tively determined by DoG computation and the largest bin

in a histogram of gradient orientation from a local circular

region around the detected keypoint, thus achieving scale

and rotation invariance. In the description stage, the local

region of detected feature is first rectangularly divided into

4 × 4 non-overlapping grids based on the normalized scale

and rotation, then a histogram of gradient orientation with

8 bins is conducted in each cell and embedded into a 128-

dimensional float vector as the SIFT descriptor.

Another representative descriptor, namely, SURF (Bay

et al. 2006), can accelerate the SIFT operator by using the

responses of Haar wavelets to approximate gradient com-

putation; integral images are also applied to avoid repeated

computation in Haar wavelet responses, enabling more effi-

cient computation than SIFT. Other improvements based

on these two typically focus on discrimination, efficiency,

robustness, and coping with specific image data or tasks.

For instance, CSIFT (Abdel-Hakim and Farag 2006) uses

additional color information to enhance the discrimination,

and ASIFT (Morel and Yu 2009) simulates all image views

obtainable by varying the two camera axis orientation param-

eters for fully affine invariance. Mikolajczyk and Schmid

(2005) use a polar division and histogram statistics of gradi-

ent orientations. SIFT-rank (Toews and Wells 2009) has been

proposed to investigate ordinal image description based on

off-the-shelf SIFT for invariant feature correspondence. A

Weber’s law-based method (WLD) (Chen et al. 2009) has

been studied to compute a histogram by encoding differen-

tial excitations and orientations at certain locations.

Arandjelović and Zisserman (2012) used a square root

(Hellinger) kernel instead of the standard Euclidean dis-

tance measurement to transform the original SIFT space

to the RootSIFT space and yielded superior performance

without increasing processing or storage requirements. Dong

and Soatto (2015) modified SIFT by pooling the gradi-

ent orientation across different domain sizes and proposed

DSP-SIFT descriptor. Another efficient dense descriptor

for wide-baseline stereo based on SIFT, namely, DAISY

(Tola et al. 2010), uses a log-polar grid arrangement and

Gaussian pooling strategy to approximate the histograms of

gradient orientations. Inspired by DAISY, DARTs (Marimon

et al. 2010) can efficiently compute scale space and reuse

it for descriptors, thus resulting in high efficiency. Several

handcrafted float-type descriptors have also been proposed
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recently and shown promising performance; for example, the

pattern of local gravitational force local descriptor (Bhat-

tacharjee and Roy 2019) is inspired from the law of universal

gravitation and can be regarded as a combination of force

magnitude and angle.

3.2.2 Local Binary Pattern Statistic-Based Descriptors

Different from SIFT-like approaches, several intensity statistic-

based methods, which are inspired by the local binary pattern

(LBP) (Ojala et al. 2002), have been proposed in the past

decades. LBP has properties that favor its usage in inter-

est region description, such as tolerance against illumination

change and computational simplicity. The drawbacks are

that the operator produces a rather long histogram and is

insignificantly robust in flat image areas. Center-symmetric

LBP (CS-LBP) (Heikkilä et al. 2009) (using SVM for clas-

sifier training) is a modified version of LBP combining the

strengths of SIFT and LBP to address the flat area problem.

Specifically, CS-LBP uses a SIFT-like grid and replaces the

gradient information with an LBP-based feature. To address

the noise, center-symmetric local ternary pattern (CS-LTP)

(Gupta et al. 2010) suggests the use of a histogram of rel-

ative orders in patch and a histogram of LBP codes, such

as histogram of relative intensities. The two CS-based meth-

ods are designed to be more robust to Gaussian noise than

previously considered descriptors. RLBP (Chen et al. 2013)

improves the robustness of LBP by changing the coding bit;

a completed modeling of the LBP operator and an associ-

ated completed LBP scheme (Guo et al. 2010) have been

developed for texture classification. LBP-like methods are

widely used in texture representation and face recognition

community, and additional details can be found in the review

literature (Huang et al. 2011).

3.2.3 Local Intensity Comparison-Based Descriptors

Another form of descriptors is based on the comparison

of local intensities, which is also called binary descriptors

and the core challenge is the selection rule for comparison.

Because of their limited distinctiveness, these methods are

mostly limited to short-baseline matching. Calonder et al.

(2010) proposed the BRIEF descriptor built by concatena-

tion of the results of a binary test of intensities for several

random point pairs in image patch. Rublee et al. (2011) pro-

posed rotated BRIEF combined with oriented FAST corners

and selected robust binary tests using an machine learning

strategy in their ORB algorithm to alleviate the limitations in

rotation and scale change. Leutenegger et al. (2011) devel-

oped the BRISK method using a concentric circle sampling

strategy with increasing radius. Inspired by the retina struc-

ture, Alahi et al. (2012) proposed the FREAK descriptor by

comparing image intensities over a retinal sampling pattern

for fast computing and matching with low memory cost while

remaining robust to scale, rotation, and noise. Handcrafted

binary descriptors and classical machine learning techniques

are also widely studied and these shall be introduced in the

learning-based subsection.

3.2.4 Local Intensity Order Statistic-Based Descriptors

Thus far, many methods have been devised using orders

of pixel values rather than raw intensities, achieving more

promising performance (Tang et al. 2009; Toews and Wells

2009). Pooling by intensity orders is invariant to rotation

and monotonic intensity changes and also encodes ordi-

nal information into descriptor; the intensity order-pooling

scheme may enable the descriptors to be rotation-invariant

without estimation of a reference orientation as SIFT, which

appears as a major error source for most existing methods.

To solve this problem, Tang et al. proposed the ordinal spa-

tial intensity distribution (Tang et al. 2009) method, which

normalizes captured texture information and structure infor-

mation using an ordinal and spatial intensity histogram; the

proposed method is invariant to any monotonically increas-

ing brightness changes.

Fan et al. (2011) pooled local features based on their gra-

dient and intensity orders in multiple support regions and

proposed the multi-support region order-based gradient his-

togram and the multi-support region rotation and intensity

monotonic invariant descriptor methods. A similar strategy

was used in LIOP (Wang et al. 2011, 2015), to encode the

local ordinal information of each pixel. In that work, the over-

all ordinal information was used to divide the local patch into

subregions, which were used to accumulate LIOP. LIOP was

further improved into OIOP/MIOP (Wang et al. 2015), which

can then encode overall ordinal information for noise and

distortion robustness. They also proposed a learning-based

quantization to improve its distinctiveness.

3.3 Learning-Based Feature Descriptors

Handcrafted descriptors, as reviewed above, require exper-

tise to design and may disregard useful patterns hidden in

the data. This requirement has prompted the investigations

on learning-based descriptors, which have recently become

dominantly popular due to their data-driven property and

promising performance. In the following, we will discuss

a group of classical learning-based descriptors introduced

before the deep learning era.

3.3.1 Classical Learning-Based Descriptors

The learning-based descriptors can be traced back to PCA-

SIFT (Ke et al. 2004), in which principal component analysis

(PCA) is used to form a robust and compact descriptor by
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reducing the dimensionality of a vector made of the local

image gradients. Cai et al. (2010) investigated the use of

linear discriminant projections to reduce dimensionality and

improve the discriminability of local descriptors. Brown et al.

(2010) introduced a learning framework with a set of building

blocks for constructing descriptors by using Powell mini-

mization and linear discriminant analysis (LDA) technique

to find the optimal parameters. Simonyan et al. (2014) pre-

sented a novel formulation to represent the spatial pooling

and dimensionality reduction in descriptor learning as con-

vex optimization problems based on Brown’s work (Brown

et al. 2010). Meanwhile, Trzcinski et al. (2012, 2014) applied

the boosting trick to learn boosted, complex non-linear local

visual feature representations from multiple gradient-based

weak learners.

Apart from the above-mentioned float-valued descrip-

tors, binary descriptors are also of great interest in classical

descriptor learning due to their beneficial properties, such as

low storage requirements and high matching speed. A nat-

ural way to obtain binary descriptors is to learn it from the

provided float-valued descriptors. This task is convention-

ally achieved by the hashing methods, thus suggesting that

compact representations of high-dimensional data should

be learned while maintaining their similarity in the new

space. Locality sensitive hashing (LSH) (Gionis et al. 1999)

is arguably a popular unsupervised hashing method. This

method generates embeddings via random projections and

has been used for many large-scale search tasks. Some vari-

ants of LSH include kernelized LSH (Kulis and Grauman

2009), spectral hashing (Weiss et al. 2009), semantic hashing

(Salakhutdinov and Hinton 2009) and p-stable distribution-

based LSH (Datar et al. 2004). These variants are unsuper-

vised by design.

Supervised hashing methods have also been extensively

investigated, where different machine learning strategies

have been proposed to learn feature spaces tailored to specific

tasks. In this case, a plethora of methods have been proposed

(Kulis and Darrell 2009; Wang et al. 2010; Strecha et al.

2012; Liu et al. 2012a; Norouzi and Blei 2011; Gong et al.

2013; Shakhnarovich 2005), among which image matching

is considered an important experimental validation task. For

example, the LDA technique is utilized in Strecha et al.

(2012) to aid hashing. Semi-supervised sequential learning

algorithms are proposed in Liu et al. (2012a) and Wang et al.

(2010) to find discriminative projections. Minimal loss hash-

ing (Norouzi and Blei 2011) provided a new formulation to

learn binary hash functions on the basis of structural SVMs

with latent variables. Gong et al. (2012) proposed searching

a rotation of zero-centered data to minimize the quantization

error of mapping the descriptor to the vertices of a zero-

centered binary hypercube.

Trzcinski and Lepetit (2012) and Trzcinski et al. (2017)

reported that a straightforward way of developing binary

descriptors is to directly learn representations from image

patches. In Trzcinski and Lepetit (2012), they proposed to

project image patches to a discriminant subspace by using a

linear combination of a few simple filters and then threshold

their coordinates for creating the compact binary descrip-

tor. The success of descriptors (e.g., SIFT) during image

matching indicates that non-linear filters, such as gradient

response, are more suitable than linear ones. Trzcinski et al.

(2017) proposed to learn a hash function of the same form as

an AdaBoost strong classifier, i.e. the sign of a linear com-

bination of nonlinear weak learners, for each descriptor bit.

This work is more general and powerful than Trzcinski and

Lepetit (2012), which is based on simple thresholded lin-

ear projections. Trzcinski et al. (2017) proposed to generate

binary descriptors that are independently adapted per patch.

This objective is achieved by inter- and intra-class online

optimization for descriptors.

3.3.2 Deep Learning-Based Descriptors

Descriptors using deep techniques are usually formulated as a

supervised learning problem. The objective is to learn a rep-

resentation that can enable the two matched features to be

as close as possible while the unmatched ones are far apart

in the measuring space (Schonberger et al. 2017). Descrip-

tor learning is often conducted with cropped local patches

centered on the detected keypoints; thus, it is also known as

patch matching. In general, existing methods consist of two

forms, namely, metric learning (Weinberger and Saul 2009;

Zagoruyko and Komodakis 2015; Han et al. 2015; Kedem

et al. 2012; Wang et al. 2017; Weinberger and Saul 2009)

and descriptor learning (Simo-Serra et al. 2015; Balntas et al.

2016a, 2017; Zhang et al. 2017c; Mishchuk et al. 2017; Wei

et al. 2018; He et al. 2018; Tian et al. 2019; Luo et al. 2019),

according to the output of deep learning-based descriptors.

These two forms are often jointly trained. Specifically, metric

learning methods often learn a discriminative metric for simi-

larity measurement with raw patches or generated descriptors

as inputs. By contrast, descriptor learning tends to generate

the descriptor representation from raw images or patches.

Such a process requires a measurement method, such as L2

distance or trained metric network, for similarity evaluation.

In contrast with single metric learning, the use of CNNs to

generate description vectors is more flexible and may save

time by avoiding repeated computation when a large number

of candidate patches are available for correspondence search.

Deep learning has achieved satisfying performance in feature

description due to its strong ability in information extraction

and representation.

Descriptors with deep learning techniques can be regarded

as an extension of those based on classical learning (Schon-

berger et al. 2017). For instance, the Siamese structure in

Chopra et al. (2005) and the commonly used loss func-
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tions, such as hinge, Siamese, triplet, ranking, and contrastive

losses, have been borrowed and modified in recent deep

methods. Specifically, Zagoruyko and Komodakis (2015)

proposed their DeepCompare and demonstrated the mech-

anism by which to directly learn from raw image pixels with

a general patch similarity function. In such scenario, various

Siamese-type CNN models are applied to encode the sim-

ilarity function. These models are then trained to identify

the positive and negative image patch pairs. The attempted

different network structures include Siamese with shared

or unshared weights and central-surround form. MatchNet

(Han et al. 2015) is proposed to simultaneously learn the

descriptor and metric. Such a technique is implemented by

cascading a Siamese-like description network and fully con-

volutional decision network. The task is converted into a

classification problem under a cross-entropy loss. DeepDesc

(Simo-Serra et al. 2015) uses CNNs to learn discriminant

patch representations together with L2 distance measuring.

In particular, it trains a Siamese network with pairs of posi-

tive and negative patches by minimizing the pairwise hinge

loss, and the proposed hard negative mining strategy has

alleviated the unbalanced positive and negative samples.

Consequently, the description performance is siginificantly

enhanced. Wang et al. (2014) proposed a novel deep rank-

ing model to learn fine-grained image similarity. The model

employs a triplet-based hinge loss and ranking function to

characterize fine-grained image similarity relationships. A

multiscale neural network architecture is utilized to capture

the global visual properties and image semantics.

Kumar et al. (2016) first used the global loss to enlarge

the distance margin between positive and negative patch

pairs. It is implemented through triplet and Siamese networks

trained with a combination of triplet and global losses. TFeat

(Balntas et al. 2016b) proposes to utilize triplets of training

samples for CNN-based patch description and matching. It is

implemented with shallow convolutional networks and fast

hard negative mining strategy. In L2Net (Tian et al. 2017),

Tian et al. applied a progressive sampling strategy to optimize

the relative distance-based loss function in the Euclidean

space. The authors of that work considered the intermediate

feature map and compactness of descriptor to achieve bet-

ter performance. HardNet (Mishchuk et al. 2017) achieves

better improvement than L2Net by using a simple hinge

triplet loss with the “hardest-within-batch” mining. PN-Net

(Balntas et al. 2016a) uses ideas introduced in the field of

distance metric learning and online boosting by simultane-

ously training with positive and negative constraints. The

proposed SoftPN loss function exhibits faster convergence

and lower error than hinge loss or SoftMax ratio (Wang et al.

2014; Zagoruyko and Komodakis 2015). Zhang et al. (2017c)

trained their networks by using their proposed global orthog-

onal regularization together with triplet loss for encouraging

the descriptor to be sufficiently “spread out”. It was carried

out to fully utilize the descriptor space.

Descriptor learning based on average precision attention

(He et al. 2018), introduces a general-purpose learning to

rank formulation. This approach is defined to a constraint

wherein the true matches should be ranked above all false

path matches and is optimized on the basis of the binary

and real-value local feature descriptors. BinGAN (Zieba

et al. 2018) proposes a regularization method for genera-

tive adversarial networks (Goodfellow et al. 2014) to learn

discriminative yet compact binary representations of image

patches. In comparison, other methods focused on binary

descriptor learning are proposed in Erin Liong et al. (2015),

Lin et al. (2016a) and Duan et al. (2017). Except for loss

function, network structure, regularization and hard nega-

tive mining, Wei et al. (2018) learned a discriminative deep

descriptor by using kernelized subspace pooling. Tian et al.

(2019) used second-order similarity in their SOSNet. In Con-

textDesc, a more recent method, Luo et al. (2019) combined

the local patch similarity constraint with the spatial geomet-

rical constraint of interest point to train their networks, which

largely improves the matching performance.1

As mentioned in the CNN-based detectors, an increas-

ing number of end-to-end learning methods integrate the

feature description together with the detectors into the com-

plete matching pipeline. These methods are similar to those

that have been singly designed for the description reviewed

above. The main difference may lie on the way of training and

the design of the entire network structure. The core challenge

is to make the whole process differentiable and trainable. For

example, LIFT (Yi et al. 2016) attempts to simultaneously

implement keypoint detection, orientation estimation, and

feature description, by end-to-end CNN networks.

SuperPoint (DeTone et al. 2018) proposes a self-supervised

framework for training interest point detectors and descrip-

tors for multiple view geometrical problems. The fully con-

volutional model operates on full-sized images and jointly

computes pixel-level interest point locations and associated

descriptors, which is in contrast with path-based networks.

LF-Net (Ono et al. 2018) devises a two-branch setup and cre-

ates virtual target responses iteratively to allow training from

scratch without handcrafted priors. This technique realizes

feature map generation, scale-invariant keypoint detection

using top K selection and NMS, orientation estimation, and

descriptor extraction. In LF-Net, the target function includes

image level loss (satisfying additional constraints among

image pairs, depth map, and essential matrix), patch-wise

loss (learning keypoints that are good for matching and

involves the orientation and scale component geometric con-

sistency), and triplet loss for descriptor learning.

1 https://image-matching-workshop.github.io/leaderboard/.
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Subsequently, RF-Net (Shen et al. 2019) creates an end-

to-end trainable matching framework that is modified from

the LF-Net structure. First, the constructed receptive feature

maps lead to effective keypoint detection. Second, a general

loss function term, that is, neighbor mask, facilitates training

patch selection to enhance the stability in descriptor train-

ing. D2-Net (Dusmanu et al. 2019) uses a single CNN to

play a dual role: simultaneously achieving a dense feature

descriptor and a feature detector. In Bhowmik et al. (2020),

a keypoint selection and descriptor matching are optimized

under high-level vision tasks by using principles from rein-

forcement learning. In addition, Li et al. (2020) introduced

dual-resolution correspondence networks to obtain pixel-

wise correspondences in coarse-to-fine manner by extracting

different resolution feature maps.

Except for feature matching for the same target or scene,

semantic matching for images that are captured from sim-

ilar targets/scenes has also been studied using CNNs and

distinct promotion has been achieved. The semantic match-

ing problem may pose a challenge for handcrafted methods

due to the required understanding of semantic similarity. To

this end, UCN (Choy et al. 2016) uses deep metric learning

to directly learn a feature space that preserves either geo-

metric or semantic similarity. The use of such an approach

also helps generate dense and accurate correspondences for

either geometric or semantic correspondence tasks. Specif-

ically, UCN implements a fully convolutional architecture

with a correspondence contrastive loss for fast training and

testing, and proposes a convolutional spatial transformer for

local patch normalization. NCN (Rocco et al. 2018) devel-

ops an end-to-end trainable CNN architecture based on the

classic idea of disambiguating feature matching by using

semi-local constraints to find reliable dense correspondences

between a pair of images. This framework identifies sets

of spatially consistent matches by analyzing the neighbor-

ing consensus patterns for a global geometric model. The

model can be efficiently trained via weak supervision with-

out any manual annotations of point correspondences. This

type of framework can be applied for both category-level and

instance-level matching tasks, and other similar methods are

presented in Han et al. (2017), Plötz and Roth (2018), Chen

et al. (2018), Laskar and Kannala (2018), Kim et al. (2018,

2020), Ufer and Ommer (2017) and Wang et al. (2018).

3.4 3-D Feature Descriptors

Extensive studies on 3-D feature descriptors have been con-

ducted. As previously mentioned, many researchers have

turned their attention to deep learning paradigm due to

its revolutionary success in numerous different areas. This

fact motivates us to categorize modern descriptors into two

groups, i.e. handcrafted and learning-based ones. Guo et al.

(2016) presented a comprehensive performance evaluation

of conventional handcrafted 3-D feature descriptors, while

the learning-based methods are left out. In the following sec-

tion, we provide a brief introduction of the state-of-the-art

handcrafted descriptors and the learning-based ones.

3.4.1 Handcrafted 3-D Descriptors

Guo et al. (2016) divided the handcrafted descriptors into

spatial distribution histogram- and geometric attribute his-

togram-based descriptors, with the former representing the

local feature by histograms that encode spatial distribu-

tions of the points in the support region. In general, the

local reference frame/axis is constructed for each keypoint.

Accordingly, the 3-D support region is partitioned into bins

to form a histogram. The values of each bin are calcu-

lated by accumulating the spatial distribution measurements.

Some representative work include spin image (Johnson and

Hebert 1999), 3-D shape context (Frome et al. 2004), unique

shape context (Tombari et al. 2010a), rotational projection

statistics (Guo et al. 2013) and tri-spin-image (Guo et al.

2015). The spatial distribution histogram descriptors repre-

sent the local features by generating histograms from the

statistics of geometric attributes (e.g., normals, curvatures)

in the support region. These histograms include local sur-

face patch (Chen and Bhanu 2007), THRIFT (Flint et al.

2007), point feature histogram (Rusu et al. 2008), fast point

feature histogram (Rusu et al. 2009) and signature of his-

togram of orientations (Tombari et al. 2010b). Apart from the

geometric attribute and spatial distribution histogram-based

descriptors, Zaharescu et al. (2009) introduced the Mesh-

HoG descriptor, which is analogous to SIFT (Lowe 2004),

and uses gradient information to generate a histogram.

The spectral descriptors, such as global point signature

(Rustamov 2007), HKS (Sun et al. 2009) and wave kernel

signature (WKS) (Aubry et al. 2011), also make up an impor-

tant category in this area. The descriptors are obtained from

the spectral decomposition of the Laplace-Beltrami operator

associated with the shape. The Global Point Signature (Rus-

tamov 2007) utilizes the eigenvalues and eigenfunctions of

the Laplace–Beltrami operator on the shape to represent the

local feature of points. The HKS (Sun et al. 2009) and WKS

(Aubry et al. 2011) are based on the heat diffusion process

and the temporal evolution of quantum mechanical particles

on the shape, respectively.

3.4.2 Learning-Based 3D Descriptors

Efforts have also been devoted to generalizing spectral

descriptors by using different learning schemes. Litman and

Bronstein (2014) generalized the spectral descriptors to a

generic family and proposed to learn from examples for

obtaining optimized descriptors for a specific task. The learn-

ing scheme resembles the spirit of Wiener filter in signal
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processing. Rodolà et al. (2014) proposed a learning method

that enables the wave kernel descriptor to recognize a broader

class of deformations from the example set by using the

random forest classifier. Windheuser et al. (2014) proposed

a metric learning method to improve the representation of

the spectral descriptors. Modern deep learning techniques

have also been successfully applied. Masci et al. (2015) pro-

posed the first attempt and introduced a generalization of the

CNN paradigm to non-Euclidean manifolds for shape corre-

spondences. Subsequently, Boscaini et al. proposed to learn

descriptors by spectral convolutional networks (Boscaini

et al. 2015), and anisotropic CNNs (Boscaini et al. 2016).

Monti et al. (2017) proposed a unified framework for gener-

alizing CNN architectures to non-Euclidean domains (graphs

and manifolds). Xie et al. (2016) constructed a deep metric

network to form a binary spectral shape descriptor for shape

characterization. The input is based on the eigenvalue decom-

position of the Laplace-Beltrami operator.

In the spatial domain, the differences of various deep

learning methods often lie in the representation of the con-

sumed data. Wei et al. (2016) trained a deep CNN on the

depth map representation of shapes to find correspondences.

Zeng et al. (2017) proposed to use a 3D deep CNN for

learning a local volumetric patch descriptor. This descriptor

consumes a voxel grid of truncated distance function val-

ues of the local region. Elbaz et al. (2017) proposed a deep

neural network auto-encoder to address the 3D matching

problem. The authors used a random sphere cover set algo-

rithm to detect feature points and project each local region

into a depth map as input to the neural network for producing

descriptors. Khoury et al. (2017) parameterized the input by

using spherical histograms centered at each point and uti-

lized fully connected networks to generate low-dimensional

descriptors. Georgakis et al. (2018) recently employed a

Siamese architecture network that processes depth maps.

Zhou et al. (2018) proposed to learn from the images of

multiple views for the description of 3D keypoints. Wang

et al. (2018b) parameterized the multiscale localized neigh-

borhoods of a keypoint into regular 2D grids as the input of a

triplet-architecture CNN. Deng et al. (2018) first presented an

order-free network on the basis of PointNet (Qi et al. 2017a).

This network can consume raw point clouds to exploit the

full sparsity in the 3D matching task.

3.5 Summary

As previously mentioned, the image patch descriptor is des-

ignated to enable accurate and effective correspondence

establishment between detected feature points. The objective

is to transform the original image information into a discrim-

inative and stable representation that makes the two matched

features as close as possible, while the unmatched ones are far

apart. To this end, the descriptors should be easy to compute

with low computation and storage request. These descriptors

should also maintain their discriminative and invariant fea-

tures against serious deformations and imaging conditions. In

the following section, we provide a comprehensive analysis

of the handcrafted descriptors and introduce the mechanism

by which the learning-based methods can partly address these

challenges and achieve promising performance.

Following the construction procedure of traditional local

descriptors, the first step is to extract the low-level infor-

mation, which can be briefly classified into image gradient

and intensity. Specifically, the gradient information can be

regarded as a higher order image cue than raw intensity. The

pooling strategy together with a histogram or statistic manner

is often required to form a float descriptor. Thus, this strategy

is more invariant to geometrical transformations (perhaps the

pool and statistic strategy make it more independent to pixel

position and geometrical variety). Nevertheless, it requires

additional computation in gradient calculation and statistics

as well as the distance measure of float-type data. LBP-based

methods typically have high discriminative ability and good

robustness to illumination change and image contrast, which

are frequently used in texture representation and face recog-

nition.

In contrast with the gradient and/or statistic-based meth-

ods, the simple comparison strategy on image intensity would

sacrifice great discrimination and robustness. A classical

machine learning technique is often designed to identify sub-

stantial useful bits. These types of methods are typically in

need of the reference orientation estimation to achieve rota-

tion invariant, which appears to be a major error source for

most existing methods. However, the use of intensity order

is intrinsically invariant to rotation and intensity changes

without any geometrical estimation. It can achieve promising

performance due to the combination of the use of intensity

order and statistical strategy.

Learning-based methods have largely avoided the require-

ment of manual experience and knowledge priori. They

automatically optimize and obtain the optimal parameters

and directly construct the wanted descriptor. Traditional

learning methods aim to enable the generated descriptors

superior in terms of efficiency, low storage, and discrimina-

tion. However, the used image cues, such as intensity and

gradient, are still with low order, and they highly rely on the

framework in handcrafted methods. Nevertheless, the target

function, training skills, and datasets that appeared at that

time are significant and useful for designing better learning-

based methods. Thus, the emergence of deep learning has

further advanced this procedure in traditional learning.

Several skills can help improve the discriminability and

robustness of deep descriptors. On the one hand, the central-

surround and triplet (even more) structure may provide

substantial significant information to learn. The hard nega-

tive sample mining strategy would make the structure focused
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on hard samples (may result in overfitting as well) and thus

can achieve better matching performance. More reliable loss

functions should also be designed according to the basic and

intrinsic properties of description task. For instance, recently

designed triplet, ranking, contrastive, and global losses, are

superior than early simple hinge and cross-entropy losses.

On the other hand, valid and comprehensive ground truth

datasets are also required for better performance in match-

ing and generalization ability. Training a descriptor together

with detectors into the complete matching pipeline through

an end-to-end manner has also drawn great attention at

present. This can jointly optimize the detector and descriptor,

thus can achieve encouraging performance, and the unsu-

pervised training in it can perform without the need of any

labeled ground truth patch data. The current descriptors can

achieve significant matching performance across image pairs

of appearance variances, such as illumination and day-night,

by using deep techniques. However, these descriptors still

suffer from serious geometrical deformation, such as large

rotation or low-overlapped image pair. The low generaliza-

tion ability for new types of data is also another limitation.

The overall performance of descriptor also depends on

the appropriate detector. Different combinations of detectors

and descriptors may result in varied matching performance.

For this reason, the descriptors should be chosen according

to a specific task and the type of image data. The advanced

descriptors using deep learning have shown great potential.

4 MatchingMethods

The matching task aims to establish the correct image pixel

or point correspondences between two images with or with-

out using the feature detection and/or description. This task

has played a significant role for the entire image matching

pipeline. Different definitions of matching task are intro-

duced for specific applications and scenarios and may show

their own strengths.

4.1 Overview of MatchingMethods

Over the past decades in the image matching community,

existing methods can be roughly classified into two cat-

egories, saying area-based and feature-based (Zitova and

Flusser 2003; Litjens et al. 2017). Area-based methods

typically refer to dense matching, also known as image regis-

tration, which usually do not detect features. In feature-based

methods, when the feature points and their local descriptors

are extracted from the image pairs, the image matching task

could be converted into matching them in indirect and direct

ways, which correspond to the use and non-use of the local

image descriptors.

Direct feature matching aims to establish the corre-

spondences from two given feature sets by directly using

the spatial geometrical relations and optimization meth-

ods, which can be roughly classified into graph matching

and point set registration. In comparison, indirect feature

matching methods typically casts the matching task into a

two-stage problem. Such task commonly starts with estab-

lishing preliminary correspondences through the similarity

of descriptors with the distance judging from the measur-

ing space. Thereafter, the false matches are removed from

the putative match sets by using extra local and/or global

geometrical constraints. Dense matching from sparse feature

correspondences often requires a post-process of transform

model estimation, followed by image resampling and inter-

polation (warping).

We will separate the learning-based methods from area-

and feature-based methods and introduce them in a new sub-

section. From the aspect of input data, learning from images

and point data are the two main forms in learning-based

matching. These methods can achieve better performance

for some scenarios compared to the traditional ones. The

matching task in 3-D cases is also briefly introduced in this

section.

4.2 Area-BasedMatching

Area-based methods aim for image registration and estab-

lish dense pixel correspondences by directly using the pixel

intensity of the entire image. A similarity metric together

with an optimization method is in need for geometrical

transformation estimation and common area alignment by

minimizing the overall dissimilarity between the target and

warped moving images. Consequently, several manual simi-

larity metrics are frequently used, including correlation-like,

domain transformation, and mutual information (MI) meth-

ods. The optimization methods and transform models are

also required to perform the final registration task (Zitova

and Flusser 2003).

In the image registration community, correlation-like

methods, which are regarded as a classical representative in

area-based methods, correspond two images by maximizing

the similarities of two sliding windows (Zitova and Flusser

2003; Li et al. 2015). For example, the maximum correlation

of wavelet features has been developed for automatic regis-

tration (Le Moigne et al. 2002). However, this type of method

may greatly suffer from the serious image deformations (can

only be successfully applied when slight rotation and scaling

are presented), windows containing a smooth area without

any prominent details, and huge computational burden.

Domain transformed methods tend to align two images

on the basis of converting the original images into another

domain, such as phase correlation based on Fourier shift the-

orem (Reddy and Chatterji 1996; Liu et al. 2005; Chen et al.
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1994; Takita et al. 2003; Foroosh et al. 2002), and Walsh

transform-based methods (Lazaridis and Petrou 2006; Pan

et al. 2008). Such methods are robust against the correlated

and frequency-dependent noise and non-uniform, time vary-

ing illumination disturbances. Nevertheless, these methods

have some limitations in case of image pairs with signifi-

cantly different spectral contents and small overlap area.

Based on information theory, the MI, such as non-rigid

image registration using MI together with B-splines (Klein

et al. 2007) and conditional MI (Loeckx et al. 2009), is a mea-

surement of statistical dependency between two images and

works with the entire image (Maes et al. 1997). Thus, MI is

particularly suitable for the registration of multi-modalities

(Chen et al. 2003a, b; Johnson et al. 2001). Recently, Cao

et al. (2020) proposed a structure consistency boosting trans-

form to enhance the structural similarity in multi-spectral

and multi-modal image registration problem, thus avoiding

spectral information distortion. However, the MI exhibits

difficulty in determining the global maximum of the entire

searching space, inevitably reducing its robustness. More-

over, optimization methods (e.g., continuous optimization,

discrete optimization, and their hybrid form) and transfor-

mation models (e.g., rigid, affine, thin plate spline (TPS),

elastic body, and diffusion models) are considered suffi-

ciently mature. Please refer to Zitova and Flusser (2003),

Dawn et al. (2010), Sotiras et al. (2013) and Ferrante and

Paragios (2017) for representative literature and further

details.

The area-based methods are acceptable for medical or

remote sensing image registration, which many feature-based

methods are not workable anymore because the images often

contain less textural details and large variance of image

appearance due to the different imaging sensors. However,

the area-based methods may greatly suffer from the serious

geometrical transformations and local deformations. While

deep learning has proven its efficacy, in which the early ones

are usually employed as a direct extension of the classical

registration framework, and later ones use a reinforcement

learning paradigm to iteratively estimate the transformation,

even directly estimate the deformative field in an end-to-end

manner. The area-based matching with learning strategies

will be reviewed in the part of learning-based matching.

4.3 GraphMatchingMethods

Given the feature points extracted from an image, we can

construct a graph by associating each feature point to a

node and specifying edges. This procedure naturally pro-

vides convenience to investigate the intrinsic structure of

image data, especially for the matching problem. By this

definition, graph matching (GM) refers to the establishment

of node-to-node correspondences between two or multiple

graphs. For its importance and fundamental challenge, GM

has been a long-standing research area over decades and is

still of great interest to researchers. From the problem setting

perspective, GM can be divided into two categories, namely,

exact and inexact matching. Exact matching methods con-

sider GM to be a special case of the graph or subgraph

isomorphism problem. It aims to find the bijection of two

binary (sub)graphs; consequently, all edges are strictly pre-

served babai2018groups,cook2006mining,levi1973note). In

fact, this requirement is too strict for real-world tasks like

computer vision. Hence researchers often resort to inexact

matching with weighted attributes on nodes and edges. Such

an approach enjoys good flexibility and utility in practice.

Therefore, we primarily concentrate on the review of inexact

matching methods in this survey.

To some extent, GM possesses a simple yet general for-

mulation of the feature matching problem, which encodes

the geometrical cues into the node affinities (first-order rela-

tions) and edge affinities (second-order relations) to deduce

the true correspondences between two graphs. Aside from the

geometrical cues, the high-level information of feature points

can also be incorporated in GM (e.g. descriptor similarities as

node affinities). This information only serves as a supplemen-

tary one and is not necessarily required. In the general and

recent form, GM can be formulated as a Quadratic Assign-

ment Problem (QAP) (Loiola et al. 2007). Although different

forms exist in the literature, the main body of research has

focused on the Lawler’s QAP (Lawler 1963). Given two

graphs G1 = (V1, E1) and G2 = (V2, E2), where |V1| = n1,

|V2| = n2, each node vi ∈ V1 or v j ∈ V2 represents a feature

point, and each edge ei ∈ E1 or e j ∈ E2 is defined over a

pair of nodes. Without loss of generality we assume n1 ≥ n2,

Lawler’s QAP formulation of GM then can be written as:

max J (X) = vec(X)⊤Kvec(X),

s.t . X ∈ {0, 1}n1×n2 , X1n2 ≤ 1n1 , X⊤1n1 = 1n2 ,
(1)

where X denotes the permutation matrix, i.e. Xi j = 1 indi-

cates that node vi ∈ V1 corresponds to node v j ∈ V2 and

Xi j = 0 otherwise, vec(X) denotes the column-wise vector-

ization of X, and 1n1 and 1n2 respectively denote the column

vectors of all ones, K denotes the affinity matrix, whose

diagonal and non-diagonal entries encode the first-order and

second-order edge affinities between the two graphs. No

universal approach can be utilized to construct the affinity

matrix; however, a simple strategy is to use the similarities

of feature descriptors [e.g. Shape Context (Belongie et al.

2001)] and differences of edge length to determine node and

edge affinities.

The Koopmans–Beckmann’s QAP is another popular for-

mulation. The form is different from Lawler’s QAP as

expressed as:

J (X) = tr(K⊤
p X) + tr(A1XA2X⊤), (2)
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where A1 and A2 are the weighted adjacency matrices of

the two graphs, respectively, and Kp is the node affinity

matrix. In Zhou and De la Torre (2015), the relation between

Koopmans–Beckmann’s and Lawler’s QAP has been inves-

tigated, which reveals that Koopmans–Beckmann’s QAP can

be regarded as a special case of Lawler’s.

The GM problem is translated into finding the optimal

one-to-one correspondences X that maximizes the overall

affinity score J (X). As a combinatorial QAP problem in

general, GM is known to be NP-hard. Most methods relax

the stringent constraints and provide approximate solutions

in an affordable over head. In this regard, many relaxation

strategies are introduced in the literature, thereby leading to

a variety of GM solvers. In the following, we briefly review

the influential ones through the development course of GM.

4.3.1 Spectral Relaxations

The first group of methods follow a strategy of spectral relax-

ation. Leordeanu and Hebert (2005) proposed to replace the

one-to-one mapping constraint and the binary constraint by

constraining ‖vec(X)‖2
2 = 1. In this case, the solution X

can be obtained by solving an eigenvector problem. Each

element in X is interpreted as the association of one corre-

spondence with the optimal cluster (true correspondences).

A discretization strategy is used to enforce the mapping con-

straints. The idea was later improved by Cour et al. (2007),

who explicitly considered enforcing the one-to-one map-

ping constraint to achieve tighter relaxation. This method

can also be solved in closed forms as an eigenvector prob-

lem. Liu and Yan (2010) proposed to detect multiple visual

patterns by using a l1-norm-based spectral relaxation tech-

nique, i.e. constraining ‖vec(X)‖1 = 1. The solution can be

efficiently obtained by replicator equation from evolution-

ary game theory. Jiang et al. (2014) presented a non-negative

matrix factorization technique, which extends the constraint

as ‖vec(X)‖p = 1, p ∈ [1, 2]. Meanwhile, Egozi et al.

(2012) presented a fairly different approach. In their work,

they provided a probabilistic interpretation of spectral match-

ing schemes and derived a novel probabilistic matching

scheme wherein the affinity matrix is also updated in the

iteration process. With Koopmans–Beckmann’s QAP for-

mulation, the spectral methods (Umeyama 1988; Scott and

Longuet-Higgins 1991; Shapiro and Brady 1992; Caelli and

Kosinov 2004) relax X to be orthogonal, i.e. X⊤X = I. This

expression can be solved in a closed form as an eigenvalue

problem. These methods possess the merit of efficiency due

to the loose relaxation. However, the accuracy is not advan-

taged in general.

4.3.2 Convex Relaxations

Many studies have turned to investigating convex relaxations

of the original problem to obtain theoretical advantages for

solving the non-convex QAP issue. Strong convex relax-

ations can be obtained by lifting methods that add auxiliary

variables representing quadratic monomials in the original

variables. This enables the addition of additional convex con-

straints on the lifted variables. Semi-definite programming

(SDP) is a general tool for combinatorial problems and has

been applied to solving GM (Schellewald and Schnörr 2005;

Torr 2003; Zhao et al. 1998; Kezurer et al. 2015). The SDP

relaxation is quite tight and allows finding a strong approxi-

mation in polynomial time. However, the high computational

cost prohibits its scalability. Some other lifting methods with

linear programming relaxations have also been developed

(Almohamad and Duffuaa 1993; Adams and Johnson 1994).

The dual problem of the LP relaxations are recently exten-

sively considered to solve GM (Swoboda et al. 2017; Chen

and Koltun 2015; Swoboda et al. 2017; Torresani et al. 2012;

Zhang et al. 2016), which has a strong link with the MAP

inference algorithms.

4.3.3 Convex-to-Concave Relaxations

One useful strategy is to utilize the path-following technique.

This approach gradually achieves a convex-to-concave pro-

cedure of the original problem to finally find a good solution

with the constraints satisfied. The computational complex-

ity is also much lower than those of the lifting methods.

Zaslavskiy et al. (2009) adopted this strategy for GM prob-

lem with Koopmans–Beckmann’s QAP formulation, which

is extended by to directed graphs (Liu et al. 2012b) and par-

tial matching (Liu and Qiao 2014). Zhou and De la Torre

(2015) presented a unified framework of GM based on the

factorization of affinity matrix based on Lawler’s QAP. Such

a framework effectively reduces the computational complex-

ity and reveals the relation between Koopmans–Beckmann’s

and Lawler’s QAPs. The (advanced) doubly stochastic (DS)

relaxation methods improve upon these approaches by iden-

tifying tighter formulations (Fogel et al. 2013; Dym et al.

2017; Bernard et al. 2018), where the tightness of spectral,

SDP, and DS relaxation is discussed and theoretically veri-

fied.
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4.3.4 Continuous Relaxations

A large volume of GM methods has focused on devising accu-

rate or efficient algorithms to solve the QAP approximately,

albeit with no global optimality guarantee. In most cases, X

is simply relaxed to be continuous, as a DS matrix. Gold and

Rangarajan (1996) proposed a graduated assignment algo-

rithm, which performs gradient ascent on the relaxed problem

under an annealing schedule. The convergence of this method

has been revisited and improved by Tian et al. (2012) with a

soft constrained mechanism. van Wyk and van Wyk (2004)

proposed to enforce the one-to-one mapping constraint by

successively projecting onto the convex set of the desired

integer constraints. Leordeanu et al. (2009) proposed an effi-

cient algorithm that optimizes in the (quasi) discrete domain

via solving a sequence of linear assignment problems. Many

famous optimization techniques, such as ADMM (Lê-Huu

and Paragios 2017), tabu search (Adamczewski et al. 2015)

and multiplicative update algorithm (Jiang et al. 2017a), have

also been tested. Recent studies also include Jiang et al.

(2017b) and Yu et al. (2018), which introduce new schemes

to asymptotically approximate the original QAP, and Maron

and Lipman (2018), which presents a new (probably) concave

relaxation technique. Yu et al. (2020b) introduced a determi-

nant regularization technique together with gradient-based

optimization to relax this problem into continuous domain.

4.3.5 Multi-graph Matching

In contrast to the classic two-graph matching setting, jointly

matching a batch of graphs with consistent correspondences,

i.e. multi-graph matching, has recently drawn increasing

attention due to its methodological advantage and potential

to incorporate cross-graph information. Arguably, one cen-

tral issue of multi-graph matching lies in the enforcement

of cycle-consistency for a feasible solution. In general, this

concept refers to the fact that the bijection correspondence

between two graphs shall be consistent with a derived one

through an intermediate graph. Put it more concretely, for

any pair of graphs Ga and Gb with their node correspon-

dence matrix Xab, let Gc be an intermediate graph, the cycle

consistency constraint is enforced: XacXcb = Xab, where

Xac and Xcb are the matching solutions of Ga and Gc and

Gc and Gb, respectively.

Existing multi-graph matching methods can be roughly

grouped into three lines of works. For the methods falling

into the first group, the multi-graph matching problem is

solved by an iterative procedure for computing a number of

two-graph matching tasks (Yan et al. 2013, 2014, 2015a, b;

Jiang et al. 2020b). In each iteration, a two-graph matching

solution is computed to locally maximize the affinity score,

which can leverage off-the-shelf pairwise matching solvers,

such as in Jiang et al. (2020b), both offline batch mode and

online setting are considered to explore the concept of cycle-

consistency over pairwise matching. Another body of work

takes the initial (noisy) pairwise matching result as input, and

aims to recover a globally consistent pairwise matching set

(Kim et al. 2012; Pachauri et al. 2013; Huang and Guibas

2013; Chen et al. 2014; Zhou et al. 2015; Wang et al. 2018;

Hu et al. 2018). In these methods, matching over all graphs

is jointly and equally considered to form a bulk matrix that

includes all pairwise matchings. The intrinsic structure of

this matrix induced by the matching problem, such as cycle-

consistency, is investigated. The last group utilizes clustering

or low rank recovery techniques to solve multi-graph match-

ing, which provides a new perspective in the feature space

for the problem (Zeng et al. 2012; Yan et al. 2015c, 2016a;

Tron et al. 2017). More recently, the multi-graph matching

problem has been considered in the optimization framework

with a theoretically well-grounded convex relaxation (Swo-

boda et al. 2019), or with projected power iterations to search

for a feasible solution (Bernard et al. 2019).

4.3.6 Other Paradigms

Although the QAP formulation is prevalent in GM, the way

of formulation is not unique. Numerous methods deal with

GM from different perspectives or paradigms and also form

an important category in this field.

Cho et al. (2010) provided a random walk view of GM

and devised a technique to obtain solution by simulating

random walks on the association graph. Lee et al. (2010)

and Suh et al. (2012) introduced Monte Carlo methods to

improve the matching robustness. Cho and Lee (2012) further

devised a progressive GM method, which combines pro-

gression of graphs with matching of graphs to reduce the

computational complexity. Wang et al. (2018a) proposed to

use a functional representation of graphs and conduct match-

ing by minimizing the discrepancy between the original and

the transformed graphs. Subsequently, in order to suppress

the matching of outliers, Wang et al. (2020) assigned zero-

valued vectors to the potential outliers in the obtained optimal

correspondence matrix. The affinity matrix plays a key role in

the GM problem. However, the handcrafted K is vulnerable

to scale and rotation differences. To this end, unsupervised

(Leordeanu et al. 2012) and supervised (Caetano et al. 2009)

methods are devised to learn K. Zanfir and Sminchisescu

(2018) recently addressed this issue with an end-to-end deep

learning scheme. Wang et al. (2020) introduced a fully train-

able framework for graph matching. In this framework, they

utilized a graph network block module and simultaneously

considered the learning of node/edge affinities and the solv-

ing of combinatorial optimization.
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The extension of GM to a high-order formulation is a

natural way to improve the robustness by mostly exploring

the geometrical cues. This leads to a tensor-based objective

(Lee et al. 2011) also called hypergraph matching:

JH (X) = H ⊗1 x ⊗2 x . . . ⊗m x, (3)

where m is the order of affinities, H denotes the m-order tensor

encoding the affinities between hyperedges in the graphs, ⊗k

is the tensor product, and x = vec(X). Representative studies

on hypergraph matching include Zass and Shashua (2008),

Chertok and Keller (2010), Lee et al. (2011), Chang and

Kimia (2011), Duchenne et al. (2011) and Yan et al. (2015d).

4.4 Point Set RegistrationMethods

Point set registration (PSR) aims to estimate the spatial trans-

formation that optimally aligns two point sets. In feature

matching, different formulations are adopted in PSR and GM.

For two point sets, GM methods determine the alignment

via maximizing the overall affinity score of unary corre-

spondence and pairwise correspondences. By contrast, PSR

methods determine the underlying global transformation.

Given the two point sets {xi }
n1

i=1 and {yi }
n2

i=1, the general

conventional objective can be expressed as

min J (P, θ) =
∑

i, j

pi j‖y j − T (xi , θ)‖2
2 + g(P)

s.t . θ ∈ �, P ∈ {0, 1}n1×n2 , P1n2 ≤ 1n1 , P⊤1n1 ≤ 1n2 ,

(4)

where θ denotes the parameters of the predefined transfor-

mation. The regularization term g(P) avoids trivial solutions,

such as P = 0. Compared to GM, this model only repre-

sents the general principles, but does not necessarily cover

all the algorithms for PSR. For example, a probabilistic inter-

pretation or a density-based objective can be used, and the

constraints for P may be only partially imposed during opti-

mization, which all differ from the above formulation.

PSR poses a stronger assumption on the data, that is,

the existence of a global transformation between point sets,

which is the key feature that differentiates it from GM.

Although the generality is restricted, this assumption leads to

low computational complexity because of the few parameters

needed for global transformation models. A sophisticated

transformation model is developed from rigid to non-rigid

ones in order to enhance the generalization ability. Various

schemes are also proposed to improve robustness against

degradations, such as noise, outliers, and missing points.

4.4.1 ICP and Its Variants

PSR has been an important research topic for the last few

decades in computer vision, and the iterative closest point

(ICP) algorithm is a popular method (Besl and McKay 1992).

ICP iteratively alternates between hard assignments of cor-

respondences for the closest points in two point sets and

the closed-form rigid transformation estimation until con-

vergence. The ICP algorithm is widely used as baselines due

to its simplicity and low computational complexity. How-

ever, a good initialization is required because ICP is prone

to be trapped into local optima. Numerous studies, such as

EM-ICP (Granger and Pennec 2002), LM-ICP (Fitzgibbon

2003), and TriICP (Chetverikov et al. 2005), in the research

field of PSR have been proposed to improve ICP. The reader

is referred to a recent survey (Pomerleau et al. 2013) for

a detailed discussion of ICP’s variants. The robust point

matching (RPM) algorithm (Gold et al. 1998) are proposed

to overcome the ICP limitations; the soft assignment and

deterministic annealing strategy are adopted, and the rigid

transformation model is generalized to a non-rigid one by

using the thin-plate spline [TPS-RPM (Chui and Rangarajan

2003)].

4.4.2 EM-Based Methods

RPM is also a representative of the EM-like PSR methods,

which form an important category in this field. The EM-like

methods formulate PSR as an optimization problem of either

a weighted squared loss function or the log-likelihood max-

imization of Gaussian mixture models (GMMs), and local

optimum is searched through EM or EM-like algorithms. The

posterior probability of each correspondence is computed in

the E-step, and the transformation is refined in the M-step.

Sofka et al. (2007) investigated the modeling of uncertainty

in the registration process and presented a covariance driven

correspondence method in an EM-like framework. Myro-

nenko and Song (2010) proposed the well-known coherent

point drift (CPD) method in which a probabilistic framework

is established on the basis of GMM; here, the EM algo-

rithm is utilized for maximum likelihood estimation of the

parameters. Horaud et al. (2011) developed an expectation

conditional maximization-based probabilistic method, which

allows the use of anisotropic covariance for the mixture

model components and improves over isotropic covariance

case. Ma et al. (2016b) and Zhang et al. (2017a) exploited the

unification of local feature and global feature in the GMM-

based probabilistic framework. Lawin et al. (2018) presented

a density adaptive PSR method via modeling the underlying

structure of the scene as a latent probability distribution.

4.4.3 Density-Based Methods

Density-based methods introduce generative models to the

PSR problem, in which no explicit point correspondence

is established. Each point set is represented by a density

function, such as GMM. Registration is achieved by the mini-
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mization of a statistical discrepancy measure between the two

density functions. Tsin and Kanade (2004) were the first to

propose such a method and used kernel density functions to

model the point sets, and the discrepancy measure is defined

as kernel correlation. Meanwhile, Glaunes et al. (2004) rep-

resented the point sets by using relaxed Dirac delta functions.

They then determined the optimal diffeomorphic transforma-

tion that minimizes the distance of the two distributions. Jian

and Vemuri (2011) extended this approach by using GMM-

based representation and minimizing the L2 error between

the densities. The authors also provided a unified framework

of density-based PSR. Many popular methods, including

Myronenko and Song (2010) and Tsin and Kanade (2004) can

be regarded as special cases in theory. Campbell and Peters-

son (2015) proposed to use a support vector parameterized

GMM for adaptive data representation. This approach can

improve the robustness of density-based methods to noise,

outliers, and occlusions. Recently, Liao et al. (2020) utilized

fuzzy clusters to represent a scanned point set, then registed

two point sets by minimizing a fuzzy weighted sum of dis-

tances between their fuzzy cluster centers.

4.4.4 Optimization-Based Methods

A group of optimization-based methods have been proposed

as globally optimal solutions to alleviate the local optimum

issue. These methods generally search in a limited transfor-

mation space for timing saving, such as rotation, translation,

and scaling. Stochastic optimization techniques, including

genetic algorithms (Silva et al. 2005; Robertson and Fisher

2002), particle swarm optimization (Li et al. 2009), parti-

cle filtering (Sandhu et al. 2010) and simulated annealing

schemes (Papazov and Burschka 2011; Blais and Levine

1995), are widely used, but no convergence is guaranteed.

Meanwhile, Branch and bound (BnB) is a well-established

optimization technique that can efficiently search the glob-

ally optimal solution in the transformation space and form

the theoretical basis of many optimization-based methods,

including Li and Hartley (2007), Parra Bustos et al. (2014),

Campbell and Petersson (2016), Yang et al. (2016) and

Liu et al. (2018b). In addition to these methods, Maron

et al. (2016) introduced a semidefinite programming (SDP)

relaxation-based method, in which a global solution is guar-

anteed for isometric shape matching. Lian et al. (2017)

formulated PSR as a concave QAP by eliminating the rigid

transformation variables, and BnB is utilized to achieve a

globally optimal solution. Yao et al. (2020) presented a

formulation for robust non-rigid PSR based on a globally

smooth robust estimator for data fitting and regularization,

which is optimized by majorization-minimization algorithm

to reduce each iteration in solving a simple least-squares

problem. Another method in Iglesias et al. (2020) presents a

study of global optimality conditions for PSR with missing

data. This method applies Lagrangian duality to generate a

candidate solution for the primal problem thus enables it to

obtain the corresponding dual variable in a closed form.

4.4.5 Miscellaneous Methods

Apart from the commonly used rigid model or non-rigid

transformation model based on TPS (Chui and Rangara-

jan 2003) or Gaussian radial basis functions (Myronenko

and Song 2010), additional complex deformations are also

considered in the literature. These models include simple

articulated extensions, such as Horaud et al. (2011) and Gao

and Tedrake (2019). A smooth locally affine model is intro-

duced as the transformation model and developed under the

ICP framework in non-rigid ICP (Amberg et al. 2007), which

is also adopted in Li et al. (2008). However, this model should

be used in conjunction with sparse hand selected feature

correspondences as it allows many degrees of freedom. A

different linear skinning model, which does not require user’s

involvement in the registration process, has been proposed

and applied in another work (Chang and Zwicker 2009).

Another line of PSR methods introduce shape descriptors

into the registration process. Local shape descriptors, such

as spin images (Johnson and Hebert 1999), shape contexts

(Belongie et al. 2001), integral volume (Gelfand et al. 2005)

and point feature histograms (Rusu et al. 2009) are gener-

ated. Sparse feature correspondences are established by a

similarity constraint of descriptors. Subsequently, the under-

lying rigid transformation can be estimated using random

sampling consensus (RANSAC) (Fischler and Bolles 1981)

or BnB search (Bazin et al. 2012). Ma et al. (2013b) proposed

a robust algorithm based on the L2 E estimator in a non-rigid

case.

Some new schemes for PSR based on different observa-

tions have emerged. Golyanik et al. (2016) modeled point set

as particles with gravity as attractive force, and registration is

accomplished by solving the differential equations of New-

tonian mechanics. Ma et al. (2015a) and Wang et al. (2016)

proposed the use of context-aware Gaussian fields to address

the PSR problem. Vongkulbhisal et al. (2017, 2018) proposed

the discriminative optimization method. This approach learns

the search direction from training data to guide optimization

without the need of defining cost functions. Danelljan et al.

(2016) and Park et al. (2017) considered the color informa-

tion of point sets, whereas Evangelidis and Horaud (2018)

and Giraldo et al. (2017) addressed the problem of joint reg-

istration of multiple point sets.

4.5 Descriptor Matching with Mismatch Removal

Descriptor matching followed by mismatch removal, also

called indirect image matching, casts the matching task into a

two-stage problem. This method commonly starts with estab-
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lishing preliminary correspondences through the similarity

of local image descriptors with the distance judging from

the measuring space. Several common strategies, including

fixed threshold (FT), nearest neighbor (NN) also called brute

force matching, mutual NN (MNN), and NN distance ratio

(NNDR), are available for the construction of putative match

sets. Thereafter, the false matches are removed from the puta-

tive match sets by using extra local and/or global geometrical

constraints. We briefly divide the mismatch removal meth-

ods into resampling-based, non-parametric model-based, and

relaxed methods. In the following sections, we will introduce

these methods in detail and provide comprehensive analysis.

4.5.1 Putative Match Set Construction

Suppose that we have detected and extracted M and N local

features to be matched from the considering two images I1

and I2. The descriptor matching stage operates by computing

the pairwise distance matrix with M × N entries and then

selecting the potential true matches through the aforemen-

tioned rule.

The FT strategy considers the matches with their distances

below a fixed threshold. However, this strategy can be sen-

sitive and may incur numerous one-to-many matchings in

contrast to the one-to-one correspondence nature. This situ-

ation results in poor performance in feature matching task.

The NN strategy can effectively deal with the data sensitivity

problem and recall more potential true matches. Such a strat-

egy has been applied in various descriptor matching methods,

but it cannot avoid the one-to-many cases. In mutual NN

descriptor matching, each feature in I1, looks for its NN in

I2 (and vice versa), and the feature pairs that are mutual NN

become candidate matches in the putative match set. This

type of strategy can obtain high ratio of correct matches but

may sacrifice many other true correspondences. The NNDR

considered that the distance difference between first and sec-

ond NN is significant. Hence, the use of the distance ratio with

a predefined threshold would obtain robust and promising

matching performance while not sacrifice many true matches.

However, NNDR relies on the stable distance distribution

of these descriptors even though the method is widely used

and well performed in SIFT-like descriptor matching. In fact,

NNDR is no longer applicable for descriptors of other types,

such as binary or some learning based descriptors (Rublee

et al. 2011; Ono et al. 2018).

The optimal choice of these methods for descriptor match-

ing should rely on the property of descriptor and the specific

application. For example, the MNN is stricter than others with

high inlier ratio but may sacrifice many other potential true

matches. By contrast, NN and NNDR tend to be more general

in feature matching task with relatively better performance.

Mikolajczyk and Schmid (2005) proposed a simple test about

these candidate match selection strategies. Although various

approaches are available for putative feature correspondence

construction the use of only local appearance information

and simple similarity-based putative match selection strate-

gies, will unavoidably result in a large number of incorrect

matches, particularly when images undergo serious non-rigid

deformation, extreme viewpoint changes, low quality, and/or

repeated contents. Therefore, a robust, accurate, and efficient

mismatch elimination method is urgently required in the sec-

ond stage to preserve as many true matches as possible while

keeping the mismatch to a minimum by using additional geo-

metrical constraints.

4.5.2 Resampling-Based Methods

Resampling technique is (arguably) a prevalent paradigm and

is represented by the classic RANSAC algorithm (Fischler

and Bolles 1981). Basically, the two images are assumed

to be coupled by a certain parametric geometric relation,

such as projective transformation or epipolar geometry. The

RANSAC algorithm then follows a hypothesize-and-verify

strategy: repeatedly sample a minimal subset from the data,

e.g. four correspondences for projective transformation and

seven correspondences for fundamental, estimate a model as

hypothesis, and verify the quality by the number of consis-

tent inliers. Finally, the correspondences consistent with the

optimal model are recognized as inliers.

Various methods have been proposed to improve the per-

formance of RANSAC. In MLESAC (Torr and Zisserman

1998, 2000), the model quality is verified by a maximum

likelihood process, which albeit under certain assumptions,

can improve the results and is less sensitive to the pre-

defined threshold. The idea of modifying the verification

stage is not only utilized but also further extended in many

following studies due to the simple implementation. The

modification of sampling strategy has also been considered

in quite a few studies due to the appealing result of efficiency

enhancement. In essence, diverse prior information is incor-

porated to increase the probability of selecting an all-inlier

sample subset. Specifically, the inliers are assumed to be spa-

tially coherent in NAPSAC (Nasuto and Craddock 2002), or

exist with some groupings in GroupSAC (Ni et al. 2009).

PROSAC (Chum and Matas 2005) exploits a priori predicted

inlier probability, and EVSAC (Fragoso et al. 2013) uses

an estimate of confidence with extreme value theory of the

correspondences. Another seminal work is the locally opti-

mized RANSAC (LO-RANSAC) (Chum et al. 2003), with

the key observation that taking minimal subsets can amplify

the underlying noise and yield hypotheses that are far from

the ground truth. This problem is addressed by introducing

a local optimization procedure when arriving at the so-far-

the-best model. In the original paper, local optimization is

implemented as an iterated least squares fitting process with

a shrinking inlier-outlier threshold inside an inner RANSAC.
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This has a large-than-minimal sampling and is applied only to

the inliers of the current model. The computational cost issue

of LO-RANSAC is addressed in Lebeda et al. (2012), where

several implementation improvements are suggested. The

local optimization step is augmented with a graph-cut tech-

nique in Barath and Matas (2018). Many improving strategies

for RANSAC are integrated in USAC (Raguram et al. 2012).

More recently, Barath et al. (2019b) applyed σ -consensus

in their MAGSAC, to eliminate the need of a user-defined

threshold by marginalizing over a range of noise scales.

Whereafter, observing that nearby points are more likely

to originate from the same geometric model, Barath et al.

(2019a) extracted the local structure for global sampling and

parameter model estimation by drawing samples from grad-

ually growing neighborhoods. Based on above two methods,

they introduced MAGSAC++ (Barath et al. 2020) with a new

scoring function. This method avoids requiring the inlier-

outlier decision, in which a novel marginalization procedure

formulated as an M-estimation is solved by an iteratively

re-weighted least squares procedure, and the progressive

growing sampling strategy in Barath et al. (2019a) is also

applied for RANSAC-like robust estimation.

Some fundamental shortcomings are exhibited by the

resampling methods despite their efficacy in wide appli-

cations of computer vision. For example, the theoretically

required runtime exponentially grows with the increase of

outlier rate. The minimal subset sampling strategy only

applies to parametric models and fails to handle image pairs

undergoing complex transformations, such as non-rigid ones.

This situation motivates researchers to develop new algo-

rithms divorced from the resampling paradigm.

4.5.3 Non-parametric Model-Based Methods

A group of non-parametric model-based methods have

been proposed. Instead of simple parametric models, non-

parametric models address more general priors in matching,

e.g. motion coherence, and can deal with degenerated sce-

narios. These methods are distinguished by different defor-

mation functions to model the transformation and different

means to cope with gross outliers. Pilet et al. (2008) proposed

the use triangulated 2-D mesh to model the deformation using

a tailored robust estimator for eliminating the detrimental

effect of outliers. The idea of robust estimators is also lever-

aged in Gay-Bellile et al. (2008), with Huber estimator, and

Ma et al. (2015), with L2 E estimator, despite of their dif-

ferent modeling of deformation. A fairly different method is

proposed in Li and Hu (2010), in which the Support Vec-

tor Regression technique is employed to robustly estimate a

correspondence function and reject mismatches.

The seminal work vector field consensus (VFC) (Ma

et al. 2013a, 2014) introduces a new framework for non-

rigid matching. The deformation function is restricted within

the reproducing kernel Hilbert space in association with

Tikhonov regularization to enforce the smoothness con-

straint. The estimation is conducted in a Bayesian model,

where the outliers are explicitly considered for robustness.

The VFC algorithm, and its variants (Ma et al. 2015b, 2017a,

2019b) have been proven effective.

4.5.4 Relaxed Methods

The recent trend has been towards developing relaxed meth-

ods for matching, where the geometric constraint is made

less strict to accommodate even complex scenarios, such

as motion discontinuities arising from image pairs of wide

baselines or with objects undergoing independent motions.

Certain GM methods (Leordeanu and Hebert 2005; Liu

and Yan 2010) are available for such requirements and use

quadratic models that incorporate pairwise geometric rela-

tions of correspondences to find the potentially correct ones.

However, the results are often coarse.

Lipman et al. (2014) considered deformations that are

piecewise affine; they then formulated feature matching into

a constrained optimization problem that seeks for such a

deformation consistent with the most correspondences and

exerts a bounded distortion. Lin et al. (2014, 2017) pro-

posed to identify true matches with likelihood functions

estimated using nonlinear regression technique in a specially

designed domain of correspondence, where motion coher-

ence is imposed, while discontinuities are also allowed. This

concept corresponds to enforcing a local motion coherence

constraint. Ma et al. (2018a, 2019d) presented a locality pre-

serving approach for matching, whereby a global distortion

model for matching is relaxed to focus on the locality of

each correspondence in exchange for generality and effi-

ciency. The derived criterion has been proven able to rapidly

and accurately filter erroneous matches. A similar method

appeared in Bian et al. (2017) wherein a simple criterion

based on local supporting matches to reject outliers is intro-

duced. Jiang et al. (2020a) casted feature matching as a

spatial clustering problem with outliers to adaptively cluster

the putative matches into several motion consistent clusters

together with an outlier/mismatch cluster. Another method

in Lee et al. (2020) formulates the feature matching prob-

lem as a Markov random field that uses both local descriptor

distance and relative geometric similarities to enhance the

robustness and accuracy.

4.6 Learning for Matching

Apart from detectors or descriptors, learning-based matching

methods are commonly used to substitute traditional meth-

ods in information extraction and representation or model

regression. The matching step by learning can be roughly

classified into image-based and point-based learning. Based
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on the traditional methods, the former aims to cope with three

typical tasks, namely image registration (Wu et al. 2015a),

stereo matching (Poursaeed et al. 2018) and camera local-

ization or transformation estimation (Poursaeed et al. 2018;

Erlik Nowruzi et al. 2017; Yin and Shi 2018). Such a method

can directly realize task-based learning without attempting

to detect any salient image structure (e.g. interest points) in

advance. By contrast, point-based learning prefers conduct-

ing on the extracted point sets; such methods are commonly

used for point data processing, such as classification, seg-

mentation (Qi et al. 2017a, b) and registration (Simonovsky

et al. 2016; Liao et al. 2017). Researchers have also used

these for correct match selection and geometrical transfor-

mation model estimation from putative match sets (Moo Yi

et al. 2018; Ma et al. 2019a; Zhao et al. 2019; Ranftl and

Koltun 2018; Poursaeed et al. 2018).

4.6.1 Learning from Images

Matching methods of image-based learning often use CNNs

for image-level latent information extraction and similar-

ity measurement, as well as geometrical relation estimation.

Therefore, the patch-based learning (Sect. 3.3: learning-

based feature descriptors) is frequently used as an extension

of area-based image registration and stereo matching. This

is because traditional similarity measurements in a sliding

window can be easily replaced with a deep manner, i.e., deep

descriptors. However, the success achieved by researchers in

using deep learning in spatial transformation networks (STN)

(Jaderberg et al. 2015) and optical flow estimation (FlowNet)

(Dosovitskiy et al. 2015) has aroused a wave of studies on

directly estimating the geometrical transformation or non-

parametric deformation field with deep learning techniques,

even achieving an end-to-end trainable framework.

Image registration. For area-based image registration,

early deep learning is generally used as a direct extension

of the classical registration framework, and later use the

reinforcement learning paradigm to iteratively estimate the

transformation, even directly estimate the deformative field

or displacement field for the registration task. The most intu-

itional approach is to use deep learning networks to estimate

the similarity measurement for the target image pair in order

to drive an iterative optimization procedure. In this way,

the classical measure metrics, such as the correlation-like

and MI methods, etc., can be substituted with more supe-

rior deep metrics. For instance, Wu et al. (2015a) achieved

deformable image registration by using the convolutional

stacked auto-encoder (CAE) to discover compact and highly

discriminative features from the observed image patch data

for similarity metrics learning. Similarly, to obtain better

similarity measure, Simonovsky et al. (2016) used a deep

network trained from a few aligned image pairs. In addi-

tion, a fast, deformable image registration method called

Quicksilver (Yang et al. 2017b) has been devised by the

patch-wise prediction of a deformation model directly using

image appearance, whereby a deep encoder-decoder network

is used for predicting the large deformation diffeomorphic

model. Inspired by deep convolution, Revaud et al. (2016)

introduced a dense matching algorithm based on a hierarchi-

cal correlation architecture. This method can handle complex

non-rigid deformations and repetitive textured regions. Arar

et al. (2020) introduced an unsupervised multi-modal image

registration technique based on an image-to-image transla-

tion network with geometric preserving constraints.

Different from metric learning, a trained agent is used for

image registration with a reinforcement learning paradigm,

and typically for estimating a rigid transformation model

or a deformable field. Liao et al. (2017) first used the rein-

forcement learning for rigid image registration, in which an

artificial agent and a greedy supervised approach coupled

with attention-driven hierarchical strategy are used to realize

the “strategy learning” process and find the best sequence of

motion actions to yield image alignment. An artificial agent,

which explores the parametric space of a statistical deforma-

tion model by training from a large number of synthetically

deformed image pairs, is also trained in Krebs et al. (2017)

to cope with deformable registration problem and the diffi-

culty in extracting reliable ground-truth deformable fields of

real data. Instead of using a single agent, Miao et al. (2018)

proposed a multi-agent reinforcement learning paradigm for

medical image registration in which the auto-attention mech-

anism is used for receptive multiple image regions. However,

the reinforcement learning is often used to predict iterative

updates of the regression procedure and still consumes large

computation in the iterative process.

To reduce the run time and avoid explicitly defining

a dissimilarity metric, end-to-end registration in one shot

has received increasing attention. Sokooti et al. (2017) first

designed deep regression networks to directly learn a dis-

placement vector field from a pair of input images. Another

method in de Vos et al. (2017) similarly trained a deep

network to regress and output the parameters of spatial trans-

formation, which can then generate the displacement field

to warp the moving image to the target image. However,

a similarity metric between image pairs is still required to

achieve unsupervised optimization. More recently, a deep

learning framework has been introduced in de Vos et al.

(2019) for unsupervised affine and deformable image reg-

istration. The trained networks can be used to register pairs

of unseen images in one shot. Similar methods regarding

deep networks as a regressor can directly learn the parame-

ter transform model from image pairs, such as Fundamental

(Poursaeed et al. 2018), Homography (DeTone et al. 2016),

and non-rigid deformation (Rocco et al. 2017).

Many other end-to-end image level learning-based reg-

istration methods are presented. Chen et al. (2019) pro-
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posed end-to-end trainable deep networks to directly predict

the dense displacement field for image alignment. Wang

and Zhang (2020) introduced DeepFLASH for efficient

deformable medical image registration, which is imple-

mented in a low dimensional bandlimited space thus dra-

matically reduces the computational and memory request.

To simultaneously enhance the topology preservation and

smoothness of the transformation model, Mok and Chung

(2020) proposed an efficient unsupervised symmetric image

registration method which maximizes the similarity between

images within the space of diffeomorphic maps and estimates

both forward and inverse transformations simultaneously. In

Truong et al. (2020), the authors introduced a universal net-

work for geometric matching, optical flow estimation and

semantic corresponding, which can achieve both high accu-

racy and robustness by investigating the combined use of

global and local correlation layers. See more details in the

registration-specific reviews (Ferrante and Paragios 2017;

Haskins et al. 2020).

Stereo matching. Over the past years, analogous to regis-

tration, numerous studies in stereo matching have focused on

accurately computing the matching cost by using deep con-

volutional techniques and refining the disparity map (Zbontar

and LeCun 2015; Luo et al. 2016; Zbontar and LeCun 2016;

Shaked and Wolf 2017). In addition to the deep descriptors,

such as DeepCompare (Zagoruyko and Komodakis 2015)

and MatchNet (Han et al. 2015), etc., Zbontar and LeCun

(2015) introduced a deep Siamese network to compute the

matching cost, which is trained to predict the similarity

between image patches. They further proposed a series of

CNNs (Zbontar and LeCun 2016) for the binary classifi-

cation of pairwise matching and applied these in disparity

estimation. Similar to converting the computation of match-

ing costs into a multi-label classification problem, Luo et al.

(2016) proposed an efficient Siamese network for fast stereo

matching. In addition, Shaked and Wolf (2017) improved

the performance by computing the matching cost with the

proposed constant highway networks and the disparity esti-

mation with reflective confidence learning.

The end-to-end deep manner for this matching task has

drawn increasing attention in recent years. For instance,

Mayer et al. (2016) trained an end-to-end CNN in their Disp-

Net to obtain a fine disparity map, which is extended by

Pang et al. (2017) with a two-stage CNN called cascade

residual learning (CRL). More recently, a spatial pyramid

pooling module together with a 3-D convolutional strat-

egy has been introduced in Chang and Chen (2018). This

approach can exploit global context information to enhance

stereo matching. Inspired from CycleGAN (Zhu et al. 2017)

and to deal with domain gap, Liu et al. (2020) proposed

an end-to-end training framework to translate all synthetic

stereo images into realistic ones simultaneously maintain

epipolar constraints. This method is implemented through

a jointly optimizing between domain translation and stereo

matching. Another method in Yang et al. (2020) learns the

wavelet coefficients of the disparity rather than the disparity

itself, which can learn global context information from low

frequency submodule and details from others. Moreover, the

guided strategy (Zhang et al. 2019a; Poggi et al. 2019) is also

utilized for stereo matching.

Stereo matching with deep convolutional techniques has

been dominated for their top performance in public bench-

marks2. However, the use of CNNs in stereo matching

community is limited by the input image pairs, which are

generally captured from the binocular camera with a narrow

baseline and epipolar rectification. Nevertheless, the network

structure, basic ideas, and some tricks or strategies in these

learning-based stereo matching may have a strong reference

for general image matching tasks.

4.6.2 Learning from Points

Learning from points is not as popular as those in images

for feature extraction, representation and similarity mea-

surements. Point-based learning, particularly for feature

matching, has only been introduced in recent years. This

is because using CNNs on point data is more difficult than

on raw images due to the unordered structure and dispersed

nature of sparse points. Moreover, operating and extract-

ing the spatial relationships, such as neighboring elements,

relative positions, length, and angle information, among

multi-points using deep convolutional techniques are chal-

lenging. However, using deep learning techniques to solve

points-based tasks has received increasing considerations.

These techniques can be roughly divided into parameter fit-

ting (Brachmann et al. 2017; Ranftl and Koltun 2018) and

point classification and/or segmentation (Qi et al. 2017a, b;

Moo Yi et al. 2018; Ma et al. 2019a; Zhao et al. 2019). The for-

mer is inspired by the classical RANSAC algorithm and aims

to estimate the transformation model, such as fundamen-

tal matrix (Ranftl and Koltun 2018) and epipolar geometry

(Brachmann and Rother 2019), by means of a data-driven

optimization strategy with CNNs. However, the latter tends

to train a classifier to identify the true matches from putative

match set. Generally, parameter fitting and point classifica-

tion are trained jointly for performance enhancement.

For trainable fundamental matrix estimation, Brachmann

et al. (2017) proposed a differentiable RANSAC, termed as

DSAC, which is based on reinforcement learning in an end-

to-end manner. They replaced the deterministic hypothesis

selection by probabilistic selection to decrease the expected

loss and optimize the learnable parameters. Subsequently,

Ranftl and Koltun (2018) presented a trainable method for

2 http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?

benchmark=stereo
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fundamental matrix estimation from noise, which is casted

as a series of weighted homogeneous least-squares prob-

lem, where the robust weights are estimated with deep

networks. Similar to DSAC, using learning techniques to

improve re-sampling strategy is also introduced in Brach-

mann and Rother (2019) and Kluger et al. (2020). Brachmann

and Rother (2019) proposed NG-RANSAC, a robust estima-

tor using learned guidance of hypothesis sampling. It uses

the inlier count itself as training objective to facilitate self-

supervised learning of NG-RANSAC, and can incorporate

non-differentiable task loss functions and non-differentiable

minimal solvers. While CONSAC (Kluger et al. 2020) is

introduced as a robust estimator for multiple parametric

model fitting. It uses neural network to sequentially update

the conditional sampling probabilities for the hypothesis

selection.

Learning-based mismatch removal methods have been

developed in recent years. Moo Yi et al. (2018) first attempted

to introduce a learning-based technique termed as learning to

find good correspondences (LFGC), which aims to train a net-

work from a set of sparse putative matches together with the

image intrinsics under the rigid geometrical transformation

constraints, and to label the test correspondences as inliers or

outliers and output the camera motion simultaneously. How-

ever, the LFGC may sacrifice many true correspondences

to estimate the motion parameters, failing to handle general

matching problems, such as deformable and non-rigid image

matching. To this end, Ma et al. (2019a) proposed a gen-

eral framework to learn a two-class classifier for mismatch

removal called LMR, which uses a few images, and hand-

crafted geometrical representation for training. Their method

showed promising matching performance with linearithmic

time complexity. More recently, Zhang et al. (2019b) focused

on the geometrical recovery based on their order-aware net-

works (OAN) and have achieved promising performance

on pose estimation. Sarlin et al. (2020) proposed Super-

Glue, to match two sets of local features by jointly finding

correspondences and rejecting non-matchable points. This

method is implemented with graph neural networks (Scarselli

et al. 2009) for differentiable transport problem optimiza-

tion. Similar graph neural network pipeline has been adopted

by an emerging research branch namely deep graph match-

ing (Wang et al. 2019; Yu et al. 2020a; Fey et al. 2020),

where cross-graph convolution (Wang et al. 2019), channel-

independent embedding (Yu et al. 2020a) and Spline-based

convolution (Fey et al. 2020) are proposed and adopted for

supervised graph correspondence learning.

Even though applying CNNs onto point data is difficult,

the latest techniques have shown great potential for matrix

estimation and point data classification with deep regressor

and classifier, particularly for the challenging data or scenar-

ios. Moreover, the multi-layer perception methods in natural

language processing and the graph convolutional techniques

may serve as great references for addressing these dispersed

and unstructured point data in the matching task.

4.7 Matching in 3-D Cases

Similar to its 2-D counterpart, 3-D matching methods

often involve two steps, i.e., namely, keypoint detection

and local feature description, and a sparse correspondence

set can then be established by calculating the similarities

between descriptors. Although most methods use local fea-

ture descriptors, which are designed to be robust to noise

and deformations to establish correspondences between 3-D

instances, a variety of classical and recent works fall into

another category. We refer the readers to the recent surveys

(Biasotti et al. 2016; Van Kaick et al. 2011) in the shape

matching area given that a detailed review of the literature is

beyond the scope for this paper.

The embedding methods aim to parametrize the com-

plex matching problem with less degrees of freedom for

tractability by exploiting some natural assumptions (e.g.,

approximate isometry). A traditional approach is proposed

by Elad and Kimmel (2003) to match shapes by embedding

them in an intermediate Euclidean space. In this approach,

the geodesic distances are approximated by Euclidean ones,

and the original non-rigid registration problem is reduced to

rigid registration in the intermediate space. Notably, another

work developed conformal mapping approaches that also use

embedding space (Lipman and Funkhouser 2009; Kim et al.

2011; Zeng et al. 2010).

A more direct approach is to find a point-wise match-

ing between (subsets of) points on shapes by minimizing

the structure distortion. This formulation was developed

by Bronstein et al. (2006), who introduced a highly non-

convex and non-differentiable objective and generalized

multidimensional scaling technique for optimization. Some

researchers have also attempted to mitigate the prohibitively

high computational complexity issue (Sahillioglu and Yemez

2011; Tevs et al. 2011) while considering the quadratic

assignment formulation (Rodola et al. 2012, 2013; Chen and

Koltun 2015; Wang et al. 2011) in graph matching.

The family of methods based on the functional map frame-

work was first developed by Ovsjanikov et al. (2012). Instead

of point-to-point matching in Euclidean space, these meth-

ods represent the correspondences using the functional map

between two manifolds, which can be characterized by linear

operators. The functional map can be encoded in a compact

form by using the eigenbases of the Laplace-Beltrami oper-

ator. Most natural constraints on the map, such as landmark

correspondences and operator commutativity, become lin-

ear in this formulation, leading to an efficient solution. This

approach was adopted and extended in many follow-up works

(Aflalo et al. 2016; Kovnatsky et al. 2015; Pokrass et al. 2013;

Rodolà et al. 2017; Litany et al. 2017).
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Point set learning in 3-D cases for registration is also a

hot topic. Yew et al. (2020) proposed RPM-Net for rigid

point cloud registration, in which it desensitizes initializa-

tion and improves convergence performance with learned

fusion features. Gojcic et al. (2020) introduced an end-to-

end multiview point cloud registration framework by directly

learning to register all views of a scene in a globally consistent

manner. Pais et al. (2020) introduced a learning architecture

for 3D point registration, namely 3DRegNet. This method

can identify true point correspondences from a set of puta-

tive matches, and regress the motion parameters to align the

scans into a common reference frame. Choy et al. (2020)

used high-dimensional convolutional networks to detect lin-

ear subspaces in high-dimensional spaces, then applied it for

3D registration under rigid motions and image correspon-

dence estimation.

4.8 Summary

Given a pair of images of similar object/scene and with/without

the feature detection and/or description, the matching tasks

have been extended into several different forms, such as

image registration, stereo matching, feature matching, graph

matching, and point set registration. These different matching

definitions are generally introduced for specific applications,

with their own strengths presented.

Traditional image registration and stereo achieve dense

matching by means of patch-wise similarity measuring

together with optimization strategy to search the overall opti-

mal solution. However, they are conducted on image pairs of

high overlapping area (slight geometrical deformation) and

binocular camera, and these may require large computational

burden and the limited handcrafted measuring metrics.

The introduction of deep learning has promoted registra-

tion accuracy and disparity estimation due to advancements

in network design and loss definition, as well as abundant

training samples. However, we also find that using deep

learning for these matching tasks is usually performed on

image pairs undergoing slight geometrical deformation such

as medical image registration and binocular stereo match-

ing. Applying them for more complex scenarios, such as

wide baseline images stereo or image registration with seri-

ous geometric deformations, still remains open.

Feature-based matching can effectively address the limita-

tions in large viewpoint, wide baseline, and serious non-rigid

image matching problems. Among those proposed in the

literature, the most popular strategy is to construct the puta-

tive matches based on descriptor distance, followed by a

robust estimator such as RANSAC. However, a large num-

ber of mismatches in the putative match sets may negatively

affect the performance in subsequent visual task and also

require considerable time for model estimation. Therefore,

the mismatch removal method is required and integrated to

preserve as many true matches as possible while maintain-

ing the mismatch to a minimum level using extra geometrical

constraints. Specifically, the resampling-based method, such

as RANSAC, can estimate the latent parameter model and

simultaneously remove the outliers. However, their theoreti-

cally required runtime grows exponentially with the increase

in outlier rate, and they cannot process the image pairs that

undergo more complex non-rigid transformations. The non-

parametric model-based methods can handle the non-rigid

image matching problem by using high-dimensional non-

parametric model, but it is still challenging in defining the

objective function and finding the optimal solution in a more

complex solution space. Different from the global constraints

in the resampling and non-parameter model-based methods,

the relaxed mismatch removal methods are commonly con-

ducted on a local coherent assumption of potential inliers.

Thus, much simpler but efficient rules are designed to fil-

ter out the outliers while maintaining the inliers within an

extremely short time. However, methods of this type are lim-

ited due to their parameter sensitivity; moreover, they are

prone to preserve evident outliers, thereby affecting the accu-

racy of subsequent pose estimation and image registration.

In addition, the image patch-based descriptor may not be

workable due to the matching request in less-texture images,

shape, semantic images, and the raw points directly captured

from specific device. Therefore, for performing the matching

task of these situations, the graph matching and point regis-

tration methods are more suitable. The graph structure among

neighboring points and the overall corresponding matrix are

applied to optimize and find the optimal solution. However,

these pure point-based methods are limited by restrictions in

their computation burden and outlier sensitivity. Therefore,

designing appropriate problem formulation and constraint

conditions, and proposing more efficient optimization meth-

ods, are still open problems in image matching community

and require further research attention.

Analogously to image-based learning, increasing studies

have used deep learning in feature-based matching commu-

nity. The latest techniques have shown great potential for

matrix estimation (e.g. fundamental matrix) and point data

classification (such as mismatch removal) with deep regres-

sor and classifier, particularly for handling challenging data

or scenarios. However, conducting convolutional networks

on point data is not as easy as on raw images due to the

unordered structure and dispersed nature of these sparse

points. Nevertheless, recent studies have shown the feasibil-

ity of using the graph convolutional strategy and multi-layer

perception methods, together with specific normalization on

such point data. In addition to rigid transformation parameter

estimation, matching on point data with non-rigid and even

serious deformation by using deep convolutional techniques

may be a more challenging and significant problem.
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5 Matching-Based Applications

Image matching is a fundamental problem in computer vision

and is considered a critical prerequisite in a wide range of

applications. In this section, we briefly review several repre-

sentative applications.

5.1 Structure-from-Motion

Structure-from-motion (SfM) involves recovering the 3-D

structure of a stationary scene from a series of images,

which are obtained from different viewpoints by estimat-

ing the camera motions corresponding to these images. SfM

involves three main stages, namely, (i) feature matching

across images, (ii) camera pose estimation, and (iii) recovery

of the 3-D structure using the estimated motion and features.

Its efficacy largely depends on the admissible set of feature

matches.

In modern SfM systems (Schonberger and Frahm 2016;

Wu 2018; Sweeney et al. 2015), the feature matching pipeline

is widely adopted across images, i.e., feature detection,

description, and nearest-neighbor matching, to provide ini-

tial correspondences. The initial correspondences contain a

number of outliers. Thus, geometric verification is required,

which is tackled via the estimation fundamental matrix using

RANSAC (Fischler and Bolles 1981). This can potentially

be addressed by mismatch removal methods.

Meanwhile, to enhance the SfM task, researchers have

focused on performing robust feature matching, i.e., thus

establishing rich and accurate correspondences. Evidently,

advanced descriptors can greatly affect this task (Fan et al.

2019). Moreover, Shah et al. (2015) proposed a geometry-

aware approach, which initially uses a small sample of

features to estimate the epipolar geometry between the

images and leverages it for the guided matching of the

remaining features. Lin et al. (2016b) utilized RANSAC to

guide the training of match consistency curves for differ-

entiating true and false matches. Their approach traces the

common problems of wide-baselines and repeated structures

for reconstructing modern cities. These correspondences are

also the prerequisites for camera pose estimation, and the

effective substitution of commonly used RANSAC for this

task has also been investigated (Moo Yi et al. 2018), with a

pre-stage of identifying good correspondences.

5.2 Simultaneous Localization andMapping

Acquiring maps of the environment is a fundamental task

for autonomous mobile robots, thereby forming the basis

of many different higher-level tasks, such as navigation and

localization. The problem of simultaneous localization and

mapping (SLAM) (Davison et al. 2007; Mur-Artal et al. 2015;

Sturm et al. 2012) has received intensive attention over the

decades.

In common SLAM systems, feature matching is needed to

establish correspondences between frames, which then serve

as the input for estimating the relative camera pose and local-

ization. Similar to SfM, the full-fledged feature matching

pipeline is used in most SLAM systems. Typically, in Endres

et al. (2012), Endres et al. introduced a SLAM system that

incorporates feature matching to establish spatial relations

from the sensor data in the front-end. The well-known SIFT

(Lowe 2004), SURF (Bay et al. 2008), and ORB (Rublee et al.

2011) algorithms are optionally used to detect and describe

features, and RANSAC (Fischler and Bolles 1981) is subse-

quently used for robust matching.

An evaluation of different feature detectors and descrip-

tors can be found in Gil et al. (2010). Recently, Lowry and

Andreasson (2018) proposed a spatial verification method for

visual localization, which is robust in the presence of a high

proportion of outliers. For a SLAM system that percepts 3-

D range scans, the point set registration methods (e.g. ICP)

(Nüchter et al. 2007) are also used for scan matching and

localizing the robot.

Loop closure detection–another core module in SLAM

application–refers to accurately asserting that an agent has

returned to a previously visited location. It is crucial to reduce

the drift of the estimated trajectory caused by accumula-

tive error. A group of appearance-based approaches have

been developed to use image similarities to identify previ-

ously visited places. Feature matching results are naturally

applicable to measure the similarity of two scenes and have

been the bases of many state-of-the-art methods. For exam-

ple, Liu and Zhang (2012) performed feature matching with

SIFT between the current image and each previously vis-

ited image, after which they determined the closed loop on

the basis of the number of accurate matches in the results.

Zhang et al. (2011) used directed matching of raw features

extracted from images for detecting loop-closure events. To

achieve loop closure detection, Wu et al. (2014) used LSH

as the basic technique by matching the binary visual features

in the current view of a robot with the visual features in the

robot appearance map. Liu et al. (2015a) developed a consen-

sus constraint to prune outliers and verified the superiority

of their methods for loop closure detection.

5.3 Visual Homing

Visual homing aims to navigate a robot from an arbitrary

starting position to a goal or home position based solely

on visual information. This is often accomplished by esti-

mating a homing vector/direction (pointing from the current

position to the home position) from two panoramic images,

which are captured respectively at the current position and

the home position. Conventionally, feature matching serves
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as the building block of correspondence methods in visual

homing research (Möller et al. 2010). In this category, the

homing vector can be determined by transforming the cor-

respondences into motion flows (Ma et al. 2018b; Churchill

and Vardy 2013; Liu et al. 2013; Zhao and Ma 2017).

Ramisa et al. (2011) combined the average landmark vec-

tor with invariant feature points automatically detected in

panoramic images to achieve autonomous visual homing.

However, the feature matches are solely determined by the

similarity of the descriptors in the method, thus leading to a

number of mismatches. The presence of outliers has been ver-

ified to be the reason of performance degradation for visual

homing (Schroeter and Newman 2008). In order to resolve

the degradation caused by mismatches, Liu et al. (2013) used

a RANSAC-like method to remove mismatches. Meanwhile,

Zhao and Ma (2017) proposed a visual homing method by

simultaneously mismatch removal and robust interpolation

of sparse motion flows under a smoothness prior. Ma et al.

(2018b) also proposed a guided locality preserving matching

method to handle extremely large proportions of outliers and

improve the visual homing robustness.

5.4 Image Registration and Stitching

Image registration is the process of aligning two or more

images of the same scene obtained from different view-

points, at different times, or from different sensors (Zitova

and Flusser 2003). In the past decades, feature-based methods

in which the key requirement is feature matching have gained

increasing attention due to its robustness and efficiency.

Once the correspondence is established, image registration

is reduced to estimate the transformation model (e.g., rigid,

affine, or projective). Finally, the source image is transformed

by means of the mapping functions, which rely on some

interpolation technique (e.g., bilinear and nearest neighbor).

A large number of works have been proposed for feature

matching and image registration. Ma et al. (2015b) pro-

posed a Bayesian formulation for rigid and non-rigid feature

matching and image registration. To further exploit the geo-

metrical cues, the locally linear transforming constraint is

incorporated. They also recently proposed a guided local-

ity preserving matching method (Ma et al. 2018a). Their

proposed method can significantly reduce the computational

complexity and is able to deal with a more complex transfor-

mation model. For non-rigid image registration, Pilet et al.

(2008) and Gay-Bellile et al. (2008) proposed solutions,

where robust matching techniques are insensitive to outliers.

Some efforts (Paul and Pati 2016; Ma et al. 2017b; Yang

et al. 2017a) also attempted to modify feature detectors and

descriptors to improve the registration process.

The problem of multi-modal image registration is more

complicated due to the high variability of appearance caused

by different modalities, which frequently arise in medical

image and multi-sensor image analysis. For example, Chen

et al. (2010) developed the partial intensity invariant feature

descriptor (PIIFD) to register retinal images, whereas Wang

et al. (2015) extended PIIFD in a more robust registration

framework with SURF detector (Bay et al. 2008) and a single

Gaussian point matching model. On the basis of the charac-

teristics of multi-modal images, Liu et al. (2018a) proposed

an affine and contrast invariant descriptor for IR and visible

image registration. Du et al. (2018) also proposed an IR and

visible image registration method based on scale-invariant

PIIFD feature and locality preserving matching. Ye et al.

(2017) proposed a novel feature descriptor based on the struc-

tural properties of images for multi-modal registration. A

detailed discussion of feature matching-based, multi-modal

registration techniques of the medical image analysis area,

which are categorized as geometric methods, can be found

in Sotiras et al. (2013).

Meanwhile, image stitching or image mosaic involves

obtaining a wider field-of-view of a scene from a sequence

of partial views (Ghosh and Kaabouch 2016). Compared to

image registration, image stitching deals with low overlap-

ping images and requires accurate alignment in the pixel-

level to avoid visual discontinuities. Feature-based stitching

methods are popular in this area because of their invariance

properties and efficiency. For example, in order to iden-

tify geometrically consistent feature matches and achieve

accurate homography estimation, Brown and Lowe (2007)

proposed the use of the SIFT (Lowe 2004) feature matching

and the RANSAC (Fischler and Bolles 1981) algorithm. Lin

et al. (2011) used SIFT (Lowe 2004) to pre-compute matches

and then jointly estimating the matching and the smoothly

varying affine fields for better stitching performance. Inter-

ested readers can refer to the comprehensive survey (Ghosh

and Kaabouch 2016; Bonny and Uddin 2016) for an overview

of more feature-based image mosaic and stitching methods.

5.5 Image Fusion

To generate a more conducive image to subsequent appli-

cations, image fusion is adopted to combine the meaningful

information from images acquired by different sensors or

under different shooting settings (Pohl and Van Genderen

1998), wherein the source images have been accurately

aligned in advance. The very premise of image fusion is to

register source images using feature matching methods, and

the accuracy of registration directly affects the fusion quality.

Liu et al. (2017) used the CNN to jointly generate the activ-

ity level measurement and fusion rules for multi-focus image

fusion. Meanwhile, Ma et al. (2019c) proposed an end-to-end

model for infrared and visible image fusion, which generates

images with a dominant infrared intensity and an additional

visible gradient under the framework of generative adversar-

ial networks. Subsequently, they introduced a detail loss and
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a target edge-enhancement loss to further enrich the texture

details (Ma et al. 2020).

A group of methods aim to fuse images based on the local

features, among which the dense SIFT is the most popu-

lar. Liu et al. (2015b) proposed the fusion of multi-focus

images with dense scale invariant feature transform, wherein

the local feature descriptors are used not only as the activity

level measurement, but also to match the mis-registered pix-

els between multiple source images to improve the quality

of the fusion results. Similarly, Hayat and Imran (2019) pro-

posed a ghost-free multi-exposure image fusion technique

using the dense SIFT descriptor with a guided filter, which

can produce high-quality images using ordinary cameras. In

addition, Chen et al. (2015) and Ma et al. (2016a) introduced a

method that can perform image registration and image fusion

simultaneously, thus fulfilling image fusion on unaligned

image pairs.

5.6 Image Retrieval, Object Recognition and
Tracking

Feature matching can be used to measure similarity between

images, thereby enabling a series of high-level applications,

including image retrieval (Zhou et al. 2017), object recogni-

tion, and tracking. The goal of image retrieval is to retrieve all

images that exhibit similar scenes for a given query image.

In local feature-based image retrieval, the image similarity

is intrinsically determined by the feature matches between

images. Thus, the image similarity score can be obtained

by aggregating votes from the matched features. In Zhou

et al. (2011), the relevance score is simply determined by the

number of feature matches across two images. In Jégou et al.

(2010), the scoring function is defined as a cumulation of the

squared term frequency inverse document frequency weights

on shared visual words, which is essentially a bag of features

of inner products.

Moreover, geometric context verification, a common tech-

nique for refining initial image retrieval result, is directly

related to feature matching. By incorporating the geometri-

cal information, geometric context verification technique can

be used to address the false match problem caused by the

ambiguity of local descriptor and the quantization loss. For

image retrieval, a large group of methods estimate the trans-

formation model in an explicit approach to verify the tentative

matches. For example, Philbin et al. (2007) used a RANSAC-

like method to find the inlier correspondences, whereas

Avrithis and Tolias (2014) developed a simple spatial match-

ing model inspired by Hough voting in the transformation

space. Another line of works address geometric context ver-

ification without explicitly handling a transformation model.

For example, Sivic and Zisserman (2003) utilized the con-

sistency of spatial context in local feature groups to verify

the tentative correspondences. Zhou et al. (2010) proposed

the spatial coding method, whereby the valid visual word

matches are identified by verifying the global relative posi-

tion consistency.

With the function of measuring similarity, feature match-

ing also plays an important role in object recognition and

tracking. For example, Lowe et al. (1999) used SIFT features

to match sample images and new images. In their proposed

method, the potential model pose is identified through a

Hough transform hash table and then through a least-squares

fit to achieve a final estimate of model parameters. The pres-

ence of the object is strongly evident if at least three keys

agree on the model parameters with low residuals. Modern

attempts for object recognition also include some specifically

handcrafted features (Dalal and Triggs 2005; Hinterstoisser

et al. 2012) and, more recently, deep learning approaches

(Wohlhart and Lepetit 2015).

Tracking basically refers to estimating the trajectory of

an object over images. Feature matching across images is

the basis of feature-based tracking, and a variety of algo-

rithms for these tasks have been proposed in the literature.

The feature matching pipeline is adopted in most visual

tracking systems, except that the matching is constrained to

those of the known features that are predicted to lie close

to the encountered position. The readers are referred to a

comprehensive evaluation of different feature detectors and

descriptors for tracking by Gauglitz et al. (2011), and the

recently presented benchmark (Wu et al. 2015b), which cov-

ers a review of modern object tracking methods as well as

the role played by feature representation methods.

6 Experiments

Diverse methods for image matching have been proposed,

particularly when the deep learning techniques are becoming

increasingly popular. However, the question of which method

would be suitable for specific applications under different

scenarios and requirements still remains. We are encouraged

to conduct more comprehensive and objective comparative

analysis of these classical and state-of-the-art techniques.

6.1 Overview of Existing Reviews

To evaluate the existing matching methods at an early time,

the classical image registration survey (Zitova and Flusser

2003) provided several definitions for evaluation of regis-

tration accuracy including localization error, matching error,

and alignment or registration error. In 2005, Mikolajczyk et

al. evaluated affine region detectors (Mikolajczyk et al. 2005)

and local descriptors (Mikolajczyk and Schmid 2005) against

changes of viewpoint, scale, illumination, blur, and image

compression on their own proposed VGG (a.k.a. Oxford)

datasets. They also presented a comprehensive compari-
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Fig. 2 Examples of the five datasets. The ground truth is given using

colored correspondences. The head and tail of each arrow in the motion

field correspond to the positions of feature points in two images (blue

= true positive, black = true negative). For visibility, in the image pairs,

at most 100 randomly selected matches are presented, and the true neg-

atives are not shown (Color figure online)

son on repeatability and accuracy for detectors and recall,

1 − precision for descriptors. Subsequently, Strecha et al.

(2008) published a dense 3-D dataset for wide-baseline stereo

and 3-D geometrical and camera pose evaluation.

In addition, Aanæs et al. (2012) evaluated some repre-

sentative detectors using a large dataset of known camera

positions, controlled illumination, and 3-D models, namely,

DTU. At the same time, Heinly et al. (2012) compared the

traditional float and binary feature operators in 2012 and eval-

uated their matching performance with the inter-combination

of existing detectors and descriptors on the public and their

own datasets. The evaluation was conducted on more system-

atic performance metrics consisting of putative match ratio,

precision, matching score, recall, and entropy. Similarly,

using inter-combination strategy, Mukherjee et al. (2015)

provided a comparative experimental analysis for selecting

appropriate combination of various detectors and descrip-

tors in order to solve the problems of image matching using

different image data.

More recently, inspired by emerging deep learning tech-

niques, Balntas et al. (2017) reported that existing defective

datasets and evaluation metrics may lead to unreliable com-

parative results. Thus, they proposed and publicized a large

benchmark for handcrafted and learned local image descrip-

tors called Hpathes. They also comprehensively evaluated

the performance of widely used handcrafted descriptors

and recent deep ones with extensive experiments on patch

recognition, patch verification, image matching, and patch

retrieval. Schonberger et al. (2017) conducted an experimen-

tal evaluation of learned local features, including classical

machine learning based variants of SIFT and recent CNN-

based techniques, in which they considered that finding

additional true matches between similar images does not

necessarily improve performance when matching images

under extreme viewpoint or illumination changes. Mitra et al.

(2018) provided a PhotoSynth (PS) dataset for training local

image descriptors. Komorowski et al. (2018) provided a sta-

bility evaluation for handcrafted and learning-based interest

point detectors on ApolloScape street dataset (Huang et al.

2018). A comprehensive comparison of local image feature

detectors based on both classical and CNN techniques is con-

ducted on public datasets (Lenc and Vedaldi 2014). That

work proposed a modified repeatability for detection eval-

uation, which is more robust to feature scale variety. Jin

et al. (2020) introduced a benchmark for local features and

robust estimation algorithms, focusing on the accuracy of the

reconstructed camera pose as their practical evaluation. In

addition, Bellavia and Colombo (2020) provided a compre-

hensive analysis and evaluation about the descriptor design

based on SIFT.

From the above mentioned, we can know that several com-

prehensive and thorough evaluation of feature detectors and

descriptors can be found in Komorowski et al. (2018), Lenc

and Vedaldi (2014), Heinly et al. (2012) and Schonberger

et al. (2017). However, in order to evaluate the local feature

methods, many studies compared the matching performances

on a 3-D reconstruction task, including the works of Fan

et al. (2019) and Schonberger et al. (2017). In the 3-D case,

Tombari et al. (2013) presented a thorough evaluation of sev-

eral state-of-the-art 3-D keypoint detectors, and Guo et al.

(2016) compared ten popular local feature descriptors in the

contexts of 3-D object recognition, 3-D shape retrieval, and
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Fig. 3 Quantitative performance of the state-of-the-art mismatch

removal algorithms on the introduced five datasets. The statistics of

precision, recall, F-score and runtime are reported for each dataset, and

the average values are given in the legend. From top to bottom, the statis-

tics of DAISY, DTU, Retina, RemoteSensing and VGG. The results are

presented in cumulative distribution, a point on the curve with coordi-

nate (x, y) denotes that there are (100∗x) percents of image pairs which

have the performance value (i.e., precision, recall, F-score or runtime)

no more than y

3-D modeling. Several matching related applications, such

as image retrieval (Zheng et al. 2018) and visual localization

(Piasco et al. 2018), have also been evaluated recently. We

refer the readers to these works for a detailed discussion of

their performance. For mismatch removal, point set regis-

tration, graph matching, and the application performance of

pose estimation and loop-closure detection, we will present

both quantitative and qualitative comparisons.

6.2 Results onMismatch Removal

We conduct experiments on five image matching datasets

with ground truth. Our primary aim is to evaluate different
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mismatch removal methods. The features of each image are

assumed to be detected and described, and the open source

VLFeat toolbox is used to determine the putative correspon-

dence using SIFT (Lowe 2004). The details of the adopted

datasets are described as follows, and some representative

image matching examples from the used datasets are illus-

trated in Fig. 2. The ground truth of each dataset is checked

by the provided geometrical transform matrix, such as homo-

graph, or provided in the manner that each match is manually

labeled as true or false. The experiments of this part are per-

formed on a desktop with 3.4 GHz Intel Core i5-7500 CPU,

8GB memory.

DAISY (Tola et al. 2010): The dataset consists of wide

baseline image pairs with ground truth depth maps, includ-

ing two short image sequences and several individual image

pairs. We match each two images in one sequence and all

the individual pairs are used, which creates in total 47 image

pairs for evaluation. This dataset is a challenging one due

to the large number of matches, which is up to 8000. The

average numbers of matches and inlier rate are 1191.6 and

77.99%, respectively.

DTU (Aanæs et al. 2016): The dataset is originally desig-

nated for multiple-view stereo evaluation, which involves a

number of different scenes with a wide range of objects. The

ground truth camera positions and internal camera param-

eters have high accuracy. Two scenes are selected for this

dataset (i.e., Frustum and House), after which we create 130

image pairs for evaluation. These scenes generally have large

viewpoint changes in the scenes. The average numbers of

matches and inlier rate are 729.3 and 58.83%, respectively.

Retina (Ma et al. 2019d) It consists of 70 retinal image

pairs with non-rigid transformation. Due to different modal-

ities between images, ambiguous putative matches are gen-

erated, resulting in a small number of correct matches and a

low inlier ratio. The average numbers of matches and inlier

rate are 158.4 and 41.56%, respectively.

RemoteSensing (Ma et al. 2019d) There are 161 remote

sensing image pairs including color-infrared, SAR, and

panchromatic photographs. The feature matching task for

such image pairs typically arises in image-based position-

ing as well as navigating and change detection. The average

numbers of matches and inlier rate are 767.6 and 68.50%,

respectively.

VGG (Mikolajczyk and Schmid 2005) It contains 40

image pairs either of planar scenes or captured by a cam-

era in a fixed position during acquisition. Hence, the image

transformation can be precisely described by homography.

The ground truth homographies are included in the dataset.

These abovementioned datasets are collected and avail-

able at. 3 In addition, a small UAV image registration dataset

(SUIRD) is also provided for image registration or match-

3 https://github.com/StaRainJ/Imgae_matching_Datasets.

ing research. This dataset includes 60 pairs of low-altitude

remote sensing images captured by small UAV and their

groundtruth. The image pairs contain viewpoint changes in

horizontal, vertical, their mixture and extreme patterns which

produce problems of low overlap, image distortion and severe

outliers.4 Throughout the experiments, we use three evalua-

tion metrics: precision, recall, and F-score. Given the number

of true positives (TP), true negatives (TN), false positives

(FP) and false negatives (FN), the precision is obtained by:

P =
T P

T P + F P
. (5)

The recall is given as follows:

R =
T P

T P + F N
. (6)

The F-score, as a summary statistic of precision and recall,

is obtained as follows:

F =
2 × P × R

P + R
. (7)

The mismatch removal methods include: RANSAC (Fis-

chler and Bolles 1981) (abbreviated as RS), SM (Leordeanu

and Hebert 2005), ICF (Li and Hu 2010), GS (Liu and Yan

2010), LO-RANSAC (Lebeda et al. 2012) (abbreviated as

LRS), VFC (Ma et al. 2014), LPM (Ma et al. 2019d), GMS

(Bian et al. 2017), and LFGC (Moo Yi et al. 2018).

Figure 3 shows the performance on the five datasets

evaluated by precision, recall, F-score, and runtime with

cumulative distribution. In addition, the average values of

each statistic is summarized in Table 1 for a more straightfor-

ward comparison. The graph matching methods, SM and GS,

have shown relatively weak performances given the graphi-

cal model, albeit with strong generality, only excavates the

shallow pairwise geometric constraints. Random sampling

methods, RS and LRS, hold the key assumption that the

image pairs are related by parametric models. This assump-

tion seems to work well in the datasets; however, their time

costs are not favorable. The non-parametric interpolation

method VFC is relatively robust and outperforms ICF. How-

ever, its computational cost is higher than that of some other

strong competitors, e.g., LPM. LPM is simple to implement.

It utilizes a more relaxed geometric constraint, yet it achieves

surprisingly excellent performance and becomes the best per-

former considering the time cost. Compared with GMS, it

obtains much better performance with only a slight increase

in runtime. The recent trend has suggested a deep learning

paradigm for differentiating mismatches, e.g. LFGC. LFGC

has proven to be much more effective than the traditional

4 https://github.com/yyangynu/SUIRD/tree/master/SUIRD_v2.2.
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Fig. 4 2-D shape contours used in our experiments, from left to right, fish, whale, fu, beijing

Fig. 5 The bunny and wolf pattern of 3-D point cloud used in our

experiments

methods. However, in our case, it has a restricted performance

with low recall and high accuracy, resulting in the failure

in RemoteSensing. This finding indicates that the learning

methods are data-dependent with limited generality.

6.3 Results on Point Set Registration

The experiments for point set registration consist of two

parts: non-rigid registration with 2-D shape contour data

and rigid registration with 3-D point cloud data. In the 2-D

case, six representative methods, namely, TPS-RPM (Chui

and Rangarajan 2003), GMM (Jian and Vemuri 2011), CPD

(Myronenko and Song 2010), L2 E (Ma et al. 2013b), PR-

GLS (Ma et al. 2015a), and APM (Lian et al. 2017) are

evaluated. In the 3-D case, the rigid versions of GMM and

CPD as well as ICP (Besl and McKay 1992) and GoICP

(Yang et al. 2016) are evaluated. The experiments of this part

are performed on a desktop with 3.4 GHz Intel Core i5-7500

CPU, 8GB memory.

The point data are normalized as inputs, thus allowing

the use of a fixed threshold to evaluate the registration per-

formance. Specifically, a point is accurately aligned if its

distance to the ground truth corresponding point is below a

given threshold. Thus, we can define the accuracy of reg-

istration as the percentage of accurately aligned points. In

our experiment, the threshold is empirically set to 0.1. Four

patterns are collected to evaluate the non-rigid 2-D registra-

tion results, as shown in Fig. 4. We also create five deformed

shapes for each pattern as the data to be registered, generating

a total of 20 instances. We also conduct noise, outlier, and

rotation experiments on these instances. For the 3-D case, as

shown in Fig. 5, two patterns are used, and we exert random

rotation to create 20 instances for each pattern. Noise and

outlier experiments are also conducted on these 40 instances.

The results of non-rigid 2-D registration are presented in

Fig. 6. The outlier experiments of APM are excluded due

to its prohibitive runtime with the increase in data points.

The experimental setting is relatively challenging, and the

weaknesses of each method have emerged. For instance,

TPS-RPM is generally robust to outliers, but it can be

degraded in the case of severe noises. CPD and GMM have

similar performances and are sensitive to outliers. L2 E and

PR-GLS utilize the information of shape context descriptor

to guide the registration, but their performances are unstable.

APM can only deal with affine deformation, thus leading to

its inferior performance. However, compared to other meth-

ods that are only locally convergent and fail to handle violent

rotations, APM is invariant to rotation owing to its global

optimality.

The results of rigid 3-D point cloud registration are pre-

sented in Fig. 7. In our random rotation settings, the locally

convergent methods, i.e., GMM, CPD, and ICP, fail to accu-

rately register the point clouds. In this regard, the globally

optimal method, GoICP, outperforms them by a large margin.
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6.4 Results on GraphMatching

Graph matching represents an alternative means to establish

correspondences between two feature sets. Here, we evalu-

ate seven state-of-the-art methods in the literature, namely,

SM (Leordeanu and Hebert 2005), SMAC (Cour et al. 2007),

IPFP (Leordeanu et al. 2009), RRWM (Cho et al. 2010), TM

(Duchenne et al. 2011), GNCCP (Liu and Qiao 2014), and

FGM (Zhou and De la Torre 2015) on several extensively

used and publicly available datasets. These datasets include

the CMU house sequence (Cho et al. 2010; Zhou and De la

Torre 2015), the car and motorbike dataset (Zhou and De la

Torre 2015; Leordeanu et al. 2012), and the Chinese char-

acter dataset (Liu and Qiao 2014; Zhang et al. 2016). The

experiments of this part are performed on a desktop with 3.4

GHz Intel Core i5-7500 CPU, 8GB memory.

The CMU house sequence consists of 111 images of a

toy house captured from different viewpoints. Each image

has 30 manually marked landmark points with known corre-

spondences. We match all images spaced by 5, 10, . . . , 110

frames and compute the average performance per separation

gap. The large gaps indicate more challenging scenes due to

the increasing perspective changes. We build the graph using

Delaunay triangulation and construct the affinity matrix sim-

ply by the edge distance as in Zhou and De la Torre (2015),

except for TM, which has high order. Different from the

original equal-size 30-node to 30-node matching, we remove

some nodes and conduct unequal-size matching experiments

with the corresponding settings of 25 versus 30 and 20 versus

30 on this dataset to test the robustness of these algorithms,

as presented in Fig. 8. The figure shows that in the equal-

size matching, most GM methods can achieve near-optimal

performance, except for the spectral relaxed baselines. For

unequal-size matching, the performance gap has emerged.

In summary, FGM achieves the best performance with the

highest time cost, and RRWM is the most balanced algo-

rithm, which is only inferior to FGM in accuracy but is much

more efficient.

The car and motorbike dataset consists of 30 pairs of car

images and 20 pairs of motorbike images obtained from the

PASCAL challenges (Everingham et al. 2010). Each pair

contains 30–60 ground-truth correspondences. We consider

the most general graph wherein the edge is directed and the

edge feature is asymmetrical. Similarly, the graph is built

with Delaunay triangulation, and the affinity matrix is con-

structed as in Zhou and De la Torre (2015) except for TM.

To test the robustness to outliers, 2 ∼ 20 outliers are ran-

domly selected from the background. As shown in Fig. 9, the

path following algorithms, i.e., GNCCP and FGM, outper-

form all other methods, except for TM with the highest time

cost. The RRWM remains competitive with high accuracy

and low runtime. The higher-order TM has achieved remark-

able performance in this experiment with consistent optimal

performance. Moreover, its runtime is reasonable due to the

adopted random sampling strategy used for constructing the

three-order affinity matrix. The direct comparison of pairwise

and higher-order graph matching methods can be unfair, but
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Fig. 10 Examples of the Chinese character dataset

the results still exhibit the efficacy of utilizing higher-order

information in GM.

The Chinese character dataset has four hand-written Chi-

nese characters with marked features wherein each character

has 10 samples. We create matching instances between all

pairs of samples for each character, i.e. 45 instances each.

The average performance is summarized in Table 2 and the

example is shown in Fig. 10. The scene is relatively challeng-

ing, and we use simple edge distances to construct affinity

matrix, resulting in the relatively low accuracy for all meth-

ods. However, the superior performers are still evident. FGM

and TM perform similarly, but TM is more efficient.

6.5 Results on Pose Estimation

The camera pose estimation aims to determine the posi-

tion and orientation of the camera with respect to the object

or scene, which is a significant step in 3-D computer vision

tasks, such as SfM, SLAM, and visual localization for self-

driving cars and augmented reality. Here, the camera pose

estimation of traditional approaches estimates the pose from

a set of 2-D versus 3-D matches between pixels in a query

image and 3-D points in a scene model. However, the 3-D

model is typically obtained via SfM, thus leading to poten-

tially inaccurate pose estimates. To address this problem, one

alternative is to perform a set of 2-D versus 2-D correspon-

dences between two or more images of the same scene.

To estimate the camera pose, the putative sparse feature

correspondences must also be constructed with off-the-shelf

feature matcher, such as SIFT. Moreover, the most classi-

cal pipeline is the combination of SIFT and RANSAC. The

geometric model can be estimated and converted into the rel-

ative camera pose, i.e., rotation matrix and translation matrix.

Many advanced handcrafted methods and trainable ones are

considered as good options for their superior performance.

Here, we integrate some typical mismatch removal meth-

ods between SIFT and RANSAC, while some learning-based

methods can intrinsically output the transform matrix from

their networks, which can be directly used for this task. In

addition, two different datasets, including indoor and outdoor

scenes, are used in this experiment. The performance is char-

acterized by the mean average precision (mAP), as depicted

in Table 3. The experiments of this part are performed on a

server with 2.00 GHz Intel Xeon CPU, 128 GB memory.

In the following, we briefly introduce the datasets and

evaluation metrics to be used and provide quantitative com-

parisons and analyses.

Outdoor scenes. We adopt the Yahoo’s YFCC100M

dataset (Thomee et al. 2016), with 100 million publicly

accessible tourist photos from the Internet and subsequently

curate into 72 image sequences for SfM. From this dataset,

68 sequences are selected as valid raw data. Next, we use

the Visual SfM (Heinly et al. 2015) to recover the camera

poses and generate the ground-truth. This dataset is divided

into disjoint subsets for training (60%), validation (20%),

and test (20%). For fairness, all learning-based methods are

re-trained on the same training set.

Indoor scenes. We adopt the SUN3D dataset (Xiao et al.

2013), which is an RGBD video dataset with camera poses

computed by generalized bundle adjustment. Specifically,

all samples in this dataset are subsampled from videos of

every 10 frames of feature office-like scenes. This dataset

is extremely challenging for sparse correspondence methods

due to the few distinctive features, heavy repetitive elements,

and substantial self-occlusions. Zhang et al. (2019b) reported

that some sequences in this dataset do not provide camera

poses. Thus, these sequences are dropped and 239 sequences

are finally obtained as valid data. Similar to the data of out-

door scenes, the SUN3D dataset is split into disjoint subsets

for training (60%), validation (20%), and testing (20%).

Evaluation Metrics. Once potential inliers are obtained,

it is possible to efficiently estimate the rotation and transla-

tion vectors by RANSAC. The performance can be evaluated

using the angular difference between the estimated and

ground-truth vectors; i.e., the closest arc distance in degrees

as the error metric. First, a curve should be generated by clas-

sifying whether each pose as accurate or not. The precision

should be computed with respect to the given angle threshold

from 0◦ to 180◦, and a normalized cumulative curve should

be built. Second, the area under curve (AUC) is computed up

to a maximum threshold of 5◦, 10◦, or 20◦. Since the curve

itself can measure precision, its AUC can be regarded as the

metric of mAP.

Several traditional mismatch removal methods, i.e., GMS

(Bian et al. 2017), ICF (Li and Hu 2010), LPM (Ma et al.

2019d), SM (Leordeanu and Hebert 2005) and VFC (Ma et al.

2014) are used for evaluation of the pose estimation task,

in addition to two deep-learning-based methods, i.e., LFGC

(Moo Yi et al. 2018) and OAN (Zhang et al. 2019b). For

these methods, pose estimation results are obtained by a sub-

sequent RANSAC procedure. In addition, plain RANSAC

(Fischler and Bolles 1981) is also included for comparison.

As shown in Table 3, on the adopted dataset, the perfor-

mances of traditional methods are very limited due to the

dominant outliers. In contrast, the deep-learning-based meth-

ods seem to significantly outperform the traditional methods,

resilient to the high outlier ratio.
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6.6 Results on Loop-Closure Detection

Appearance-based loop-closure detection is a fundamental

component in visual SLAM. The essence involves recogniz-

ing previously visited areas of the environment. This task is

crucial in reducing the drift of the estimated trajectory caused

by the accumulative error and contributes to global consistent

mapping.

Appearance-based loop-closure detection only uses image

similarity to identify previously visited places. This category

commonly starts with the construction of a set of putative

correspondences by a feature operator, such as SIFT, between

the current image and each previously visited image. Then,

the closed loop is determined on the basis of the number

of accurate matches using mismatch removal methods. This

solution is simple but relatively effective.

Moreover, the computational requirement in directly real-

izing feature matching between the current image and each

previously visited image would be largely increased. To

ensure the real-time performance of loop-closure detection,

we use a two-step approach. In the first step, loop-closure

candidates are selected by the BoW method with presup-

posed score threshold, which is fast and easy to implement.

However, the BoW method only considers whether or not a

feature exists and neglects the spatial arrangement of the fea-

tures, thereby leading to perceptual aliasing problem. Thus,

in the second step, a robust feature matching algorithm is

required to determine whether a loop-closure candidate is a

true loop-closure event.

To evaluate the effectiveness and compare the perfor-

mance of the loop-closure detection methods based on feature

matching, we conduct extensive experiments on four differ-

ent datasets, including NewCollege, CityCentre, Lip6Indoor,

and Lip6Outdoor. The performance is characterized by the

maximum recall that can be achieved at 100% precision, as

shown in Table 4. The experiments are performed on a desk-

top with 2.6 GHz Intel Core CPU, 16G B memory.

The NewCollege and CityCentre datasets are obtained

from the work of Cummins and Newman Cummins and

Newman (2008). The NewCollege dataset contains 1, 073

images with size of 640 × 480, and the CityCentre dataset

contains 1, 237 images with size of 640 × 480. The images

were recorded by means of the vision system of a wheeled

robotic platform while traversing 2.2km through a college’s

campus grounds and adjoining parks with buildings, roads,

gardens, cars, and people. The environment is outdoor and

dynamic.

The Lip6Indoor and Lip6Outdoor datasets are obtained

from Angeli et al. (2008). The Lip6Indoor dataset has 388

images with size of 240 × 192; it is an indoor image

sequence with strong perceptual aliasing problem. While

the Lip6Outdoor dataset has 1, 063 images with size of

240×192; it is a long outdoor image sequence of a street with

many buildings, cars, and people. Both image sequences are

grabbed with a single-monocular handheld camera. In addi-

tion, a binary matrix is defined as the ground truth for each

dataset, whose rows and columns correspond to images at

different time indices. Each element in this binary matrix

denotes the presence (set to 1) or absence (set to 0) of a

loop-closure event between the corresponding frame pair.

To generate consistent maps, the loop-closure detection

module should obtain true positive detections to provide

information for the back-end optimization, thereby reducing

the drift of the estimated trajectory caused by accumulative

error. However, the loop-closure detection result must also

include no false positive detections as this can affect the per-

formance of a full SLAM system and result in a completely

inaccurate map result. In summary, the loop closure mech-

anisms should work at 100% precision while maintaining

high recall rate. In such cases, the evaluation of loop-closure

detection algorithm is performed in terms of precision-recall

metrics. Here, precision is the ratio of the number of true pos-

itive loop-closure detections to the number of total positive

loop-closure detections identified by the system, and recall

is the ratio between the true positive loop closure detections

and the total actual loop-closure events defined by the ground

truth of dataset. Combining the analysis and the curve, we

focus on the maximum recall that can be achieved at 100%

precision, indicating that the loop-closure detection result

includes no false positive detection and avoids the influence

in a full SLAM system.

Some of the representative mismatch removal methods

are adopted for comparison in our experiment. The quan-

titative comparisons, with respect to maximum recall rate

at precision of 100% on different datasets, are presented in

Table 4. From the results, we can see that the methods that

pursue relaxed geometric constraints, i.e., LPM (Ma et al.

2019d), GMS (Bian et al. 2017), GS (Liu and Yan 2010),

SM (Leordeanu and Hebert 2005), ICF (Li and Hu 2010)

and VFC (Ma et al. 2014), are less favored in this task. In

comparison, the resampling methods that exploit parametric

models of the correspondences, i.e., RANSAC (Fischler and

Bolles 1981) and LORANSAC (Lebeda et al. 2012), can give

better results for loop-closure detection.

7 Conclusions and Future Trends

Image matching has played a significant role in various

visual applications and has attracted considerable attention.

Researchers have also achieved significant progress in this

field in the past few decades. Therefore, we provide a compre-

hensive review of the existing image matching methods–from

handcrafted to trainable ones–in order to provide better

reference and understanding for the researchers in this com-

munity.
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Image matching can be briefly classified into area- and

feature-based matching. Area-based methods are used to

achieve dense matching without detecting any salient fea-

ture points from the images. They are more welcomed in

high overlapping image matching (such as medical image

registration) and narrow-baseline stereo (such as binocular

stereo matching). The deep learning-based techniques have

drawn increasing attention for such a pipeline. Therefore, we

provide a brief review of these types of methods in Sect. 4

and focus more on the learning-based methods.

The feature-based image matching can effectively address

the limitations in large viewpoint, wide baseline, and seri-

ous non-rigid image matching problems. It can be used in a

pipeline of salient feature detection, discriminative descrip-

tion, and reliable matching, often including transformation

model estimation. Following this procedure, feature detec-

tion can extract the distinctive structure from the image.

Meanwhile, feature description may be regarded as an image

representation method, which is widely used for image cod-

ing and similarity measurement. The matching step can be

extended into different types of matching forms, such as

graph matching, point set registration, descriptor match-

ing and mismatch removal, as well as the matching task

in 3-D cases. These are more flexible and applicable than

area-based methods, thereby receiving considerable atten-

tion in image matching area. Therefore, we review them with

the core idea that they are used from traditional techniques

to classical learning and deep learning. Moreover, to pro-

vide a comprehensive understanding of the significance in

image matching, we introduce several applications related to

image matching. We also provide comprehensive and objec-

tive comparisons and analyses of these classical and deep

learning-based techniques through extensive experiments on

representative datasets.

Despite the considerable development in both theory and

performance, image matching remains an open problem with

challenges for further efforts.

– The two-stage strategy for feature matching, which has

been widely adopted in the literature, performs mismatch

removal on only a small set of potential correspondences

with sufficiently similar descriptors. However, this may

lead to restricted performance in recall, which can be

problematic for some scenarios.

– In a different scenario, correspondences are sought not

between projections of physically the same points in

different images, but between semantic analogs across

different instances within a category. This requires new

paradigms for feature matching in feature description and

mismatch removal.

– Joint matching of multiple images has been proven to

drastically boost the matching performance of pairwise

matching and has attracted considerable attention in

recent years. However, the complexity is still the main

concern of the problem. Thus, practical and efficient algo-

rithms are required.

– In recent years, deep learning schemes have rapidly

evolved and shown tremendous improvements in many

research fields related to computer vision. However, in the

literature of feature matching, most works have applied

deep learning techniques to feature detection and descrip-

tion. Thus, the potential capacity for accurate feature

matching can be further explored in the future.

– Image matching among multi-modal images is still an

unsolved problem. In the future, deep learning techniques

can be used for better feature detection and description

performance.

– Feature matching is a fundamental task in computer

vision. However, its application has not been sufficiently

explored. Thus, one promising research direction is to

customize modern feature matching techniques to sat-

isfy different requirements of practical vision tasks, e.g.,

SfM and SLAM.
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