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Abstract The performance of matching and object recog-

nition methods based on interest points depends on both the

properties of the underlying interest points and the choice

of associated image descriptors. This paper demonstrates

advantages of using generalized scale-space interest point

detectors in this context for selecting a sparse set of points

for computing image descriptors for image-based matching.

For detecting interest points at any given scale, we make

use of the Laplacian ∇2
norm L , the determinant of the Hessian

det Hnorm L and four new unsigned or signed Hessian fea-

ture strength measures D1,norm L , D̃1,norm L , D2,norm L and

D̃2,norm L , which are defined by generalizing the definitions

of the Harris and Shi-and-Tomasi operators from the sec-

ond moment matrix to the Hessian matrix. Then, feature

selection over different scales is performed either by scale

selection from local extrema over scale of scale-normalized

derivates or by linking features over scale into feature trajec-

tories and computing a significance measure from an inte-

grated measure of normalized feature strength over scale.

A theoretical analysis is presented of the robustness of the dif-

ferential entities underlying these interest points under image

deformations, in terms of invariance properties under affine

image deformations or approximations thereof. Disregarding

the effect of the rotationally symmetric scale-space smooth-

ing operation, the determinant of the Hessian det Hnorm L

is a truly affine covariant differential entity and the Hessian

feature strength measures D1,norm L and D̃1,norm L have a

major contribution from the affine covariant determinant of

the Hessian, implying that local extrema of these differen-
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tial entities will be more robust under affine image defor-

mations than local extrema of the Laplacian operator or the

Hessian feature strength measures D2,norm L , D̃2,norm L . It

is shown how these generalized scale-space interest points

allow for a higher ratio of correct matches and a lower ratio

of false matches compared to previously known interest point

detectors within the same class. The best results are obtained

using interest points computed with scale linking and with the

new Hessian feature strength measures D1,norm L , D̃1,norm L

and the determinant of the Hessian det Hnorm L being the

differential entities that lead to the best matching perfor-

mance under perspective image transformations with signifi-

cant foreshortening, and better than the more commonly used

Laplacian operator, its difference-of-Gaussians approxima-

tion or the Harris–Laplace operator. We propose that these

generalized scale-space interest points, when accompanied

by associated local scale-invariant image descriptors, should

allow for better performance of interest point based meth-

ods for image-based matching, object recognition and related

visual tasks.

Keywords Feature detection · Interest point ·
Scale selection · Scale linking · Matching ·
Object recognition · Scale invariance · Affine invariance ·
Scale space · Computer vision

1 Introduction

A common approach to image-based matching consists

of detecting interest points from the image data, comput-

ing associated local image descriptors around the interest

points and then establishing a correspondence between the

image descriptors (see Fig. 1 for an illustration). Specifi-

cally, the SIFT operator (Lowe [119]) and the SURF oper-
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Fig. 1 Illustration of image matching using Laplacian interest points

with locally adapted SIFT descriptors computed around each interest

point. (left) and (middle) Two images of a building in downtown Stock-

holm taken from different 3-D positions with the interest points shown

as circles overlaid on a bright copy of the original image with the size of

each circle proportional to the locally adapted scale estimate and with

the orientation estimate used for aligning the orientation of the SIFT

descriptor drawn as an angular line from the center of the interest point.

The colour of the circle indicates the polarity of the interest point, with

red corresponding to bright blobs and blue corresponding to dark blobs.

(right) Matching relations between the interest points drawn as black

lines on top of a superposition of the original grey-level images

ator (Bay et al. [7]) have been demonstrated to be highly

useful for this purpose with many successful applications,

including multi-view image matching, object recognition,

3-D object and scene modelling, video tracking, gesture

recognition, panorama stitching as well as robot localization

and mapping. Different generalizations of the SIFT oper-

ator in terms of the image descriptor have been presented

by Ke and Sukthankar [66], Mikolajczyk and Schmid [125],

Burghouts and Geusebroek [24], Toews and Wells [149],

van de Sande et al. [138], Tola et al. [150] and Larsen

et al. [81].

In the SIFT operator, the initial detection of interest

points is based on differences-of-Gaussians from which local

extrema over space and scale are computed. Such points

are referred to as scale-space extrema. The difference-of-

Gaussians operator can be seen as an approximation of

the Laplacian operator, and it follows from general results

in (Lindeberg [101]) that the scale-space extrema of the

scale-normalized Laplacian have scale-invariant properties

that can be used for normalizing local image patches or

image descriptors with respect to scaling transformations.

The SURF operator is on the other hand based on initial

detection of image features that can be seen as approxima-

tions of the determinant of the Hessian operator with the

underlying Gaussian derivatives replaced by an approxima-

tion in terms of Haar wavelets. From the general results in

(Lindeberg [101]) it follows that scale-space extrema of the

determinant of the Hessian do also lead to scale-invariant

behaviour, which can be used for explaining the good per-

formance of the SIFT and SURF operators under scaling

transformations.

The subject of this article is to show how the performance

of image matching can be improved by using a generalized

framework for detecting interest points from scale-space fea-

tures involving new Hessian feature strength measures at a

fixed scale and linking of image features over scale into fea-

ture trajectories. By replacing the interest points in regular

SIFT or SURF by generalized scale-space interest points to

be described below, it is possible to define new scale-invariant

image descriptors that lead to better matching performance

compared to the interest point detection mechanisms used in

the regular SIFT or SURF operators.

1.1 Outline of the Presentation and Main Contributions

The paper is organized as follows: Sect. 2 gives an overview

of previous work in this area, and Sect. 3 summarizes basic

concepts regarding linear (Gaussian) scale-space represen-

tation that we build upon. Section 4 describes how interest

point detectors can be defined at a fixed scale, by combining

Gaussian derivatives computed from a scale-space represen-

tation into linear or non-linear differential invariants at every

image point followed by local extrema detection. These inter-

est point detectors comprise the previously known Lapla-

cian and determinant of the Hessian interest point detec-

tors and four new Hessian feature strength measures denoted

D1L , D̃1L , D2L and D̃2L , which are conceptually related to

the previously known Harris and Shi-and-Tomasi operators
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while being defined from the Hessian matrix instead of the

second-moment matrix.

Section 5 presents a theoretical analysis of the robust-

ness properties of these interest point detectors under image

deformations, by analyzing the covariance properties of the

underlying differential entities under affine transformations

of the image domain. It is shown that the determinant of

the Hessian operator is affine covariant and that the Hessian

feature strength measures D1L and D̃1L have a major con-

tribution that it is affine covariant.

Section 6 outlines how these interest point detectors

can be complemented by thresholding operations, including

(i) magnitude thresholding with formal relationships between

thresholding values for different interest point detectors and

(ii) complementary thresholding based on the sign of a com-

plementary differential expression to increase the selective

properties of the interest point detector.

Section 7 describes how these interest point detectors can

be complemented by scale selection mechanisms, including

the previously established scale selection methodology based

on local extrema over scale of scale-normalized derivatives

and a new methodology where image features at adjacent

scales are linked into feature trajectories over scale. For the

latter, a new measure of the significance or saliency of an

interest point is defined as an integral of the scale-normalized

feature strength measure along each feature trajectory. It is

argued that such an integrated measure over scale may give

a more robust ranking of image features by including their

life length over scales and thus their stability in scale space

into the significance measure.

Section 8 describes how the resulting enriched family of

generalized scale-space interest point detectors can be com-

plemented with local image descriptors, leading to a gener-

alized family of locally adapted and scale-invariant image

descriptors. Specifically, we define Gauss-SIFT and Gauss-

SURF descriptors in ways analogous to the original SIFT and

SURF descriptors, however, with the interest points detec-

tors replaced by our generalized interest point detectors and

with the image measurements used for computing the image

descriptors defined in terms of Gaussian derivatives instead

of a pyramid as done in original SIFT or Haar wavelets as

used in original SURF.

Section 9 evaluates the performance of the resulting gen-

eralized interest points with their associated Gaussian image

descriptors with regard to image matching. It is shown that

scale linking may lead to a better selection of image fea-

tures compared to scale-space extrema detection, and that

the new Hessian feature strength measures D1L , D̃1L and the

determinant of the Hessian perform better than the Laplacian

operator, its difference-of-Gaussians approximation or the

Harris–Laplace operator. Section 10 shows how the approach

can be extended to illumination invariance. Finally, Sects. 11

and 12 conclude with a summary and discussion.

2 Related Work

In early work, Marr and his collaborator Hildreth [121,122]

proposed an early primal sketch representation of image data

in terms of edges, bars, blobs and terminations defined from

zero-crossings of the Laplacian as the primary type of image

feature. Such features or their approximation in terms of zero-

crossings of difference-of-Gaussians, however, suffer from

inherent problems. If used for edge detection, they may give

rise to “false edges” and for curved edges or corners they

give rise to a substantial localisation error.

Today, we have access to a much more developed the-

ory for early visual operations, which allows us to formu-

late a much richer and also more well-defined vocabulary

of local image features. A major cornerstone for the devel-

opment of a well-founded operational theory for detecting

robust image features from real-world image data was pro-

vided by the framework of representing image data at mul-

tiple scales using scale-space representation, as originally

proposed by Witkin [157] and Koenderink [69]. Koenderink

also proposed to link image features over scales using iso-

intensity linking, and this idea was picked up by Lifshitz

and Pizer [86] and Gauch and Pizer [48], who developed

early systems for coarse-to-fine segmentation of medical

images.

A major problem when linking image features over scales

based on iso-intensity linking, however, is that the intensity

values of local image features are strongly affected by the

Gaussian smoothing operation. To avoid such problems, Lin-

deberg [90] considered the linking of local extrema and sad-

dle points over scales and defined the associated notions of

grey-level blobs at any single scale and scale-space blobs over

scales. The life length and extent of these structures in scale

space were measured, resulting in a representation called the

scale-space primal sketch, and the significance of such image

structures by the 4-D volume that these linked objects occupy

in scale space. Experimentally, it was shown that the result-

ing scale-space primal sketch allowed for extraction of salient

blob-like image structures as well as scale levels for process-

ing these in a purely bottom-up manner.

Closely related notions of linking of image structures over

scales for watersheds of the gradient magnitude were used by

Olsen [129] for medical image segmentation. Medical appli-

cations of the scale-space primal sketch have been developed

for analyzing functional brain activation images (Lindeberg

et al. [117], Coulon et al. [29], Rosbacke et al. [136], Mangin

et al. [120]) and for capturing the folding patterns of the cor-

tical surface (Cachia et al. [25]). More algorithmically based

work on building graphs of blob and ridge features at dif-

ferent scales was presented by Crowley and his co-workers

[31,32] using difference of low-pass features defined from

a pyramid; hence with very close similarities to differences-

of-Gaussians operators and thus the Laplacian.
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Within the area of local feature detection from image data,

both Harris [55] and Förstner and Gülch [45] proposed cor-

ner detectors defined from the second-moment matrix. Early

applications of the trace or the determinant of the Hessian

operators were presented by Beaudet [9] and blob features

defined from the Laplacian responses were used as primi-

tives for texture analysis by Voorhees and Poggio [153] and

Blostein and Ahuja [15,16]. Corner detectors based on the

curvature of level curves with different variations were stud-

ied by Kitchen and Rosenfeld [68], Dreschler and Nagel [40],

Koenderink and Richards [70], Noble [128], Deriche and

Giraudon [39], Blom [14], Brunnström et al. [23] and Linde-

berg [91]. In many cases, these operators were combined with

a Gaussian smoothing step, sometimes motivated by the need

for decreasing the influence of noise. Today, we would refer

to these operators as single scale feature detectors. The exper-

imental results, however, often revealed a substantial lack of

robustness, due to the need for manually choosing the scale

levels and the lack of a built-in scale selection mechanism.

The general idea of performing scale selection and detect-

ing image features by computing local maxima with respect

to space and scale of γ -normalized derivatives, which leads

to theoretically provable scale invariance, was initiated in

Lindeberg [93,95] and then refined in Lindeberg [100,101].

Specifically, scale-invariant blob detectors were proposed

from scale-space extrema of the Laplacian or the determinant

of the Hessian and a scale-invariant corner detector from the

rescaled level curve curvature. This approach was applied

to scale-invariant feature tracking (Bretzner and Lindeberg

[21]), local pattern classification (Wiltschi et al. [156]), image

feature extraction for geon-based object recognition (Lin-

deberg and Li [116]), fingerprint analysis (Almansa and

Lindeberg [3]) and real-time gesture recognition (Bretzner

et al. [19,20]). Tutorial overviews of parts of the under-

lying scale-space framework can be found in Lindeberg

[94,98,102,103,107,111].

Chomat et al. [28] and Hall et al. [54] made use of

scale selection from local maxima over scales of normalized

derivatives for computing scale-invariant Gaussian deriv-

ative descriptors for object recognition. Lowe [118,119]

developed an object recognition system based on local posi-

tion dependent histograms computed at positions and scales

determined from scale-space extrema of differences of Gaus-

sians, thus with very close similarities to scale-invariant blob

detection from scale-space extrema of the Laplacian. Closely

related object recognition approaches, although with differ-

ent image descriptors, have been presented by Lazebnik et

al. [82] and Ke and Sukthankar [66]. Bay et al. [7,8] devel-

oped an alternative approach with image features that instead

can be seen as approximations to determinant-of-Hessian

features expressed in terms of Haar wavelets. Opelt et al.

[130] presented an object recognition approach that com-

bines different types of interest points, specifically differ-

ences-of-Gaussians features and Harris points. Kokkinos et

al. [74] made use of a related approach based on primal sketch

features in terms of scale-invariant edge and ridge features.

Kokkinos and Yuille [75] proposed an alternative way of

computing scale invariant image descriptors, by performing

explicit search in a log-polar domain based on the foveal

scale-space model in (Lindeberg and Florack [113]).

A real-time system for gesture recognition based on a

combination of scale-invariant Laplacian blobs and scale-

invariant ridge features was presented in Bretzner et al.

[19,20] based on a method for simultaneous tracking and

recognition using scale-invariant features (Laptev and Lin-

deberg [79]). The underlying theory for real-time scale selec-

tion based on a hybrid pyramid representation was then

reported in Lindeberg and Bretzner [112]. Parallel develop-

ments of real-time implementations of scale-selection have

been performed by Crowley and Riff [30] and by Lowe [119].

Due to the scale invariant nature of the scale selection step,

all these visual modules become scale invariant, which makes

it possible for them to automatically adapt to and handle

image structures of different size. Specifically, scale selec-

tion based on local extrema over scales of scale-normalized

derivatives constitutes the theoretical foundation for scale-

invariant object recognition based on SIFT or SURF.

The methodology for scale-invariant ridge detection based

on maximisation of γ -normalized measures of ridge strength

(Lindeberg [97,100]) was extended to three-dimensional

images by Sato et al. [139], Frangi et al. [46] and Krissian et

al. [76]; see also Kirbas and Quek [67] for a review of vessel

extraction techniques. Closely related works on multi-scale

ridge detection have presented by Pizer and his co-workers

[134] leading to their notion of M-reps (Pizer et al. [133]).

In Lindeberg and Gårding [114], Gårding and Linde-

berg [47] scale invariant blob detection by scale-space

extrema was combined with subsequent computation of

scale-adaptive second moment matrices to provide image

features for deriving cues to local surface shape by shape-

from-texture and shape-from-disparity gradients. In Linde-

berg and Gårding [115] the notion of affine shape adaptation

was proposed and was demonstrated to improve the accuracy

of local surface orientation estimates by computing them at

affine invariant fixed points in affine scale space (Lindeberg

[95, chapter 15]). Baumberg [6] combined the notion of affine

shape adaptation with Harris interest points for wide baseline

stereo matching. Mikolajczyk and Schmid [124] furthered

this notion by developing a computationally more efficient

algorithm and evaluating the performance more extensively

(Mikolajczyk et al. [126]). Tuytelaars and van Gool [151]

showed how affine-adapted features can be used for matching

of widely separated views. Lazebnik et al. [83] used affine

invariant features for recognizing textured patterns. Roth-

ganger et al. [137] used affine invariant patches from multi-

ple views of an object for building three-dimensional object
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models. Other combinations of second-moment based tex-

ture descriptors with scale selection for object segmentation

were used by Belongie et al. [10] and Carson et al. [27].

With these publications, there has been an increasing inter-

est in scale invariant and affine invariant features as reflected

in the surveys by Pinz [132], Lew et al. [85], Tuytelaars and

Mikolajczyk [152] and Daniilidis and Eklundh [36]. In par-

ticular, so-called “bag-of-features” models have become very

popular, where the computation of local image descriptors is

initiated by either scale invariant or affine invariant interest

points (Sivic et al. [145], Nowak et al. [33], Jiang et al. [59]);

see also Mikolajczyk et al. [126] for an experimental eval-

uation of image descriptors at interest points, Moreels and

Perona [127] and Aanaes et al. [1] for evaluations of fea-

ture detectors and image descriptors on three-dimensional

datasets and Kaneva et al. [65] for evaluations using photore-

alistic virtual worlds. For all of these recognition approaches,

the invariance properties of the recognition system rely heav-

ily on the invariance properties of the interest points at which

local image descriptors are computed. There are also other

approaches to interest point detection not within the Gaussian

derivative framework (Kadir and Brady [63,64], Matas et al.

[123]) with applications to image based recognition by Fer-

gus et al. [42].

During recent years there has been a growing interest in

defining graph-like representations of image features (Shok-

oufandeh et al. [143,144]; Bretzner and Lindeberg [22],

Demirci et al. [38]). Inspired by early theoretical studies by

Johansen [60,61] regarding the information content in so-

called “top points” in scale space where bifurcations occur,

Platel et al. [135], Balmashnova et al. [5], Balmashnova and

Florack [4] and Demirci et al. [37] proposed to use such bifur-

cation events as primitives in graph representations for image

matching. Such bifurcations events were also registered in the

original scale-space primal sketch concept for intensity data

(Lindeberg [90]), in which the bifurcation events delimited

the extent of grey-level blobs in the scale direction and pro-

vided explicit relations of how neighbouring image features

(local extrema with extent) were related across scales. With

the generalized notion of a scale-space primal sketch for dif-

ferential descriptors used here, we obtain a straightforward

and general way to compute a richer family of corresponding

bifurcation events for any sufficiently well-behaved differen-

tial expression DL . More recently, Gu et al. [52] proposed

a representation for image matching based on local spatial

neighbourhood relations, referred to as critical nets, that pos-

sess local stability properties over scale, with close similari-

ties to these ideas.

With regard to the area of image matching and object

recognition, Swain and Ballard [148] initiated a direction

of research on histogram-based recognition methods by

showing how reasonable performance of an object recogni-

tion scheme could be obtained by comparing RGB colour

histograms. Schiele and Crowley [140] generalized this

idea to histograms of receptive fields (Koenderink and van

Doorn [72,73]) and computed histograms of either first-

order Gaussian derivative operators or the gradient magni-

tude and the Laplacian operator at three scales, leading to 6-

D histograms. Schneiderman and Kanade [141] showed that

efficient recognition of faces and cars could be performed

from histograms of wavelet coefficients. Linde and Linde-

berg [87,88] presented a set of composed histogram descrip-

tors of higher dimensionality that lead to better recognition

performance compared to previously used receptive field his-

tograms.

Lowe [119] combined the ideas of feature based and his-

togram based image descriptors, and defined a scale invariant

feature transform, SIFT, which integrates the accumulation

of statistics of gradient directions in local neighbourhoods of

scale adapted interest points with summarizing information

about the spatial layout. Bay et al. [7] presented an alternative

approach with SURF features that are instead expressed in

terms of Haar wavelets. Dalal and Triggs [34] extended the

local SIFT descriptor to the accumulation of regional his-

tograms of gradient directions (HOG) over larger support

regions. Other closely related probabilistic methods have

been presented by Fergus et al. [41], Lazebnik et al. [82]

and Ke and Suktankar [66]. An evaluation and comparison

of several spatial recognition methods has been presented

by Mikolajczyk and Schmid [125]. Dense local approaches

have been investigated by Jurie and Triggs [62], Lazebnik

et al. [84], Bosch et al. [18], Agarwal and Triggs [2] and

Tola et al. [150]. More recently, Larsen et al. [81] made use

of multi-local N-jet descriptors that do not rely on a spa-

tial statistics of receptive field responses as used in the SIFT

and SURF descriptors or their analogues. A notable observa-

tion from experimental results is that very good performance

can be obtained with coarsely quantized even binary image

descriptors (Pietikäinen et al. [131], Linde and Lindeberg

[88], Calonder et al. [26]). Moreover, Zhang et al. [158] have

demonstrated what can be gained in computer vision by con-

sidering biologically inspired image descriptors.

View-based methods for image matching and object

recognition have been extended to colour images by several

authors. Slater and Healey [146] presented histogram-like

descriptors that combine spatial moments with colour infor-

mation. Gevers and Smeulders [50] investigated the sensitiv-

ity of different zero-order colour spaces for histogram-based

recognition. Geusebroek et al. [49] proposed a set of dif-

ferential colour invariants that are invariant to illumination

based on a reflectance model and the Gaussian colour model

proposed by Koenderink. Hall et al. [54] computed partial

derivatives of colour-opponent channels, leading to an N-jet

representation up to order one. Linde and Lindeberg [87,88]

extended this idea by showing that highly discriminative

image descriptors for object recognition can be obtained from
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histograms of spatio-chromatic differential invariants up to

order two defined from colour-opponent channels. Burgh-

outs and Geusebroek [24] showed that the performance of

the SIFT descriptor can be improved by complementing it

with a set of colour invariants. More recently, van de Sande

et al. [138] have presented an evaluation of different colour-

based image descriptors for recognition.

A general theoretical framework for how local receptive

field responses, as used in the SIFT and SURF descriptors and

their extensions or analogues to colour images and spatio-

temporal image data, can constitute the basis for computing

inherent properties of objects to support invariant recognition

under natural image transformations is presented in (Linde-

berg [106,109]) including relations to receptive fields in bio-

logical vision.

3 Scale-Space Representation

The context we consider is that we for any two-dimensional

image f : R
2 → R define a Gaussian scale-space represen-

tation L : R
2 × R+ → R according to Iijima [57], Witkin

[157], Koenderink [69], Koenderink and van Doorn [72,73],

Lindeberg [94,95,103,105,107], Sporring et al. [147], Flo-

rack [43], ter Haar Romeny [53]:

L(x, y; t) =
∫

(u,v)∈R2
f (x − u, y − v) g(u, v; t) du dv

(1)

where g : R
2×R+ → R denotes the (rotationally symmetric)

Gaussian kernel

g(x, y; t) = 1

2π t
e−(x2+y2)/2t (2)

and the variance t = σ 2 of this kernel is referred to as the

scale parameter. Equivalently, the scale-space family can be

obtained as the solution of the (linear) diffusion equation

∂t L = 1

2
∇2 L (3)

with initial condition L(·, ·; 0) = f . From this representa-

tion, Gaussian derivatives are defined by

Lxα yβ (·, ·; t)=∂xα yβ L(·, ·; t)=(∂xα yβ g(·, ·; t)) ∗ f (·, ·).
(4)

where α and β ∈ Z+. From such a scale-space representa-

tion, we can at any level of scale compute different types

of features, typically by combining the Gaussian deriva-

tives into different types of (linear or non-linear) differential

invariants (preferably rotationally invariant).

When comparing derivative responses at different scales,

it is natural to introduce the notion of γ -normalized deriva-

tives according to

∂ξ = tγ /2∂x ∂η = tγ /2∂y (5)

where γ ∈ [0, 1] is a free parameter that may be set from

specific context information for a particular feature detec-

tor (Lindeberg [100,101]). This type of scale normalization

makes it possible to define local derivatives with respect to

the current level of scale and allows us to compensate for

an otherwise general overall decrease in the magnitude of

regular (unnormalized) Gaussian derivatives over scale.

4 Differential Entities for Detecting Interest Points

Basic requirements on the interest points on which image

matching is to be performed are that they should [110]:

(i) have a clear, preferably mathematically well-founded,

definition,

(ii) have a well-defined position in image space,

(iii) have local image structures around the interest point that

are rich in information content such that the interest

points carry important information to later stages,

(iv) be stable under local and global deformations of the

image domain, including perspective image deforma-

tions and illumination variations such that the interest

points can be reliably computed with a high degree of

repeatability (Mikolajczyk et al. [126]) and

(v) be sufficiently distinct, such that interest points corre-

sponding to physically different points can be kept sep-

arate (Lowe [119]).

Preferably, the interest points should also have an attribute of

scale, to make it possible to compute reliable interest points

from real-world image data, including scale variations in the

image domain. Specifically, the interest points should prefer-

ably be scale-invariant to make it possible to match corre-

sponding image patches under scale variations, e.g., corre-

sponding to objects of different size in the world or objects

seen from different distances between the camera and the

object.

In this section, we shall describe a set of differential enti-

ties that can be used for defining interest points at a fixed

scale, including four previously known operators and four

new ones. The Laplacian operator and the determinant of

the Hessian operators have been previously used in the lit-

erature, where we here also emphasize how the polarities

of these differential entities allow for a finer classification

of the type of interest points, including saddle-like interest

points detected by the determinant of the Hessian operator.

By generalizing the constructions by which the Harris and

the Shi-and-Tomasi operators have been previously defined

from the second-moment matrix (structure tensor), we will

also introduce a set of four new differential entities defined

123



J Math Imaging Vis (2015) 52:3–36 9

from the Hessian matrix, termed the Hessian feature strength

measures D1,norm L , D̃1,norm L , D2,norm L and D̃2,norm L .

4.1 The Laplacian Operator

Among the class of differential detectors that can be defined

from combinations of Gaussian derivative operators, the

Laplacian operator

∇2 L = Lxx + L yy = λ1 + λ2 (6)

is the presumably simplest choice and corresponds to the sum

of the eigenvalues λ1 and λ2 of the Hessian matrix.

Specifically, with regard to feature detection, we may

regard a spatial extremum of ∇2 L as a blob response, where

∇2 L > 0 (holds for positive definite HL) ⇒ dark blob

∇2 L < 0 (holds for negative definite HL) ⇒ bright blob

(7)

Figure 2 shows an example of applying this operator to an

image at a given scale as well as a number of other differential

operators to be presented next.

4.2 The Determinant of the Hessian

Within the degrees of freedom available from the second-

order structure of a two-dimensional image, we can obtain

two functionally independent differential descriptors that are

invariant to rotations in the image domain. If we choose the

Laplacian as one of these operators, the determinant of the

Hessian is a natural complement, corresponding to the prod-

uct of the eigenvalues λ1 and λ2 of the Hessian matrix:

det HL = Lxx L yy − L2
xy = λ1λ2. (8)

In a similar way as for the Laplacian, we can regard local max-

ima and minima of the determinant of the Hessian as natural

indicators of blobs. At image points where the determinant

of the Hessian is positive, the Hessian matrix will be either

positive or negative definite, depending on the sign of the

Laplacian. At points where the determinant of the Hessian is

negative, we have that the Hessian matrix is indefinite and it

is natural to refer to such points as saddle-like interest points.

To summarize, it is therefore natural to classify local maxima

and minima of det HL as follows:

det HL >0 and HL positive definite ⇒dark blob

det HL >0 and HL negative definite⇒bright blob

det HL <0 ⇒saddle-like response

(9)

Compared to the Laplacian operator, the determinant of the

Hessian will only respond if the local image pattern contains

significant variations along any two ortogonal directions.

Therefore, this operator implies a more restrictive condition

and is in this sense a better candidate for detecting interest

points compared to the Laplacian.

By comparing the results of applying the Laplacian and the

determinant of the Hessian operators to the image in Fig. 2,

we can first note that whereas the Laplacian operator gives

a large number of responses to the oblique elongated ridge

structure in the lower part of the image as well as a rather

large number of responses outside the edges of the match

boxes and the horse, the determinant of the Hessian does

not give any responses to such one-dimensional structures.

Hence, the determinant of the Hessian is more selective to

corners than the Laplacian, in a agreement with the theo-

retical prediction. By detailed inspection of the responses at

corner like structures, such as at the top of the horse or the

intervening space between the legs of the horse, when one leg

occludes the other, we can also see that the determinant of the

Hessian operator leads to responses with better localization

at corners compared to the Laplacian.

4.3 The Harris and Shi-and-Tomasi Measures

The Harris, Förstner and Shi-and-Tomasi operators are all

defined from the second-moment matrix, or structure tensor

µ(x, y; t, s)

=
∫

(u,v)∈R2

(

L2
x Lx L y

Lx L y L2
y

)

g(x − u, y − v; s) du dv,

(10)

where the partial derivatives Lx and L y are computed at

local scale t and evaluated at position (u, v), whereas s is

an integration scale parameter that can be coupled to the

local scale t according to s = r2t with r ≥ 1. In the exper-

iments in this paper, we use r = 1 motivated by that it gave

the best repeatability properties of the interest points under

affine image transformations among r ∈ {1,
√

2, 2}.
The Harris corner detector [55] implies that corners are

detected from positive spatial maxima of the entity

H = det µ − k trace2 µ (11)

where k is a constant required to be in the interval k ∈
]0, 0.25[ and usually set to k ≈ 0.04. This operator responds

only if the eigenvalues of the second-moment matrix are suf-

ficiently similar and thus only if the local image pattern con-

tains variations along two orthogonal directions. This means

that responses will be obtained at corners or near the cen-

ters of blob-like structures, whereas responses along one-

dimensional edge structures will be suppressed.
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Fig. 2 Differential interest

point detectors at a fixed scale

defined from Laplacian ∇2 L ,

determinant of the Hessian

det HL , Harris H and

Shi-and-Tomasi ST responses at

scale t = 32 with corresponding

features obtained by detecting

local extrema at a fixed scale,

with thresholding on the

magnitude of the response with

C∇2 L = 10,

Cdet HL = 102/4 = 25,

CH = 104/4096 ≈ 2.44 and

CST = 102/64 ≈ 1.56. Note

that the Laplacian operator

responds to one-dimensional

structures, whereas the other

operators do not. (Image size:

512 × 350 pixels. Red circles

denote local maxima of the

operator response, while blue

circles represent local minima.)
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Shi and Tomasi [142] proposed to instead use local max-

ima of the minimum eigenvalue ν1 of µ as image features

ST = min(ν1, ν2) = ν1

= 1

2

(

µ11 + µ22 −
√

(µ11 − µ22)2 + 4µ2
12

)

. (12)

Figure 2 shows an example of computing Harris corners and

Shi-and-Tomasi corners at a fixed scale.

Förstner and Gülch [45] have defined other closely

related measures of feature strength from the second-moment

matrix. Bigün [12] has used a complex-valued generalized

structure tensor for detecting different types of local symme-

tries in image data; see also Bigün and Granlund [13], Jähne

et al. [58], Lindeberg [95], Granlund and Knutsson [51],

Gårding and Lindeberg [47] and Weickert [154] for other

applications of the second moment matrix/structure tensor

for computing local features from image data.

4.4 Similarities Between the Hessian Matrix and the

Second-Moment Matrix

Under an affine transformation

(

x ′

y′

)

= A

(

x

y

)

where A =
(

a11 a12

a21 a22

)

(13)

the Hessian matrix H f transforms according to

(H f ′)(x ′, y′) = A−T (H f )(x, y) A−1 (14)

and provided that the notion of window function in (10)

is properly defined, the second-moment matrix transforms

according to Lindeberg [95], Lindeberg and Gårding [115]

µ′ = A−T µ A−1. (15)

Moreover, if the Hessian matrix HL at a point (x0, y0) is

either positive or negative definite, then it defines an either

positive or negative definite quadratic form

QHL(x, y)=
(

x − x0

y − y0

)T (

Lxx Lxy

Lxy L yy

)−1 (

x − x0

y − y0

)

(16)

in a similar way as the second-moment matrix µ computed

at (x0, y0) does

Qµ(x, y) =
(

x − x0

y − y0

)T (

µ11 µ12

µ12 µ22

)−1 (

x − x0

y − y0

)

.

(17)

From these two analogies, we can conclude that provided the

Hessian matrix is either positive or negative definite, these

two types of descriptors should have strong qualitative simi-

larities. Förstner [44] has also shown that the second-moment

matrix corresponds to the Hessian matrix of the autocorrela-

tion function. That relation can be directly understood in the

Fourier domain, since with vector notation ω = (ωx , ωy)
T

both the second-moment matrix and the Hessian matrix of

the autocorrelation function have a Fourier transform of the

form ωωT |L̂(ω)|2.

4.5 New Feature Strength Measures From the Hessian

Matrix

Inspired by above mentioned similarities between the Hes-

sian matrix and the second-moment matrix and the previous

definitions of the Harris and Shi-and-Tomasi cornerness mea-

sures, we will in this section define four new interest point

operators from the Hessian matrix.

Let us initially consider the following differential entity

as a measure of feature strength of the Hessian matrix:

D1L = det HL − k trace2
HL

= Lxx L yy − L2
xy − k (Lxx + L yy)

2

= λ1λ2 − k (λ1 + λ2)
2 (18)

where k ∈ ]0, 0.25[ and λ1 and λ2 denote the eigenvalues of

HL . Let us then define an interest point operator by detecting

positive local maxima of this differential entity.

To analyse the properties of this operator, let us first

observe that if the Hessian matrix is indefinite, then det HL <

0 and it follows by necessity that D1L < 0 and such points

will not be detected. Hence, this operator cannot respond to

saddle-like features and will only generate responses if HL

is either positive or negative definite. Without loss of gener-

ality, let us henceforth assume that HL is positive definite (if

not, we just change the polarity of the image and replace L

by −L). Then, D1L will only respond if

λ1λ2 − k(λ1 + λ2)
2 > 0. (19)

Let us next assume that the eigenvalues are ordered such that

0 < λ1 ≤ λ2. Then, we can divide Eq. (18) by λ2
2 �= 0 to

conclude that the operator D1L will only respond by positive

maxima if

λ1

λ2
− k

(

1 + λ1

λ2

)2

> 0. (20)

According to the assumptions, the ratio λ1/λ2 ∈ [0, 1] and

the constant k is assumed to be positive. Since the left hand

side in (20) becomes negative if λ1/λ2 is close to zero, this

inequality cannot be satisfied if the eigenvalues differ too

much in magnitude. Thus, the criterion D1L > 0 can only
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be satisfied if the ratio of the eigenvalues λ1/λ2 of HL is

sufficiently close to one:

2k

1 − 2k +
√

1 − 4k
≤ λ1

λ2
≤ 1 (21)

in other words only if the local image pattern contains second-

order information along two orthogonal directions. The para-

meter k makes it possible to vary the selectivity of this oper-

ator where reasonable values of k can roughly be obtained in

the interval k ∈ [0.04, 0.10] (and we have here used k = 0.06

for the experiments in this paper).

Compared to the determinant of the Hessian operator,

however, a main difference is that the operator D1L does

not at all respond to saddle-like features. If we are interested

in such features, we can define an alternative signed operator:

D̃1L =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

det HL − k trace2
HL

if det HL − k trace2
HL >0

det HL + k trace2
HL

if det HL + k trace2
HL <0

0 otherwise

(22)

At points where D1L > 0 it follows that the signed operator

D̃1L = D1L and for such points the signed operator D̃1L

will have similar properties as the unsigned operator D1L . In

practice, these points may for example correspond to bright

or dark blobs. For saddle-like points, where det HL < 0,

it follows that this operator will only generate a non-zero

response if both of the principal curvatures λ1 and λ2 (with

|λ1| ≤ |λ2|) are sufficiently different from zero, i.e., if the

ratio between their absolute values is sufficiently close to

one:

2k

1 − 2k +
√

1 − 4k
≤ |λ1|

|λ2|
≤ 1. (23)

Hence, the signed operator D̃1L can be seen as a general-

ization of the unsigned operator D1L to make it possible to

detect local saddle-like features.

In analogy with the Shi and Tomasi corner detector, we

can also define an operator based on the minimum absolute

eigenvalue of the Hessian matrix

D2L = min(|L pp|, |Lqq |) (24)

where L pp and Lqq denote the eigenvalues of the Hessian

matrix ordered such that L pp ≤ Lqq (see Lindeberg [100,

103] for explicit expressions).

In analogy with the previous treatment of signed or

unsigned versions of the D1L operator, we can also define a

signed version of the D2L operator according to

D̃2L =

⎧

⎨

⎩

L pp if |L pp| < |Lqq |
Lqq if |Lqq | < |L pp|
(L pp + Lqq)/2 otherwise

(25)

Figure 3 shows examples of computing these four types of

interest points from a grey-level image. By comparing these

results to the results in Fig. 2, we can first of all note that com-

pared to the Laplacian operator, the new differential interest

point detectors D1L , D̃1L , D2L and D̃2L do not respond

to elongated ridge structures and they do not give rise to

responses outside the edges of the objects either. As for the

determinant of the Hessian operator, this is a consequence

of the D1L , D̃1L , D2 L and D̃2L operators requiring strong

second-order responses in the two orthogonal eigendirections

of the Hessian matrix.

The responses from Hessian feature strength measures

D1L and D̃1L are rather similar to the determinant of the

Hessian det HL , with the difference that the responses of

D1L and D̃1L are more selective to corner like structures with

more similar contributions from the two orthogonal direc-

tions and that the unsigned D1L operator does not respond

to saddle-like image structures.

When used alone, the Hessian feature strength measures

D2L and D̃2L may lead to rather dense distributions of inter-

est points in regions containing second-order image struc-

tures. When combined with complementary thresholding on

either D1L > 0 or D̃1L > 0, these operators, in particular

the signed D̃2L operator, can however lead to sparse sets of

high quality interest points (see Sect. 6.2; Fig. 4).

Experimentally, the new differential interest point detec-

tors D1L , D̃1L , D2 L and D̃2 L can be shown to perform very

well and to allow for image features with better repeatabil-

ity properties under affine and perspective transformations

than the more traditional Laplacian, difference-of-Gaussians

or Harris–Laplace operators.

5 Behaviour of Interest Point Detectors Under Affine

Image Transformations

In this section, we shall analyse the theoretical properties

of the above mentioned feature detectors under affine trans-

formations of the image domain. (Initially, we disregard

the effect of the rotationally symmetric Gaussian smooth-

ing operation and focus on the transformation properties of

the differential expressions used for defining the different

interest operators).

Consider an image f (x, y) and define an affine trans-

formed image pattern f ′(x ′, y′) according to f ′(x ′, y′) =
f (x, y) for (x ′, y′)T = A (x, y)T . Then, it follows from (14)

that the determinant of the Hessian transforms according to
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Fig. 3 Differential interest

point detectors at a fixed scale

defined from the Hessian feature

strength measures D1 L , D̃1 L ,

D2 L and D̃2 L computed at

scale t = 32 with corresponding

features obtained by detecting

local maxima at a fixed scale,

with thresholding on the

magnitude of the response with

CD1 L = 102/4 = 25 and

CD2 L = 10/2 = 5. (Image size:

512 × 350 pixels. Red circles

denote local maxima of the

operator response, whereas blue

circles represent local minima.)
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det(H f ′)(x ′, y′) = 1

(det A)2
det(H f )(x, y) (26)

implying that local extrema of this entity are preserved under

affine transformations. In this respect, the determinant of the

Hessian operator is affine covariant.

With regard to interest point detection, the affine covari-

ant property specifically implies that the determinant of

the Hessian can be expected to give qualitatively similar

responses for corner structures with different opening angles

as well as for image structures that are deformed in different

ways under perspective mappings corresponding to an object

viewed from different viewing directions.

For the Laplacian operator the corresponding transforma-

tion property is, however, much more complex

f ′
x ′x ′ + f ′

y′ y′ = 1

(det A)2

(

(a2
12 + a2

22) fxx − 2(a11a12

+a21a22) fxy + (a2
11 + a2

21) fyy

)

(27)

implying that we cannot in general assume that local maxima

or minima of the Laplacian are to be preserved under general

affine transformations, only for the specific similarity sub-

group consisting of combined rotations and uniform scaling

transformations for which a11 = a22 and a12 = −a21. This

operator is therefore not affine covariant.

With a proper definition of window functions for the def-

inition of the second-moment matrix in equation (10), it fol-

lows from equation (15) that the determinant of the second-

moment matrix transforms as

det µ′ = 1

(det A)2
det µ (28)

which means that we can expect that local maxima of this

operator will be preserved under affine transformations, and

this operator is also affine covariant.

The transformation property of trace µ is, however, more

complex, in analogy with the Laplacian operator. In this

respect, the Harris cornerness measures H and the Shi-and-

Tomasi measure ST do not possess theoretical affine covari-

ance properties. Since the parameter k in the Harris operator

is small, however, a major contribution of the Harris operator

originates from the affine covariant operator det µ.

Regarding the new Hessian feature strength measures

D1L , D̃1L , D2L and D̃2L , it follows from the fact that D1L

and D̃1L contain a combination of det HL and trace HL ,

where det H f is affine covariant while trace H f is not, that

these operator will not be affine covariant. Similar conclu-

sions can be drawn for the operators D2 L and D̃2L . For

the operators D1L and D̃1L , however, a major contribution

comes from the affine covariant operator det HL .

To conclude, the determinant of the Hessian det HL and

the determinant of the second-moment matrix det µ do both

possess affine covariant properties disregarding the effect of

rotationally symmetric Gaussian smoothing. For the Hessian

feature strength measures D1L and D̃1L as well as for the

Harris measure H , a major contribution originates from an

affine covariant differential entity although there is also a

sometimes non-negligible contribution from another differ-

ential entity that is not affine covariant. The Laplacian, the

Shi-and-Tomasi and the Hessian feature strength measures

D2L and D̃2L are, however, not affine covariant.

All these differential entities are scale covariant in the

sense that they transform according to a self-similar scaling

law

D f ′ = 1

s MD

D f (29)

for any uniform scaling transformation f ′(x ′, y′) = f (x, y)

of the image domain (x ′, y′)T = s (x, y)T by a factor s > 0.

Notes regarding the affine covariant properties. For this

analysis, it should be noted that when applied to real-world

data, these differential geometric feature detectors are to

be computed from a linear scale-space representation based

on rotationally symmetric Gaussian filters. This scale-space

concept is not closed under general affine transformations,

only under similarity transformations consisting of combina-

tions of rotations and uniform scaling transformations. For

this reason, the affine covariant properties will not hold for

the entire chain of image operations. Nevertheless, and as

we will show experimentally in Sect. 9, the interest point

detectors that possess theoretical covariance properties under

general affine transformations will also lead to better repeata-

bility properties than those without when combined with a

rotationally symmetric Gaussian smoothing operation.

If full affine covariance properties are desired, this can

be accomplished by replacing the rotationally symmetric

Gaussian scale space by an affine scale space (Lindeberg

[95,105,107,115]). Then, it will be possible to achieve full

closedness and covariance properties of the feature responses

under general (non-degenerate) affine transformations.

6 Thresholding

6.1 Magnitude Thresholding on Scale-Normalized

Response

When detecting interest points using the above mentioned

differential descriptors, it is natural to complement the detec-

tion of positive local maxima and negative local minima of

the differential entities by thresholding on the magnitude

of the response. When expressing threshold values for such

thresholding, it is furthermore natural to express the magni-
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Table 1 Relationships between scale-normalized thresholds for the

different types of scale-invariant interest point detectors DL = ∇2 L ,

det HL , D1 L , D̃1 L , D2 L and D̃2 L as derived in (Lindeberg [110]) using

scale-normalized derivatives with γ = 1, where we will here through-

out use C between 5 and 10 for image data in the range f ∈ [0, 255]

Feature detector DL CDL

Laplacian ∇2 Lnorm = t (Lxx + L yy) C∇2 L = C

determinant of the Hessian det Hnorm L = t2 (Lxx L yy − L2
xy) Cdet HL = C2/4

Hessian feature strength I D1,norm L = t2 (Lxx L yy − L2
xy − k (Lxx + L yy)

2) CD1 L = (1 − 4k) C2/4

Hessian feature strength Ĩ D̃1,norm L = t2 (Lxx L yy − L2
xy ± k (Lxx + L yy)

2) C
D̃1 L = (1 − 4k) C2/4

Hessian feature strength II D2,norm = t min(|L pp|, |Lqq |) CD2 L = C/2

Hessian feature strength ĨI D̃2,norm L = t (L pp or Lqq ) C
D̃2 L = C/2

Harris-Laplace Hnorm = t2 (det µ − k trace2 µ) CH = (1 − 4k) C4/256

Shi and Tomasi STnorm = t min(ν1, ν2) CST = C2/16

The expressions for the Harris–Laplace operator and the Shi-and-Tomasi operator are based on the assumption of a relative integration scale of

r = 1

tude of the response in terms of scale-normalized derivatives

according to Eq. (5) with γ = 1, to be able to compare mag-

nitude values at different scales.

For feature detectors that are defined in terms of point-

wise differential expressions (i.e., ∇2L , det HL , D1L , D̃1L ,

D2L and D̃2 L), we therefore perform thresholding on the

magnitude of the response according to

|Dnorm L| ≥ CDL . (30)

For feature detectors that are defined in terms of integrated

differential expressions from the second-moment matrix (i.e.

the Harris, det µ and Shi and Tomasi operators), we express

the first-order partial derivatives Lx and L y in terms of scale-

normalized derivatives with γ = 1 to form scale-normalized

feature strength measures for the Harris measure H , the deter-

minant of the second moment matrix det µ or the Shi and

Tomasi measure ST . It can be shown [104] that this normal-

ization is sufficient to be able to compare entities derived

from the second-moment matrix at different scales.

Since the different feature detectors are of different dimen-

sionality in terms of powers of the intensity and orders as

well as powers of differentiation, it follows that the thresh-

old value CDL for a specific feature detector Dnorm L must

depend on the type of feature detector. By studying the scale-

normalized responses of the different types of feature detec-

tors to a Gaussian blob, theoretical relationships between

thresholding values can be derived between the different

interest point detectors as shown in Table 1. Such thresholds

with C = 10 (for image data in the range f ∈ [0, 255]) were

used for generating the illustrations in Figs. 2 and 3. When

performing image-based matching, we have often found it

valuable to decrease the parameter C somewhat to C = 5 or

C = 7.5.

6.2 Complementary Thresholding on Other Measures of

Feature Strength

In addition to thresholding on the magnitude of the scale-

normalized response, a method for detecting interest points

may also benefit from further selection criteria. For example,

when Lowe [119] used local extrema of differences of Gaus-

sians as basic features for his system for image based recog-

nition, he noted that undesired feature responses may occur

near edges and proposed to filter these away by analyzing the

eigenvalues of the Hessian matrix. Since the difference-of-

Gaussians operator can be seen as an approximation of the

Laplacian operator (see Appendix A), a similar effect occurs

for Laplacian responses.

Inspired by this idea, and given the definition of the feature

strength measure D1L (18) from the Hessian matrix, we will

use the criterion

D1L = Lxx L yy − L2
xy − k (Lxx + L yy)

2 ≥ 0 (31)

as a complementary thresholding criterion for Laplacian fea-

tures. Motivated by experimental results to be presented later,

we will also apply such thresholding on D1L ≥ 0 alterna-

tively thresholding on D̃1L ≥ 0 to determinant of the Hessian

features det HL , and features from the Hessian strength mea-

sures D2L and D̃2L . Such complementary thresholding1 can

significantly improve the repeatability properties of interest

point detectors.

Figure 4 illustrates the effect of performing such thresh-

olding for some of the previously detected image features.

1 This terminology means that if feature detection is performed using

a differential feature detector DA and if these responses are thresh-

olded using another differential expression, say DB ≥ 0, then the fea-

ture detector DA is complemented by complementary thresholding on

DB ≥ 0.
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Fig. 4 Illustration of

performing complementary

thresholding on Laplacian ∇2 L

and Hessian feature strength

D̃2 L features using the sign of

the Hessian feature strength

measure D1 L . For these fixed

scale feature detectors, operating

at the scale t = 32, thresholding

has also been performed on the

magnitude of the response with

C∇2 L = 10 and

C
D̃2 L = 10/2 = 5. (Image size:

512 × 350 pixels. Red circles

denote local maxima of the

operator response, while blue

circles represent local minima.)

As can be seen from the results, thresholding on D1L > 0

suppresses Laplacian features along elongated structures.

After complementary thresholding there are no longer any

responses to the oblique ridge structure in the lower part of

the image, and much fewer responses outside the edges of

the objects. For the Hessian interest feature strength operator

D̃2L , the selective properties increase substantially by com-

plementary thresholding on D1L > 0. The set of remaining

interest points after thresholding is much sparser.

7 Scale Selection Mechanisms

7.1 Scale Selection From γ -normalized derivatives

In Lindeberg [93,95,100,101] a general framework for auto-

matic scale selection was proposed based on the idea of

detecting local extrema over scale of γ -normalized deriv-

atives according to (5). It was shown that local extrema

over scale of homogeneous polynomial differential invari-

ants Dnorm L expressed in terms of γ -normalized Gaussian

derivatives are transformed in a scale-covariant way:

If some scale-normalized differential invariant Dnorm L

assumes a local extremum over scale at scale t0 in scale

space, then under a uniform rescaling of the input pat-

tern by a factor s there will be a local extremum over

scale in the scale space of the transformed signal at

scale s2t0.

By performing simultaneous scale and spatial selection, by

detecting scale-space extrema, where the scale-normalized

differential expression Dnorm L assumes local extrema with

respect to both space and scale, constitutes a general frame-

work for detecting scale-invariant interest points. Such scale-

space extrema are characterized by the first-order derivatives

with respect to space and scale being zero

∇(Dnorm L) = 0 and ∂t (Dnorm L) = 0 (32)

and the composed Hessian matrix over both space and scale

H(x,y; t)(Dnorm L) =

⎛

⎝

∂xx ∂xy ∂xt

∂xy ∂yy ∂yt

∂xt ∂yt ∂t t

⎞

⎠ (Dnorm L) (33)

being either positive or negative definite.

This scale selection method also provides a way of ranking

image features on significance by the magnitude of the scale-

normalized response |Dnorm L| at the scale-space extremum.

These magnitude values as well as the associated significance

ranking are scale invariant if γ = 1.

In Lindeberg [95,101] scale-space extrema of the Lapla-

cian and scale-space extrema of the determinant of the

Hessian were proposed as general purpose blob detec-

tors/interest point detectors. Here, we complement these

interest point detectors by complementary thresholding on

either of the Hessian feature strength measures D1L > 0

or D̃1L > 0 and additionally emphasize the possibility of
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Fig. 5 3-D illustration of feature trajectories over scale (in blue) and

selected scales from global extrema of the scale-normalized response

along each feature trajectory (in red) when computing a scale-space

primal sketch for the Hessian feature strength measure D1 L . Note how

coarser scales are selected for the larger size objects than for the cor-

responding smaller size objects. Only the 50 strongest interest points

are shown. Each feature trajectory is delimited from above and below

by bifurcation events (not shown here), which may generically be of

either of the types: annihilation, merge, split or creation. (Image size:

512 × 350 pixels. The vertical dimension represents the scale level in

scale space in units of σ =
√

t , and translated along the vertical direc-

tion such that the minimum scale tmin = 2 is mapped to the level where

the underlying image is shown.)

using negative responses of the determinant of the Hessian

for detecting saddle-like interest points. We also apply scale-

space extrema detection to the new Hessian feature strength

measures D1L , D̃1L , D2L and D̃2 L leading to four new inter-

est point detectors based on scale-space extrema detection.

The Harris operator has been previously combined with

scale selection using local extrema over scale of the scale-

normalized Laplacian, leading to the Harris–Laplace oper-

ator (Mikolajczyk and Schmid [124]). Here, we will also

combine the Harris operator with scale selection using local

extrema over scale of the determinant of the Hessian, leading

to a new Harris–detHessian operator.

7.2 Scale Linking

We extend this scale selection approach by linking image fea-

tures at different scales into feature trajectories over scale and

performing scale selection by either the strongest response

over each feature trajectory or weighted averaging of scale

values along the feature trajectory, with each feature trajec-

tory delimited by a minimum scale tmin and a maximum scale

tmax where bifurcation events occur (Fig. 5).

7.2.1 Feature Trajectories Over Scale

A rationale for performing scale linking is that if we detect

some image feature at a position (x0, y0)
T and scale t0 in

scale space, then it will generically be possible to detect cor-

responding image features at slightly coarser or finer scales.

Formally, such a construction can be justified by the implicit

function theorem. For our interest points detectors at a fixed

scale, defined from local spatial extrema of either of the dif-

ferential expressions

DL ∈
{

∇2 L , det HL ,D1L , D̃1L ,D2 L , D̃2 L
}

(34)

the presence of an image feature at a position (x0, y0; t0) is

defined by

∇(DL)|(x0,y0; t0) =
(

∂x (DL)

∂y(DL)

)∣

∣

∣

∣

(x0,y0; t0)

= 0 (35)

with the additional condition that the Hessian matrix of DL

should be either positive or negative definite. The implicit

function theorem then ensures that there exists some smooth

function w0(t) = (x0(t), y0(t))
T in some neighbourhood It0

of t0 such that the point (x0(t), y0(t); t0) is a critical point

for the mapping (x, y)T → (DL)(x, y; t) and the type of

critical point remains the same as long as the Hessian matrix

H(DL) is non-singular. Specifically, the local drift velocity

at (x0, y0; t0) is given by Lindeberg [89,95]:

w′(x0, y0; t0)

= − (H(DL))|−1
(x0,y0; t0)

∂t (∇(DL))|(x0,y0; t0) (36)
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(see also Kuijper and Florack [77] for a more detailed study

of drift velocities restricted to critical points of the raw image

intensity). In other words, if (x0, y0; t0) is a local maximum

(minimum) point of the differential descriptor DL then there

exists a curve over scales through this point, such that every

point on this curve is also a local maximum (minimum) ofDL

at that scale. This curve is delimited by two scale levels tmin

and tmax where the Hessian matrix of DL degenerates (except

the boundary cases tmin = 0 and tmax = ∞) and where

bifurcation events2 occur. Such a curve w0 : ]tmin, tmax [ is

called an extremum path of DL or a feature trajectory.

Using the theoretical and algorithmic framework devel-

oped in Lindeberg [104] explicit scale linking of pointwise

image features into feature trajectories is performed (see

Fig. 5) and bifurcation events are registered, leading to a

scale-space primal sketch for differential descriptors, which

we use as basis for detecting interest points in this work.

7.2.2 Scale Selection for Feature Trajectories

Along each feature trajectory T , scale selection can be per-

formed either (i) by detecting the strongest response over

scales

τ̂T = argmaxτ∈T |(Dnorm L)(p(τ ); τ)| (37)

or (ii) by performing weighted averaging of scale values

along the feature trajectory over scale according to

τ̂T =
∫

τ∈T
τ ψ((Dnorm L)(p(τ ); τ)) dτ

∫

τ∈T
ψ((Dnorm L)(p(τ ); τ)) dτ

. (38)

Here, the integral is expressed in terms of effective scale [92]

τ = log t (39)

to give a scale covariant construction of the corresponding

scale estimates

t̂T = exp τ̂T (40)

such that the resulting image features will be truly scale-

invariant. For each feature trajectory an associated sig-

nificance measure3 WT is defined as the integral of the

2 These bifurcation events can be seen as a generalization of the notion

of “top points” (Johansen [60,61]) or bifurcation events (Koenderink

and van Doorn [71], Lindeberg [89], Damon [35], Kuijper and Florack

[78]) from events between critical points of the smoothed image intensi-

ties L to bifurcation events between the critical points of any sufficiently

well-behaved differential invariant DL .

3 An intuitive motivation for defining the significance measure in terms

of an integral of scale-normalized feature responses over scale is a

heuristic principle that image features that are stable over large ranges

of scales should be more likely to be significant than image features

scale-normalized feature responses along the feature trajec-

tory [104]

WT =
∫

τ∈T

ψ(|(Dnorm L)(p(τ ); τ)|) dτ (41)

where

ψ(|Dnorm L|) = wDL |Dnorm L|a (42)

represents a monotonically increasing self-similar transfor-

mation and

wDL =
L2

ξξ + 2L2
ξη + L2

ηη

A(L2
ξ + L2

η) + L2
ξξ + 2L2

ξη + L2
ηη + ε2

(43)

with A = 4/e representing the relative feature weighting

function between first- and second-order derivatives [80,99]

and with ε ≈ 0.1 representing an estimated noise level for

image data in the range [0, 255].
The motivation for performing scale selection by weighted

averaging of scale-normalized differential responses over

scale is analogous to the motivation for scale selection from

local extrema over scale in the sense that interesting charac-

teristic scale levels for further analysis should be obtained

from the scales at which the differential operator assumes

its strongest scale-normalized magnitude values over scale.

Contrary to scale selection based on local extrema over scale,

however, scale selection by weighted averaging over scale

implies that the scale estimate will not only be obtained from

the behaviour around the local extremum over scale, but also

including the responses from all scales along a feature trajec-

tory over scale. The intention behind this choice is that the

scale estimates may therefore be less sensitive to local image

perturbations.

Figure 6 shows the result of detecting interest points in this

way by applying either scale linking or scale-space extrema

detection to the Hessian strength measures D1,norm L and

D̃2,norm L (see also Fig. 11 for results from another scene

with strong illumination variations). By comparing these and

other results, it can be seen that interest point detection by

scale-space extrema detection may give a relatively higher

emphasis to image features with locally high and sharp con-

trasts, whereas interest point detection by scale linking may

lead to a comparably higher ranking of image features that

stand out from their local surroundings and do therefore get

a longer life length in scale space.

7.2.3 Post-smoothing of Differential Entities

In the scale linking algorithm, an additional step post-

smoothing of the differential expression Dnorm L is per-

that only exist over a shorter life length in scale space (Lindeberg [90,

assumption 1 in section 3 on page 296]).
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Fig. 6 Scale-invariant interest points obtained by (middle row) per-

forming scale linking versus (bottom row) detecting scale-space extrema

for the Hessian feature strength measures D1,norm L and D̃2,norm L .

The 1,400 strongest responses of each operator are shown. By com-

paring these and other experimental results, it can be seen that interest

point detection by scale-space extrema detection may give a relatively

higher emphasis to image features with locally high and sharp con-

trasts, whereas interest point detection by scale linking may lead to a

comparably higher ranking of image features that stand out from their

local surroundings and do therefore get a longer life length in scale

space. The use of scale linking may also reduce multiple responses to

the same underlying image structure. (Scale range: t ∈ [2, 256]. Image

size: 800 × 600 pixels. The size of each circle represents the detection

scale of the interest point. Red circles indicate that the Hessian matrix

is negative definite (bright features), while blue circles that the Hessian

matrix is positive definite (dark features).)
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formed prior to the detection of local extrema over space

or scale

(Dnorm L)(x, y; t)

=
∫

(u,v)∈R2
(Dnorm L)(x − u, y − u; t)

g(u, v; c2t) du dv (44)

with integration (post-smoothing) scale tpost = c2t propor-

tional to the differentiation scale t , where we have used

c = 3/8 for all experiments in this article. A motivation

for using such a post-smoothing step when linking image

structures over scale is given in [110, Appendix A.1] and a

detailed analysis of its properties in [110, Sects. 3.2–4.2].

7.2.4 Scale Selection Properties for a Gaussian Blob

In (Lindeberg [110, Sect. 3.1]) it is theoretically shown

that when applied to a rotationally symmetric Gaussian

blob model f (x, y) = g(x, y; t0) both scale-space

extrema detection and weighed scale selection lead to sim-

ilar scale estimates t̂ = t0 for interest point detection

based on the Laplacian ∇2
norm L , the determinant of the

Hessian det Hnorm L and the Hessian feature strength mea-

sures D1,norm L , D̃1,norm L , D2,norm L and D̃2,norm L . In this

respect, all these interest point detectors are interchangeable.

When subjected to non-uniform affine image deforma-

tions outside the similarity group, the determinant of the

Hessian det Hnorm L and the Hessian feature strength mea-

sures D1,norm L and D̃1,norm L do, however, have theoretical

advantages in terms of affine covariance of the scale estimates

or approximations thereof [110, Sect. 5.2.2].

8 Scale-Invariant Image Descriptors for Matching

In the following, we shall combine the above mentioned gen-

eralized scale-space interest points with local image descrip-

tors. For each interest point, we will compute a complemen-

tary image descriptor in analogous ways as done in the SIFT

and SURF operators, with the difference that the feature vec-

tors are computed from Gaussian derivative responses in a

scale-space representation instead of using a pyramid as done

in the original SIFT operator (Lowe [119]) or a Haar wavelet

basis as used in the SURF operator (Bay et al. [7]). A major

reason for choosing a Gaussian derivative basis instead of

a pyramid or Haar wavelets is to emphasize the underlying

computational mechanisms of the image descriptors by dis-

regarding as much as possible effects of discrete spatial sub-

sampling. Another reason is to make it possible to combine

different types of interest points with similar image descrip-

tors for the purpose of comparison.

Since each one of the generalized scale-space interest

point detectors is scale invariant, it follows that also the

associated local image descriptors will be scale invariant,

provided that these image descriptors are computed at scale

levels proportional to the detection scales t̂ of the generalized

interest points and using window functions of radius propor-

tional to the scale estimate in dimension length σ̂ =
√

t̂ .

8.1 Gauss-SIFT

For our SIFT-like image descriptor Gauss-SIFT , we compute

image gradients ∇L at the detection scale t̂ of the interest

point. An orientation estimate is computed in a similar way

as by Lowe [119], by accumulating a histogram of gradi-

ent directions arg ∇L quantized into 36 bins with the area

of the accumulation window proportional to the detection

scale t̂ , and then detecting peaks in the smoothed orientation

histograms. Multiple peaks are accepted if the height of the

secondary peak(s) are above 80 % of the highest peak. Then,

for each point on a 4 × 4 grid with the grid spacing propor-

tional to the detection scale measured in units of σ̂ =
√

t̂ , a

weighed local histogram of gradient directions arg ∇L quan-

tized into 8 bins is accumulated around each grid point, with

the weights proportional to the gradient magnitude |∇L| and

a Gaussian window function with its area proportional to the

detection scale t̂ (see Fig. 7). To increase the accuracy of the

local histograms, the local histograms are accumulated with

the image measurements sampled at twice the spatial reso-

lution of the image using bicubic interpolation and with tri-

linear interpolation for distributing the weighted increments

for the sampled image measurements into adjacent histogram

bins. The resulting 128-dimensional descriptor is normalized

to unit sum to achieve contrast invariance, with the relative

contribution of a single bin limited to a maximum value of

0.20.

8.2 Gauss-SURF

For our SURF-like image descriptor Gauss-SURF, we com-

pute the following sums of derivative responses
∑

Lx ,
∑

|Lx |,
∑

L y ,
∑

|L y | at the scale t̂ of the interest point,

for each one of 4 × 4 subwindows around the interest point

as Bay et al. [7] and with similar orientation normalization as

for the SIFT operator. The resulting 64-D descriptor is then

normalized to unit length for contrast invariance.

9 Matching Properties Under Perspective

Transformations

To evaluate the quality of the interest points with their associ-

ated local image descriptors, we apply bi-directional nearest-

neighbour matching of the image descriptors in Euclidean
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Fig. 7 Our Gauss-SIFT descriptor is defined in an analogous way

as Lowe [119] defined his SIFT descriptor, by first computing an

overall orientation of the interest point and then computing a 4 × 4

position-dependent histogram of gradient directions quantized into 8

bins, with the differences that (i) the Gauss-SIFT descriptor is defined

from Gaussian derivatives instead of difference approximations in a

pyramid and that (ii) we use our family of generalized interest points

as initial keypoints instead of difference-of-Gaussian features. In this

schematic illustration, a 2 × 2 grid is shown instead of 4 × 4 grid. With

a 4 × 4 spatial grid and 8 bins for the gradient directions, one obtains a

128-D descriptor

norm. In other words, given a pair of images f A and fB

with corresponding sets of interest points A = {Ai } and

B = {B j }, a match between the pair of interest points

(Ai , B j ) is accepted only if:

(i) Ai is the best match for B j in relation to all the other

points in A and, in addition,

(ii) B j is the best match for Ai in relation to all the other

points in B.

To suppress matching candidates for which the correspon-

dence may be regarded as ambiguous, we furthermore require

the ratio between the distances to the nearest and the next

nearest image descriptor to be less than r = 0.9.

Next, we will evaluate the matching performance of such

interest points with local image descriptors over a dataset of

poster images with calibrated homographies over different

amounts of perspective scaling and foreshortening.

9.1 Poster Image Dataset

High-resolution photographs of approximately 4900 × 3200

pixels were taken of 12 outdoor and indoor scenes in natural

city and office environments, from which poster printouts of

size 100×70 cm were produced by a professional laboratory.

Each such poster was then photographed from 14 different

positions (see Fig. 8 for examples):

(i) 11 normal views leading to approximate scaling trans-

formations with relative scale factors s approximately

equal to 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0 and

6.0, and

(ii) 3 additional oblique views leading to foreshortening

transformations with slant angles of about 22.5◦, 30◦

and 45◦ relative to the frontal view with s ≈ 2.0.

For the 11 normal views of each objects, homographies

were computed between each pair of images using the ESM

method (Benhimane and Malis [11]) with initial estimates

of the relative scaling factors obtained from manual mea-

surements of the distance between the poster surface and the

camera. For the oblique views, for which the ESM method

did not produce sufficiently accurate results, homographies

were computed by first manually marking correspondences

between the four images of each poster, computing an initial

estimate of the homography using the linear method in Hart-

ley and Zisserman [56, Algorithm 3.2, Page 92] and then

computing a refined estimate by minimizing the Sampson

approximation of the geometric error (Hartley and Zisser-

man [56, Algorithm 3.3, Page 98]).

The motivations for using such a poster image dataset for

evaluation are that:

(i) the use of poster images from natural city and office

environments should lead to a representative selection

of image structures from natural scenes,

(ii) the use of planar posters implies that ground truth can

be defined by homographies and calibration which may

not otherwise be easy to achieve for natural 3-D scenes

without 3-D reconstruction,
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Fig. 8 Illustration of images of posters from multiple views (left column) by varying the distance between the camera and the object for different

frontal views, and (right column) by varying the viewing direction relative to the direction of the surface normal. (Image size: 768 × 576 pixels.)
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Fig. 9 Illustration of matching relations obtained by bi-directional

matching of Gauss-SIFT descriptors computed at interest points of the

signed Hessian feature strength measure D̃1,norm L for (left) a scal-

ing transformation and (right) a foreshortening transformation between

pairs of poster images of the harbour and city scenes shown in Fig. 8.

These illustrations have been generated by first superimposing bright

copies of the two images to be matched by adding them. Then, the inter-

est points detected in the two domains have been overlaid on the image

data, and a black line has been drawn between each pair of image points

that has been matched. Red circles indicate that the Hessian matrix is

negative definite (bright features), blue circles that the Hessian matrix

is positive definite (dark features), whereas green circles indicate that

the Hessian matrix is indefinite (saddle-like features)

(iii) the use of a large range of variations in scale (up to a

factor of 6) should provide a thorough test of the scale

invariant properties of the interest points under scaling

transformations,

(iv) the use of a multiple slant angles in the range between

22.5◦ and 45◦ should make it possible to investigate

robustness of the interest point detectors to image defor-

mations caused by moderate variations of the viewing

direction relative to the object, and

(v) including image data for a sufficiently large number of

scenes to enable statistical comparisons from the exper-

imental results.

Specifically, the motivation for focusing the experimen-

tal evaluation on the robustness to scaling transformations

and oblique perspective views corresponding to different

amounts of foreshortening is that if we consider a perspective

camera that views a regional surface patch of an object and

linearize the non-linear perspective transformation locally

by computing its derivative, we then around any image point

(x0, y0) obtain a local affine transformation matrix A that

can be decomposed into the form [96]

A = R1 diag(σ1, σ2) R−1
2 (45)

where R1 and R2 can be forced to be rotation matrices, if we

relax the requirement of non-negative entries in the diagonal

elements σ1 and σ2 of a regular singular value decomposition.

With this model, the geometric average of the absolute values

of the diagonal entries

σuni f orm =
√

|σ1 σ2| (46)

corresponds to the amount of scaling, whereas the ratio

|σ2/σ1| = cos θ corresponds to the amount of foreshortening

with θ denoting the slant angle. By studying the robustness

to uniform scaling transformations and perspective foreshort-

ening transformations, we do therefore investigate the sen-

sitivity to the two harder components in the decomposition

(45) of a locally linearized perspective image deformation.

9.2 Matching Criteria and Performance Measures

Figure 9 shows an illustration of point matches obtained

between two pairs of images corresponding to a scaling

transformation and a foreshortening transformation based on

interest points detected using the D̃1,norm L operator.

To make a judgement of whether two image features Ai

and B j matched in this way should be regarded as belonging

to the same feature or not, we associate a scale dependent

circle CA and CB to each feature, with the radius of each

circle equal to the detection scale of the corresponding feature

measured in units of the standard deviation σ =
√

t . Then,

each such feature is transformed to the other image domain,

using the homography and with the scale value transformed

by a scale factor of the homography. The relative amount

of overlap between any pair of circles is defined by forming

the ratio between the intersection and the union of the two

circles in a similar way as Mikolajczyk et al. [126] define a

corresponding ratio for ellipses
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m(CA, CB) = |
⋂

(CA, CB)|
|
⋃

(CA, CB)| . (47)

We then accept a match if the relative overlap between a pair

of mutually best matches is greater than 0.2. The motivation

for representing the interest points by circles in this case is

that the interest points are only scale invariant (since no affine

shape adaptation process has been included here that would

make the interest points affine invariant and thus motivate a

representation in terms of ellipses). The motivation for using

a liberal criterion on the overlap is that the previous criterion

of mutually best pairwise matches implies a strong condition

on the matches, so if a nearby match can be found given such

a strong criterion it should then also be accepted.

Then, we measure the performance of the interest point

detector by:

efficiency= #(interest points that lead to accepted matches)

#(interest points)

1-precision= #(rejected matches)

#(accepted matches) +#(rejected matches)

The evaluation of the matching score is only performed for

image features that are within the image domain for both

images before and after the transformation. Moreover, only

features within corresponding scale ranges are evaluated. In

other words, if the scale range for the image fA is [tmin, tmax ],
then image features are searched for in the transformed image

fB within the scale range [t ′min, t ′max ] = [s2 tmin, s2 tmax ],
where s denotes an overall scaling factor of the homog-

raphy. In the experiments below, we used [tmin, tmax ] =
[4, 256].4

9.3 Experimental Results

Tables 2 and 3 show the result of evaluating 2 × 9 different

types of scale-space interest point detectors with respect to

the problem of establishing point correspondences between

4 The reason for prefiltering the interest points by position and scale is

to prevent the performance measures from being primarily dominated

by geometric parameters of the experimental setup. For example, with

a relative scaling factor of s > 1 between two images, on average

1 − 1/s2 of the points in the first image will fall outside the domain

of the transformed image if the image size is kept constant as in these

experiments. In a corresponding manner, if an image feature is detected

at scale level t0 in the original image, it would be expected to be detected

at scale level s2t0 in the transformed image, because of the properties

of the scale selection method described in Sect. 7. If non-matching

scale ranges would be used for the evaluation, then there would be

corresponding geometric limitations on the performance values because

of mismatches between the scale ranges. With the used limitations of

the spatial domains and the scale ranges, the performance values do

therefore report the ratio of image features that have been matched

in relation to those who could possibly be matched at all, given the

geometry of the experimental setup.

pairs of images on the poster dataset. Each interest point

detector is applied in two versions (i) detection of scale-space

extrema or (ii) using scale linking with scale selection from

weighted averaging of scale-normalized feature responses

along feature trajectories.

In addition to the 2×7 differential interest point detectors

described in Sect. 4, we have also included 2 × 2 interest

point detectors derived from the Harris operator [55]: (i) the

Harris–Laplace operator [124] based on spatial extrema of

the Harris measure and scale selection from local extrema

over scale of the scale-normalized Laplacian, (ii) a scale-

linked version of the Harris–Laplace operator with scale

selection by weighted averaging over feature trajectories

of Harris features [104], and (iii-iv) two Harris–detHessian

operators analogous to the Harris–Laplace operators, with

the difference that scale selection is performed based on the

scale-normalized determinant of the Hessian instead of the

scale-normalized Laplacian [104].

The experiments are based on detecting the N = 800

strongest interest points extracted from the first image,

regarded as reference image for the homography. To per-

form the experimental evaluation over an approximate uni-

form density of interest points under scaling transformations,

an adapted number of N ′ = N/s2 strongest interest points is

searched for (i) within the subwindow of the reference image

that is mapped to the interior of the transformed image and

(ii) in the transformed image, with s denoting the relative

scaling factor between the two images.5

5 The reason for adapting the number of interest points to the amount

of geometric scaling is that with a relative scaling factor s > 1 between

two images, on average only N/s2 of the points in the first image will be

inside the domain of the second image. In previous experiments regard-

ing repeatability properties of interest points, we have found that the

repeatability scores may depend systematically on the number of image

features used for the evaluation. If one would ask for the same number

of images in the transformed image irrespective of the amount of scal-

ing, that would effectively correspond to asking for a larger number of

image features in the central part of the image with increasing amount

of scaling. To prevent such geometric factors from dominating the per-

formance values under variations in the amount of scaling, we have

chosen to adapt the number of image features to a geometric transfor-

mation such that when performing matching between an image at scale

factor s1 and an image at scale factor s2 > s1, only the N/(s2/s1)
2

strongest image features are used for computing the performance mea-

sure. Thereby, the density of image features will always be the same in

relation to the first image. The intention behind this choice is that the

performance values should reflect how much harder is to match image

features over a relative scale factor of say 5 to a corresponding matching

over a relative scale factor of say 2, and not how the repeatability of the

interest points depends on the thresholds for interest point detection.

The actual selection of a lower number of image features is performed

by sorting the interest points in decreasing order of significance, using

the scale-normalized magnitude measure |Dnorm L| at the scale-space

extremum for scale-space extrema or the scale integrated significance

measure WT along feature trajectories (41) for interest points computed

by scale linking.
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Table 2 Performance measures obtained by matching different types of scale-space interest points with associated Gauss-SIFT image descriptors

for the poster image dataset

Interest points Scaling Foreshortening Average

Extr Link Extr Link Extr Link

Efficiency: Gauss-SIFT image descriptor

∇2
norm L (D1 L > 0) 0.7484 0.7994 0.7512 0.7574 0.7498 0.7784

det Hnorm L (D1 L > 0) 0.7721 0.8225 0.7635 0.7932 0.7678 0.8079

det Hnorm L (D̃1 L > 0) 0.7691 0.8163 0.7602 0.7841 0.7647 0.8002

D1,norm L 0.7719 0.8280 0.7596 0.7977 0.7658 0.8128

D̃1,norm L 0.7698 0.8241 0.7578 0.7916 0.7638 0.8079

D2,norm L (D1 L > 0) 0.7203 0.8187 0.7111 0.7776 0.7157 0.7981

D̃2,norm L (D1 L > 0) 0.7204 0.8261 0.7113 0.7766 0.7159 0.8014

Harris–Laplace 0.7002 0.7855 0.7046 0.7535 0.7024 0.7695

Harris–detHessian 0.7406 0.7608 0.7561 0.7319 0.7406 0.7463

1-precision: Gauss-SIFT image descriptor

∇2
norm L (D1 L > 0) 0.0577 0.0336 0.0141 0.0163 0.0359 0.0250

det Hnorm L (D1 L > 0) 0.0544 0.0333 0.0133 0.0127 0.0339 0.0230

det Hnorm L (D̃1 L > 0) 0.0537 0.0315 0.0133 0.0132 0.0335 0.0224

D1,norm L 0.0543 0.0340 0.0135 0.0133 0.0339 0.0236

D̃1,norm L 0.0542 0.0340 0.0134 0.0134 0.0338 0.0237

D2,norm L (D1 L > 0) 0.0512 0.0356 0.0174 0.0153 0.0343 0.0255

D̃2,norm L (D1 L > 0) 0.0512 0.0329 0.0175 0.0143 0.0343 0.0236

Harris–Laplace 0.1272 0.0587 0.0306 0.0215 0.0789 0.0401

Harris–detHessian 0.1232 0.0664 0.0274 0.0264 0.0753 0.0464

The columns show from left to right: (i) the average performance over all pairs of perspective scaling transformations, (ii) the average performance

over all pairs of perspective foreshortening transformations and (iii) the average total computed as the mean of the scaling and foreshortening scores.

The columns labelled “extr” show results obtained by scale-space extrema detection, whereas the columns labelled “link” show results obtained by

scale linking. (Within each type of experimental condition (scaling transformations/foreshortening transformations/combined average of these) the

best result over all interest point detectors is shown in bold and the two next best results in italics)

This procedure is repeated for all pairs of images within

the groups of distance variations or viewing variations

respectively, implying up to 55 image pairs for the scal-

ing transformations and 6 image pairs for the foreshortening

transformations, i.e. up to 61 matching experiments for each

one of the 12 posters, thus up to 732 experiments for each

one of 2 × 9 interest point detectors.

As can be seen from the results of matching SIFT-like

Gauss-SIFT image descriptors in Table 2, the interest point

detectors based on scale linking generally lead to higher

efficiency rates and lower 1-precision rates compared to

the corresponding interest point detectors based on scale-

space extrema detection. Specifically, the highest efficiency

rates are obtained with the unsigned Hessian feature strength

measure D1,norm L , followed by the signed Hessian fea-

ture strength measure D̃1,norm L and the determinant of the

Hessian operator det Hnorm L with complementary thresh-

olding on D1,norm L > 0.

The lowest and thus the best 1-precision score is obtained

with the determinant of the Hessian operator det Hnorm L

with complementary thresholding on D̃1,norm L > 0, fol-

lowed by the determinant of the Hessian operator det Hnorm L

with complementary thresholding on D1,norm L > 0. In

this respect, the inclusion of saddle-like image features with

det Hnorm L as are accepted by the D̃1,norm L operator can

contribute to a lower number of rejected matches.

Among the more traditional feature detectors based on

scale selection from local extrema over scale, the determi-

nant of the Hessian operator det Hnorm L performs better than

both the Laplacian operator ∇2
norm L and the Harris–Laplace

operator. We can also note that the Harris–Laplace operator

can be improved by either scale linking or by replacing scale

selection based on the scale-normalized Laplacian by scale

selection based on the scale-normalized determinant of the

Hessian. Specifically, the interest point detectors based on the

Hessian feature strength measures D̃2,norm L and D̃2,norm L

are very much improved by scale linking.

Table 3 shows corresponding results for interest point

matching based on SURF-like Gauss-SURF descriptors. As

can be seen from the results, the highest efficiency scores
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Table 3 Performance measures obtained by matching different types of scale-space interest points with associated Gauss-SURF image descriptors

for the poster image dataset

Interest points Scaling Foreshortening Average

Extr Link Extr Link Extr Link

Efficiency: Gauss-SURF image descriptor

∇2
norm L (D1 L > 0) 0.7424 0.7832 0.7280 0.7140 0.7352 0.7486

det Hnorm L (D1 L > 0) 0.7656 0.8072 0.7402 0.7504 0.7529 0.7788

det Hnorm L (D̃1 L > 0) 0.7628 0.8015 0.7372 0.7430 0.7500 0.7723

D1,norm L 0.7661 0.8126 0.7354 0.7537 0.7507 0.7831

D̃1,norm L 0.7640 0.8081 0.7334 0.7478 0.7487 0.7779

D2,norm L (D1 L > 0) 0.7157 0.8014 0.6870 0.7284 0.7013 0.7649

D̃2,norm L (D1 L > 0) 0.7158 0.8100 0.6873 0.7328 0.7015 0.7714

Harris–Laplace 0.6948 0.7620 0.6724 0.6944 0.6836 0.7282

Harris–detHessian 0.7345 0.7381 0.7192 0.6705 0.7268 0.7043

1-precision: Gauss-SURF image descriptor

∇2
norm L (D1 L > 0) 0.0611 0.0399 0.0217 0.0287 0.0414 0.0343

det Hnorm L (D1 L > 0) 0.0572 0.0373 0.0210 0.0232 0.0391 0.0303

det Hnorm L (D̃1 L > 0) 0.0566 0.0356 0.0214 0.0239 0.0390 0.0298

D1,norm L 0.0572 0.0381 0.0207 0.0221 0.0389 0.0301

D̃1,norm L 0.0571 0.0385 0.0210 0.0230 0.0391 0.0307

D2,norm L (D1 L > 0) 0.0549 0.0392 0.0278 0.0282 0.0414 0.0337

D̃2,norm L (D1 L > 0) 0.0549 0.0365 0.0279 0.0273 0.0414 0.0319

Harris–Laplace 0.1312 0.0654 0.0458 0.0409 0.0885 0.0532

Harris–detHessian 0.1271 0.0743 0.0406 0.0483 0.0838 0.0613

The columns show from left to right: (i) the average performance over all pairs of perspective scaling transformations, (ii) the average performance

over all pairs of perspective foreshortening transformations and (iii) the average total computed as the mean of the scaling and foreshortening scores.

The columns labelled “extr” show results obtained by scale-space extrema detection, whereas the columns labelled “link” show results obtained by

scale linking. (Within each type of experimental condition (scaling transformations/foreshortening transformations/combined average of these) the

best result over all interest point detectors is shown in bold and the two next best results in italics)

are again obtained for the unsigned and signed scale linked

Hessian feature strength measures D1,norm L and D̃1,norm L

followed by the determinant of the Hessian det Hnorm L with

complementary thresholding on D1,norm L > 0. The lowest

average 1-precision score is also obtained for the scale linked

determinant of the Hessian det Hnorm L with complementary

thresholding on D̃1,norm L > 0, followed by the determinant

of the Hessian det Hnorm L with complementary thresholding

on D1,norm L > 0, and the Hessian feature strength measure

D1,norm L .

When comparing the results obtained for our Gauss-SIFT

and Gauss-SURF image descriptors, we can see that the

Gauss-SIFT image descriptors lead to both higher efficiency

rates and lower 1-precision scores than the Gauss-SURF

image descriptors. This qualitative relationship holds over

all types of interest point detectors. In this respect, the pure

image descriptor in the SIFT operator is clearly better than

the pure image descriptor in the SURF operator. Specifically,

more reliable image matches can be obtained by replacing

the pure image descriptor in the SURF operator by the pure

image descriptor in the SIFT operator.

Table 4 lists the five best combinations of interest point

detectors and image descriptors in this evaluation as ranked

on their efficiency values. For comparison, the results of our

corresponding analogues of the SIFT operator with interest

point detection from scale-space extrema of the Laplacian

and our analogue of the SURF operator based on scale-space

extrema of the determinant of the Hessian are also shown.

As can be seen from the ranking, the best combinations of

generalized points with Gauss-SIFT image descriptors per-

form better than the corresponding analogues of regular SIFT

or regular SURF based on scale-space extrema of the Lapla-

cian in combination with a Gauss-SIFT descriptor or the

determinant of the Hessian in combination with a Gauss-

SURF descriptor.

Figure 10 shows graphs of how the efficiency rate depends

upon the amount of scaling for the scaling transformations

and the difference in viewing angle for the foreshorten-

ing transformations. As can be seen from the graphs, the

interest point detectors det Hnorm L , D1,norm L and D̃1,norm L

that possess affine covariance properties or approximations

thereof (see Sect. 5 and [104,110]) do also have the best
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Table 4 The five best combinations of interest points and image

descriptors among the 2 × 2 × 9 = 36 combinations considered in

this experimental evaluation as ranked on the ratio of interest points

that lead to correct matches

Interest points and image descriptors ranked on matching efficiency

Interest points Scale

selection

Descriptor Efficiency

D1,norm L link SIFT 0.8128

D̃1,norm L link SIFT 0.8079

det Hnorm L (D1 L > 0) link SIFT 0.8079

D̃2,norm L (D1 L > 0) link SIFT 0.8014

det Hnorm L (D̃1 L > 0) link SIFT 0.8002

.

.

.
.
.
.

det Hnorm L (D1 L > 0) extr SIFT 0.7721

det Hnorm L (D1 L > 0) extr SURF 0.7656

∇2
norm L (D1 L > 0) extr SIFT 0.7484

Harris–Laplace extr SIFT 0.7002

For comparison, results are also shown for the SIFT descriptor based

on scale-space extrema of the Laplacian, the SIFT or SURF descriptors

based on scale-space extrema of the determinant of the Hessian and the

SIFT descriptor based on Harris–Laplace interest points

matching properties under the foreshortening transforma-

tions that involve transformations outside the similarity

group.

10 Extension to Illumination Invariance

The treatment so far has been concerned with the detection of

interest points under geometric transformations, modelled as

local scaling transformations and local affine image deforma-

tion representing the essential dimensions in the variability

of a local linearization of the perspective mapping from a

surface patch in the world to the image plane.

To obtain theoretically well-founded handling of image

data under illumination variations, it is natural to represent

the image data on a logarithmic luminosity scale

f (x, y) ∼ log I (x, y). (48)

Specifically, receptive field responses that are computed from

such a logarithmic parameterization of the image luminosi-

ties can be interpreted physically as a superposition of rel-

ative variations of surface structure and illumination varia-

tions. Let us assume a (i) perspective camera model extended

with (ii) a thin circular lens for gathering incoming light from

different directions and (iii) a Lambertian illumination model

extended with (iv) a spatially varying albedo factor for mod-

elling the light that is reflects from surface patterns in the

world. Then, it can be shown (Lindeberg [106, Sect. 2.3])

that a spatial receptive field response

Lxα yβ (·, ·; s) = ∂xα yβ Ts f (49)

of the image data f , where Ts represents the spatial smooth-

ing operator (here corresponding to a two-dimensional

Gaussian kernel (2)) can be expressed as

Lxα yβ = ∂xα yβ Ts

(

log ρ(x, y) + log i(x, y)

+ log Ccam( f̃ ) + V (x, y)
)

(50)

where

(i) ρ(x, y) is a spatially dependent albedo factor that

reflects properties of surfaces of objects in the envi-

ronment with the implicit understanding that this entity

may in general refer to points on different surfaces in

the world depending on the viewing direction and thus

the image position (x, y),

(ii) i(x, y) denotes a spatially dependent illumination field

with the implicit understanding that the amount of

incoming light on different surfaces may be different

for different points in the world as mapped to corre-

sponding image coordinates (x, y),

(iii) Ccam( f̃ ) = π
4

d
f

represents internal camera parameters

with the ratio f̃ = f/d referred to as the effective f -

number, where d denotes the diameter of the lens and

f the focal distance and

(iv) V (x, y) = −2 log(1 + x2 + y2) represents a geomet-

ric natural vignetting effect corresponding to the fac-

tor log cos4(φ) for a planar image plane, with φ denot-

ing the angle between the viewing direction (x, y, f )

and the surface normal (0, 0, 1) of the image plane.

This vignetting term disappears for a spherical camera

model.

From the structure of Eq. (50) we can note that for any non-

zero order of differentiation α > 0 or β > 0, the influence

of the internal camera parameters in Ccam( f̃ ) will disap-

pear because of the spatial differentiation with respect to

x or y, and so will the effects of any other multiplicative

exposure control mechanism. Furthermore, for any multi-

plicative illumination variation i ′(x, y) = C i(x, y), where

C is a scalar constant, the logarithmic luminosity will be

transformed as log i ′(x, y) = log C + log i(x, y), which

implies that the dependency on C will disappear after spatial

differentiation.

After a logarithmic transformation of the intensity axis, the

Gaussian derivatives that we use for defining the interest point

detectors in Sect. 4 will therefore be invariant under local

multiplicative illumination variations and exposure control

mechanisms and thus also the responses of the interest point

detectors. Figure 11 gives an illustration of this property by

showing interest points detected from a scene with a build-
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Scaling variations Foreshortening variations

0 0.5 1 1.5 2 2.5 3

0.55

0.6

0.65

0.7

0.75

0.8

0.85

∇
2
 L

det H L (D
1
 L > 0)

det H L (~D
1
 L > 0)

D
1
 L

~D
1
 L

~D
2
 L (D

1
 L > 0)

HarrisLaplace

∇
2
 L (extr)

20 25 30 35 40 45

0.55

0.6

0.65

0.7

0.75

0.8

0.85

∇
2
 L

det H L (D
1
 L > 0)

det H L (~D
1
 L > 0)

D
1
 L

~D
1
 L

~D
2
 L (D

1
 L > 0)

HarrisLaplace

∇
2
 L (extr)

Fig. 10 Graphs showing how the matching efficiency depends upon

(left) the amount of scaling s ∈ [1.25, 6.0] for the perspective scal-

ing transformations (with log2 s on the horizontal axis) and (right) the

difference in viewing angle ϕ ∈ [22.5◦, 45◦] for the perspective fore-

shortening transformations for interest point matching based on SIFT-

like Gauss-SIFT image descriptors. (The reason why the curve showing

the matching efficiency under scaling variations is more jaggy in the

rightmost part is that much fewer interest points are used for larger

scale factors (N/s2) thereby affecting the statistical determinacy in the

results.)

ing where one wall is strongly sunlit, whereas another wall

is in the shadow. When using a linear parameterization of

the intensity values as obtained from the camera (which

can be assumed to represent a gamma transformation I γ of

local energy measurements I ), a dominance of the strongest

interest points is obtained from the sunlit parts in the scene.

When using a logarithmic transformation of the brightness

values (which by the assumption of camera measurements

using a gamma transformation can be assumed to represent

a logarithmic transformation of local energy measurements

γ log I ), we obtain much more responses from regions in the

shadow.

The logarithmic transformation prior to the computation

of a scale-space representation and interest point detectors

based on Gaussian derivatives does therefore compensate for

the subclass of illumination variations that can be modelled

by local multiplicative intensity transformations within the

support region of the underlying receptive fields that are used

for computing the image features.

For this building we could not expect perfectly equal

responses from the two walls, since the local 3-D geometry

differs somewhat between the walls. The important point,

however, is that the invariance of receptive field responses

under local multiplicative illumination variations implies that

the responses from the interest point detectors will not be

affected by the difference in local image contrast that would

otherwise be the result on a linear brightness scale.

The computation of receptive field responses in terms of

spatial derivates over a logarithmic brightness scale does

therefore lead to an automatic compensation for illumina-

tion variations that can be modelled as local multiplicative

intensity transformations.

For the purely second-order differential entities ∇2
norm L ,

det Hnorm L , D1,norm L , D̃1,norm L , D2,norm L and D̃2,norm L ,

the differential invariants will also be invariant to local linear

illumination gradients of the form

f (x, y) �→ f (x, y) + A(x − x0) + B(y − y0). (51)

If we consider local surface markings on a curved object

(by a painted surface assumptions) and model the local illu-

mination alternative reflectance variations by illuminating

the object from two different directions relative to an object

centered frame, alternatively observing the object from two

different viewing directions for a non-Lambertian reflectance

model, we could therefore expect the responses of the interest

point detectors to be invariant to the first-order linear com-

ponent of such illumination or reflectance variations. Thus,

these interest point detectors obey basic robustness proper-

ties under illumination variations as well as multiplicative

exposure control parameters, provided that the interest point

detectors are applied to image intensities represented on a

logarithmic brightness scale.

Concerning the subsequent computation of image descrip-

tors at the interest points, it follows from a similar way of rea-

soning that the measurements of the first-order partial deriv-

atives Lx and L y underlying the SIFT and SURF descriptors

will be invariant to local multiplicative illumination transfor-

mations or exposure control mechanisms if the image inten-

sities are represented on a logarithmic brightness scale. By
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Fig. 11 Scale-space interest points computed from a scene with strong

illumination variations using (left column) a linear and (right column)

a logarithmic parameterization of the luminosity values. Using a linear

parameterization of the intensity values, most of the strongest responses

are obtained in the sunlit parts and only a few from the shadowed regions,

whereas a logarithmic transformation leads to a more similar treatment

of the sunlit versus the shadowed regions. This result is a consequence of

the invariance of receptive field responses to local multiplicative illumi-

nation transformations and corresponding invariance to multiplicative

exposure parameters. For each image, the 1,400 strongest responses

have been selected, using scale linking of D1,norm L in the top row and

scale-space extrema of D1,norm L in the bottom row. The dominance of

repetitive image structures on the two walls of the building indirectly

also demonstrate the good repeatability properties of these interest point

detectors. (Scale range: t ∈ [2, 256]. Image size: 725× 480 pixels. The

size of each circle represents the detection scale of the interest point.

Red circles indicate that the Hessian matrix is negative definite (bright

features), while blue circles that the Hessian matrix is positive definite

(dark features).)
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being defined in terms of first-order derivatives, the SIFT

and SURF descriptors are, however, not invariant to linear

illumination gradients of the form (51).

11 Summary and Conclusions

We have presented a set of extensions of the SIFT and SURF

operators, by replacing the underlying interest point detectors

used for computing the SIFT or SURF descriptors by a family

of generalized scale-space interest points.

These generalized scale-space interest points are based

on (i) new differential entities for interest point detection at

a fixed scale in terms of new Hessian feature strength mea-

sures, (ii) linking of image structures into feature trajectories

over scale and (iii) performing scale selection by either the

strongest response of the responses along a feature trajec-

tory, or by weighted averaging of scale-normalized feature

responses along each feature trajectory.

The generalized scale-space interest points are all scale-

invariant in the sense that (i) the interest points are preserved

under scaling transformation and that (ii) the detection scales

obtained from the scale selection step are transformed in a

scale covariant way. Thereby, the detection scale can be used

for defining a local scale normalized reference frame around

the interest point [109,111] implying that image descriptors

defined relative to such a scale-normalized reference frame

will also be provably scale invariant.

By complementing the generalized scale-space interest

points with local image descriptors defined in a conceptually

similar way as the pure image descriptor parts in regular

SIFT or SURF, while being based on image measurements

in terms of Gaussian derivatives instead of image pyramids

or Haar wavelets, we have shown that the generalized interest

points with their associated scale-invariant image descriptors

lead to a higher ratio of correct matches and a lower ratio of

false matches compared to corresponding results obtained

with interest point detectors based on more traditional scale-

space extrema of the Laplacian, its difference-of-Gaussians

approximation or the Harris–Laplace operator.

In the literature, there has been some debate concerning

which one of the SIFT or SURF descriptors leads to the

best performance. In our experimental evaluations, we have

throughout found that our SIFT-like Gauss-SIFT descrip-

tor based on Gaussian derivatives generally performs much

better than our SURF-like Gauss-SURF descriptor, also

expressed in terms of Gaussian derivatives. In this respect,

the pure image descriptor in the regular SIFT operator can be

seen as better than the pure image descriptor in the regular

SURF operator, and we can in this respect regard the underly-

ing information content in the SIFT descriptor as allowing for

more accurate image matching than the information content

underlying the SURF descriptor.

Concerning the underlying interest points, we have on the

other hand found that the determinant of the Hessian opera-

tor to generally perform better than the Laplacian operator,

for both scale-space extrema detection and feature detec-

tion by scale linking. Since the difference-of-Gaussians inter-

est point detector in the regular SIFT operator can be seen

as an approximation of the scale-normalized Laplacian (see

Appendix A), we can therefore regard the underlying interest

point detector in the SURF operator as better than the interest

point detector in the SIFT operator. Specifically, we could

expect an increase in the performance of SIFT by replac-

ing the scale-space extrema of the difference-of-Gaussians

operator by scale-space extrema of the determinant of the

Hessian.

In addition, the experimental evaluation shows that fur-

ther improvements are possible by replacing the interest

points obtained from scale-space extrema in our Gauss-

SIFT and Gauss-SURF operators by generalized scale-space

interest points obtained by scale linking, with the best

results obtained with the Hessian feature strength measures

D1,norm L and D̃1,norm L followed by the determinant of

the Hessian det Hnorm L and the Hessian feature strength

measure D̃2,norm L with complementary thresholding on

D1,norm L > 0.

These relative relations between the different differen-

tial interest points are good agreement with the theoretical

analysis of covariance properties of the underlying differ-

ential expressions in Sect. 5 and previous results concern-

ing robustness of scale estimates under affine image defor-

mations [110]. Hence, this demonstrates how the exper-

imental performance of interest point detectors defined

within the scale-space framework can be predicted from dif-

ferential geometric analysis of the underlying differential

expressions.

12 Discussion

An overall aim with this work to demonstrate the possibility

of using a richer vocabulary of interest point detectors for

image-based matching and recognition, beyond Laplacian,

difference-of-Gaussians or Harris/Harris–Laplace points,

which are the most commonly used features today.

Regarding the choice of differential entities, we have

presented both theoretical and experimental support advo-

cating the use of affine covariant differential entities or

approximations thereof. Concerning the selection of sig-

nificant image features, we have advocated for including

the behaviour of image structures over scale in significance

measures of feature strength, specifically by integrating

local evidence over their lifetime across scales. On a poster

dataset and for systematic experiments over synthetic affine

image deformations (not reported here), this mechanism has
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been demonstrated to lead to better selection of interest

points.

Further work would should however be performed to

explore these properties experimentally, preferably on more

extensive 3-D datasets from natural scenes, for which how-

ever the definition of a proper ground truth may consti-

tute a challenge by itself. In situations with occlusions or

other true 3-D effects, it should specifically be investi-

gated if scale selection from local extrema over scale along

each feature trajectory is preferable over scale selection by

weighted averaging over scale, by being more local and

less sensitive to interference with neighbouring image struc-

tures. Concerning the definition of a significance measure

of interest points, there are also other degrees of freedoms

to explore in how feature evidence should be accumulated

over scale e.g. by statistical measures while respecting scale

invariance.

From such a context, the proposed framework for gener-

alized scale-space interest points should be seen as defining

a theoretical structure by which richer sets of interest point

detectors can be considered and be specifically adapted to dif-

ferent computer vision applications, with additional degrees

of freedoms to explore regarding (i) the choice of differen-

tial entities for interest point detection, (ii) scale selection

mechanisms and (iii) ways of ranking interest points on sig-

nificance to enable automatic selection of repeatable subsets

of sparse interest points for applications in which the number

of interest points must be kept low because of the computa-

tional complexity of later stage processes.

These generalized scale-space interest point detectors can

also be complemented by affine shape adaptation to enable

affine invariant interest points and image descriptors. Specifi-

cally, we could expect that by initiating the affine shape adap-

tation process from determinant of the Hessian det Hnorm L

or Hessian feature strength measures D1,norm L or D̃1,norm L

interest points should make it possible to handle image defor-

mations outside the similarity group in a better manner than

e.g. Laplacian ∇2
norm L , difference-of-Gaussians or Harris–

Laplace interest points.

More generally, we do in a similar way as in [90,101] argue

that qualitative scale information extracted in a bottom-up

processing stage, as done by scale invariant feature detection

and/or a scale-space primal sketch, may serve as a guide

to other visual processing stages and may simplify their

tasks. For example, the scale tuning of other early visual

processing at scale levels proportional to the detection scale

of scale-invariant image features constitutes one such domain

of applications [111]. Since all the interest point detectors

proposed in this work are scale invariant, it follows that the

associated scale estimates obtained from these can be used

for normalizing other visual operations with respect to scale

or size variations, and that the corresponding derived visual

representations will therefore also be scale invariant.

In a similar way as the SIFT descriptor has been extended

to colour images by several authors (Bosch et al. [17], van de

Weijer and Schmid [155], Burghouts and Geusebroek [24],

van de Sande et al. [138]), we propose that the generalized

interest points presented here can be integrated with colour

extensions of the SIFT descriptor or other image descriptors

to increase their discriminative properties.

Acknowledgments An earlier version of this work was presented at

the SSVM 2013 conference [108]. I would like to thank Lars Bretzner

for his help when preparing the poster image dataset and Oskar Linde

for sharing his code for local image descriptors. The support from the

Swedish Research Council (contract 2010-4766) and from the Royal

Swedish Academy of Sciences as well as the Knut and Alice Wallenberg

Foundation is gratefully acknowledged

Open Access This article is distributed under the terms of the Creative

Commons Attribution License which permits any use, distribution, and

reproduction in any medium, provided the original author(s) and the

source are credited.

Appendix: A Relationship Between Laplacian and

difference-of-Gaussians Interest Points

Since the difference-of-Gaussians interest point detector in

the regular SIFT operator (Lowe [119]) can be seen as an

approximation of the scale-normalized Laplacian (Lindeberg

[101])

1

2
∇2 L(x; t) = ∂t L(x; t)

≈ L(x; t+∆t)−L(x; t)

∆t
= DOG(x; t,∆t)

∆t
(52)

with ∆t = (k2 − 1) t due to the self-similar scale sampling

σi+1 = k σi corresponding to ti+1 = k2 ti , thus implying

DOG(x, y; t) ≈ (k2 − 1)

2
∇2

norm L(x, y; t), (53)

we can regard interest points obtained from scale-space

extrema of difference-of-Gaussians as approximations of

interest points obtained from scale-space extrema of the

Laplacian.
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