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Image methods are commonly used for the analysis of the acoustic properties of enclosures. In this paper 
we discuss the theoretical and practical use of image techniques for simulating. on a digital computer, the 
impulse response between two points in a small rectangular room. The resulting impulse response, when 
convolved with any desired input signal, such as speech, simulates room reverberation of the input signal. 
This !echnique is useful in signal processing or psychoacoustic studies. The entire process is carried out on 
a digital computer so that a wide range of room parameters can be studied with accurate control over the 
experimental conditions. A FORmS• implementation of this model has been included. 

PACS numbers: 43.55.Ka, 43.55.Br 

INTRODUCTION 

In some recent experiments, which studied the per- 
ceptual effects of reverberation properties of a small 
room, t. 2 a carefully controlled, easily changed, acou- 
stic environment was required. It was decided to utilize 
a computer simulation of the acoustic space. This pa- 
per describes both the general theoretical approach and 
the specific implementation techniques used (the 
FORTRAN program). We believe that the resulting room 
model is useful for a broad range of investigations, 
from our original experiments mentioned above, to 
basic studies of room acoustics. 

The room model assumed is a rectangular enclosure 
with a source-to-receiver impulse response, or trans- 
fer function, calculated using a time-domain image ex- 
pansion method. Frequent applications have been made 
of the image method in the past as in deriving the re- 
verberation-time equations, 3 for theoretical studies 
sound behavior in enclosures, 4-? and in the study of 
architectural acoustics and perceptual properties of 
rooms? 'n In addition, there has been a considerable 
amount of important theoretical work on the approxi- 
mate 12 use of images produced by a single soft-wall 
(finite impedance) reflection. Several recent papers on 
this subject which have good bibliographies are Refs. 
13, 14, and 15. Computer methods have also recently 
been applied to image computations in enclosures (see 
for example Refs. 6, 7, 10, and 11). In the current 
paper the computational technique is specifically aimed 
at being simple, easy to use, and fast. In addition the 
resulting room responses have been used to realistical- 
ly model speech transmission in rooms and to investi- 
gate the effects of various forms of digital speech sig- 
ns/ processors. 16'tl 

In the following we will first briefly discuss theoretic- 
al aspects of the method. Then we will outline the compu- 
tational approach and, finally, we will give some 
staples of applications. 

(1) We are most interested in the office environment, 
which is usually a rectangular geometry. 

(2) This model can be most easily realized in an ef- 
ficient computer program. 

(3) The image solution of a rectangular enclosure 
rapid/y approaches an exact solution of the wave equa- 
tion as the walls of the room become rigid. 

The image model is chosen because we are interested 
in the point-to-point (e.g., talker-to-microphone) trans- 
fer function of the room. In order to obtain a good 
trausientdescriptionofthe response, atimedomaln mo- 
del is required. A normal-mode solution of the enclosure 
would require calculation of all modes within the fre- 
quency range of interest (i.e., 0.1-4.0 kHz), plus cor- 
rections for those outside this range. The image meth- 
od includes only those images contributing to the im- 
pulse response. Thus the contributing images are those 
within a radius given by the speed of sound times the 
reverberation time.• (The exact relationship between 
the normal-mode solutions and the image solution, for 
a lossless room, is discussed in Appendix A.) The im- 
portant information used here is that in the time-do- 
main, each image contributes only a pure impulse of 
known strength and delay while each normal mode is 
a decaying exponential which contributes to all times. 
Furthermore, whereas an image has only delay and 
gain as parameters, a normal mode computation re- 
quires the solution of transcendental equations to find 
the Dote location plus the evaluation of a relatively 
comptex function to find the mode gain (i.e., the residue 
of the pole). 

A. The image model 

We model a talker in a room as a point source in a 
rectangular cavity. A single frequency point source of 
acceleration in free space emits'a pressure wave of the 
form 

I. IMAGE VERSUS NORMAL MODE MODELS 

We model the rooms of interest as simple rectangular 
enclosures. This choice of geometry is made for sev- 
eral reasons: 

P ...... 

where 
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P = pressure, 

f= frequency, 

t= time, 

R-- Ix-x'l, (2) 

X =vector talker location (x,y,z), 

X' =vector microphone location (x', y ', z'), 

i= v•-i, 

c = speed of sound. 

When a rigid wall is present, the rigid wail (zero norm- 
al velocity) boundary condition may be satisfied by 
placing an image symmetrically on the far side of the 
wall. Thus, 

p(w ,X ,X ')= [oxp[i4(•R/.c)R*] + exp[i4(•/.c)R"]]exp(-icot), 
(s) 

where we define the two distances from the microphone 
to the source R. and to the image R. by 

=(x_ x,)2 _y,)2 +(z _ (4) 
2. =(x + gF +(y +(z -z') 2 ß 

The wall has been placed at x = 0 in this case (note the 
sign in the x terms of R. and R.). 

In the general case of six walls the situation becomes 
more complicated because each image is itself imaged. 
The pressure may then be written (as shown in Appen- 
dix A) 

where R• represents the eight vectors given by the eight 
permutations over ñ of 

l•=(x•x', y •y', z•z') (6) 

r is the integer vector triplet (n,l,m), and 

lL, mr,), (7) 

where (L•, L•, L•) are the room dimensions. Equation 
(5) is the pressure frequency response assuming rigid 
walls for a point source at X =(x,y,z) and receiver at 
X'=(• ,y',z'). If Eq. (5) is Fourier transformed, we 
find the room impulse response function (time domain 
Green's function) 

p(t,X,X' =•_. •,•.• 4vli• + Rr I 

An interpretation of Eq. (8) is given in Fig. 1 where we 
show a part of the image space for a two-dimensional 
slice through the room. When the accelerative source 
location (talker)X is excited, each image point is si- 
multaneously excited, creating spherical pressure 
waves which propagate away from each image point. 

Equation (8) is the exact solution to the wave equation 
in a rectangular, rigid-wall (lossless), room and may 

IMAGE EXPANSION p(t} 

Y 

o 

p( 1 )= •.. •..,' .• 
p=lr=-<• 4w'IRp+ Rrl 

•r = (2nLx,21Ly,2mLz) 

•=(x• x', y• y',z• z') 

•p+ ;r = (x• x'+ 2nLx,• t y' + 21Ly,z•z'+2mLz) 
YTG. •. A slice •u•h the t•;e space show• how •e 
i•ges of the source are spatially arra•ed. The solid •x 
represen• •e origi•l more. The ac• image s•ce is 
•me dimensional. 

be derived directly from the normal-mode solution as 
shown in Appendix A. 

B. Case of nonriõid wslls 

If the room walls are not rigid, the solution in terms 
of point images may no longe• be exact. A precise • 
statement of the effects of finite impedance walls is 
presently impossible, since the effects on even a single 
image are quite complicated. ts'•4'• Therefore we have 
continued to assume the approximate point image model 
even for nonrigid walls. In addition we have assumed 
an angle independent pressure wall reflection coefficient 
•. This assumption is equivalent to assuming that the 
wall impedance is proportional to sec(8), where 8 is the 
angle of incidence of a plane wave with respect to the 
wall normal. We presently do not understand the exact 
physical interpretation of the above assumptions. How- 
ever, we believe that they do not introduce serious 
problems into the final result under typical conditions. 
By typical, we mean over the frequency range of 100 
Hz-4• kHz, wall reflection coefficients of greater than 
0.7, typical office room geometries, and where both 
source and receiver are not close to the wall. Many, 
if not all, of the above conditions are probably not cri- 
tical and could be relaxed. We merely wish to carefully 
point out the nonexact nature of the •esults. 

The above assumptions result in the Sabine energy 
absorption coefficient c• for a uniform reflection coeffi- 
cient fi on a given wall of the form 

a = 1 - •2. (9) 

Our assumptions are similar to those of geometrical 
acoustics • and are the same as those required for spec- 
ular angle-independent ray tracing. In current imple- 
mentations of the model we also do •ot allow frequency 
variations in the reflection coefficients. Both the angie 
dependence and frequency dependence could be included 
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in our computer program, b•t only at the expense of 
significantly complicating and slowing down the compu- 
tational model. 

Introducing the effects of finite, angle independent 
wall absorption into Eq. (8) leads to the modified room 
impulse response 

p(t,X,X')-z.• z_, •,t ,• • •2 •,• 

x 4.,,. fR, + ' (10) 
where 1• is now expressed in terms of the integer 3- 
vector p---(q,j,/•) as 

P,•=(x-x' +Zqx', y -y' + 2jy', z-z' + 2kz'). (11) 

I• as given by Eq. (6) is similar to titat of (11), but is 
indexed differently from (11). The beta's are the pres- 
sure reflection coefficients of the six boundary planes, 
with the subscript I referring to walls adjacent to the 
coordinate origin (see Fig. 1). Subscript 9. is the oppos- 
ing wall. Eq. (10) has been derived heuristically from 
geometrical considerations of Fig. 1. The sum • with 
vector index p is used to indicate three sums, namely 
one for each of the three components of p=(q,j,k). 
r--(n,l,rn) is a similar sum. Physically these sums 
are over a three-dimensional latUce of points. For p 
there are eight points in the lattice and for r, the lattice 
is infinite. 

II. IMPLEMENTATION OF THE MODEL 

The primary consideration in a computer (sampled 
data) implementation of Eq. (10) is the method of spatial 
sampling. In addition, an apparently nonphysical be- 
havior of the model at zero frequency is removed by a 
low-frequency (0.01 of the sampling frequency) high- 
pass digital filter. 19 

A calculated impulse response is built up as a "histo- 
gram" oi image pulses received at different time de- 
lays. The width of each histogram bin is equal to the 
time sampling period T initially assumed, which in 
turn is determined by the highest frequency to be rep- 
resented. For example, all images with the range 
N•R to (N+ 1)aR, where AR=½T (T is the sampling 
period and c the speed of sound), are added together 
with appropriate amplitude as given by Eq. (10). 

The choice of sampling rate is governed.by the appli- 
cation. If speech is to be studied in small rooms one 
might choose T = 0.1 ms. (sampLing frequency of 10 
kHz; highest frequency of 5 kHz). But, if reverberation 
times of large enclosures are being studied (and convo- 
lution with speech is not required) much lower rates 
can be useful. 

The time length of the calculated impulse response is 
also a consideration. For a given sampling rate the 
number of points in p(•) increases linearly with its 
length while the computation time (and number of im- 
ages) goes up approximately as the cube of response 
length. This is shown in the first four columns of Table 

TABLE I. Computation parameters•room size (feet) 10' x 15' 
x 12.• 8 kHz sampling rate. 

Impulse response Convolution 
Leugth Image Computation rate 

(ms) No. points count time (s) (s/s) 

64 512 585 1 12.5 
128 1024 469 0 8 13.8 
256 2048 375 00 60 15.0 

I for our implementation on a Data General, Eclipse 
S/200 computer. (On this machine the computation 
time required for each image is about 1.6 ms.) T. he 
actual FORTRAN programs used are given in Appendix B. 

The temporal quantization in the impulse function 
computation causes sligh[ statistical errors in the com- 
puted arrival times of each image pulse relative [o the 
exact delay as given in Eq. (10). This error can be 
thought of as effectively "moving" each image source by 
0• < e•-•'o•'• < AR/2 relative to the receiver. This effect 
could be removed, in principle, by using a band-Limited 
source pulse. However, the error is small for most 
(if not all) purposes and it greatly complicates the com- 
putation to remove this approximation. We have esti- 
mated that the error due to the slight moving of the im- 
ages could not be perceived even in a digital simulation 
of a binaural hearing experiment. 

The subroutine SROOM of Appendix B requires as pa- 
rmeters the number of impulse response points de- 
sired (NPTS), the source location R0, the receiver 1o- 

1.0 

IMPULSE RESPONSE 

2048 POINTS 
8 KHZ SAMI:4.1NG RATE 

-I.0 I I I I I I 
0 

TIME (MS) 

I I 

FIG. 2. Plot of a typical impulse response for a room 
80 x 120 x 100 sample lengths long. Wall reflection coefficients 
were all 0.9 ceiling and floor coefficients were 0.7. X and X' 
were at (30, 100, 40) and (50, 10, 50) sample periods. 
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cation R, the room dimensions, all specified in terms 
of the sample length (AR), and the reflection coefficients 
of each of the six wall surfaces (fi). Figure 2 shows an 
example of the impulse response obtained for a room of 
dimensions 80 x 120 x 100 sample lengths with equal wall 
reflection coefficients of 0.9 ((• = 0.19) and with floor 
and ceiling reflection coefficients (/],) of 0.7 ((• = 0.51). X 
and X / were (30,100,40) and (50, 10,60) sample in- 
tervals, respectively. 

It is usually convenient to interpret the model param- 
eters as a true distance rather than as multiples of 
AR. This requires the choice of a sampling rate and 
then conversions may be performed in the users main 
program which calls the subroutines of Appendix B. 
Figure 2 is labeled assuming an 8 kHz sampling rate. 
For this assumption (and assuming a sound speed of 1 
ft/ms) the room dimensions are 10'x 15' x12.5'. 

use a modification of the integrated tone-burst method 22 

z(t)=kf (12) 
where E(t) is the average energy decay, k is a propor- 
tionality constant, and p(?) is the calculated pressure 
impulse response from Eq. (10). For cases where the 
impulse response has been truncated before most of the 
decay has taken place, (12) may lead to errors. These 
errors are usually obvious in the E(t) plots. 

Another, approximate, approach is to simply mea- 
sure the short-time average energy decay of the im- 
pulse itself (e.g., using a simulated level recorder). 
For exponential or near-exponential decays, both 
methods should give approximately the same value of 

III. APPLICATIONS 

Our room image model has been applied to several 
problems. We will discuss t•vo examples: a psycho- 
physical evaluation of room reverberation effects t'2 and 
a study of critical distance measurements using spec- 
tral response variance. 2ø We have also used the model 
to test a signal processor intended to reduce perceived 
reverberation t6 and to study problems associated with 
mathematical inversion (inverse filtering) of room 
transfer functions. t? 

A. Psychophysics of room reverberation 

Once a simulated room impulse response has been 
calculated using the image model, the psychophysical 
effects of this simulated reverberation on speech may 
be directly studied. A reverberant sample of speech 
was produced by convolving an anechoic (unreverberant) 
speech sample with the calculated impulse response 
[p(t)]. This can be done efficiently using a Fast Fourier 
Transform (FFT) method (overlap-add) to perform the 
convolution. 2• The last column of Table I shows the 
measured convolution rate, for various length impulse 
responses. The convolution rate only increases as 
log2(N) , (where N is the room response length in time 
sample periods T) so even large impulse responses can 
be convolved with speech quite efficiently. For exam- 
ple, to convolve (filter) one second of speech, sampled 
at 8 kHz, with a 256 ms long impulse response (2048 
points) requires a 15 s computation. 

The speed of processing makes multivariate psycho- 
physical studies quite practical. Ease of modification 
and perfect control of room parameters avoids the 
problems which have made such experiments so difficult in 
the past. The actual experiments used 16 different simu- 
lated" rooms" (impulse responses) convolved with ten dif- 
ferent sentences spoken by four different speakers. Itwas 
discovered that the experimental rooms were perceptually 
well characterized by their spectral variance [Eq. (14)] 
andby the reverberation time. This latter measure, 
reverberation time, deserves some discussion. 

Given the impulse responses, reverberation time may 
be estimated in a number of ways. One method is to 

(o) 

DECAY CURVE 

2048 POINTS 
8 KHZ SAMPLING RATE 

TIME (MS) 

I 
256 

ENERGY DECAY CURVE 
2048 POINTS 

8 KHZ. SAMPLING RATE 

0 256 
TIME (MS) 

FIG. 3. (a) Energy decay curve for the impulse response of 
Fig. 2 using the Schroeder [ntegraUon method. •2 (b) Impulse 
energy decay curve for a simulated level recorder. 
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reverberation time. Example plots of E(t) for both 
methods are shown in Figs. 3(a) and 3(b) using the im- 
pulse response of Fig. 2. Experience indicates that Eq. 
(12) gives the most satisfactory results. We have found 

(a) STANDARD DEVIATION OF SPECTRAL RESPONSE 
IN COMPUTER-SIMULATED ROOM: 17' x I$' x I0' 

7 

o 
ß o 

&• A A 

G o 

0.15 
029 
050 

•070 

I I I 
-30 -24 -18 -12 -6 0 6 12 18 24 

REVERBERANT/DIRECT ENERSY RATIO 

(A/Ac)• 

(D) STANDARD DEVIATION OF SPECTRAL RESPONSE 
IN COMPUTER-SIMULATED ROOMi 47' x 31' x 

• a 0.15 
)• a 0.29 

}• * 0.50 
y •0. 70 

J ROOM DIMENSIONS: 47'x13'x 15' 
-30 -P4 -18 -12 -6 0 6 t2 18 24 

REVERBERANT/ DIRECT ENERGY RATIO (dB) 

( A/A c )2 
FIG. 4. Figures from Jetzt zø which compare the theoretical 
rms deviation of the pressure in dB from the mean pressure 
in dB as a function of the direct to reverberent energy ratio 
(a) for a room 17x13x10 ft and (b) 47x31x15 ft, 

empirically that calculated reverberation times, for a 
number of simulated enclosures, agree well with 
Eyring's formula • over a wide range of Beta values? 

In the experiments discussed above 1, 24 we discovered a 
monotonic relationship between A/A: ( Fig. 4) the micro- 
phone-talker distance when normaliz ed by the room c ri- 
tical distance (the distance at which reverberant energy 
equals direct sound energy), the reverberation time, and 
psychophysical preference for the resulting speech. 

B. Critical distance measurement 

A new method has been proposed 2ø for measurement 
of critical distances (or reverberation radius) in rooms. 
In this technique a measurement is made of the log frequen- 
cy response variance cL defined as 

L(co):201og[[p()I ] (13) 
c[ =[œ(•)-L(,•)] • , (14) 

given the room transfer-function P(co) [Fourier trans- 
form of Eq. (10)] for several microphone-source spac- 
ings. The measured values are fitted to a theoretical 
curve for aL based on the assumption of simultaneously 
excited, uncorrelated, normal modes, combined with 
the calculated direct sound energy. The resulting fit 
was shown to give an accurate value for the room's 
critical distance. 

This new method was extensively studied using our 
image model before being applied successfully to real 
rooms. Since the direct and reverberant energy are 
known in the computer model, a comparison can easily 
be made to the theory. The model results show excell- 
ent agreement with theoretical calculation as is seen in 
Figs. 4(a) and 4(b). We know of no other method by 
which this study could have been carried out as effect- 
ively. 

IV. SUMMARY ANO DISCUSSION 

A simulation method for small rooms based on an 

approximate image expansion for rectangular nonrigid- 
wall enclosures has been discussed. The method is 

simple, easy to implement and efficient for computer 
simulation. Several examples of its use, where other 
methods would be difficult, have been discussed. 

APPENDIX A 

We wish to derive the rigid-wail image solution di- 
rectly from the normal-mode expansion for a rectangu- 
lar enclosure. The frequency response function 
(Green's function) for the pressure P(co) in an enclos- 
ure is given by solving the Helmhoitz equation driven 
by a single frequency point acceleration source. 

vP[(co/c),X ,x'] + ,x'] =- -x '), 

(A1) 

where co is the frequency and c is the speed of sound. 
The solution to this equation, assuming rigid boundar- 
ies, is given by 
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..,• __ • *r(x)*r(x ) 
P(k,X,,, j- /• 2 k2 (A2) V,=.. (k,- ) ' 

where k = •/c, r = (n, l,m) indicates a three dimension- 
al sum, V is the room volume, 

•=• z• . 

k2r= ]kr 12 (A3) 
and 

n•rx l•y rn•rz 

where the Li•s are the room dimensions. 

Using the exponential expansion for cosine, mMti- 
plyi• the terms of Eq. (A2) together and collecti•, we 
obtain 

x • •exp(,•.•) 
P(k,X,X')=•,• (•$_•:) , (AS) 

where • represents the eight vectors [also given by 

•=(x•x •, y •y•, • •'). (A6) 

Using the property of the delta Mnction on kz, k• • and k• 

f• •(• - =)•(•)• =F(=), (A•) 
we may rewrite Eq. (AS) in integr• form 

APPENDIX B 

By Fourier series analysis one may show 

Thus [with analogus equations to (A9) for y and z ] 

p(•,X,X,)=(21_•) •_ f f f •-• exp[(i•.(R•+ P•)] 
(A•0) 

where • is the vector [also given by Eq. (7)] 

•=2(•, zL•, m•,). (An) 

Each triple integral is just a plane wave expansion for 
a •int source in free space since 

•p(iklRI) I f•f exp(i•.R) • (A12) 
Finally, •ing Eq. (A12), Eq. (A10) becomes 

T•ing the inverse Fourier transform of Eq. (A18), the 
echo structure becomes explicit 

,• 4•[•+•} ' (A14) 

which is the same as Eq. (8) as desired. 

C PGM: SROOM 
C SUBROUTINE TO CALCULATE A ROOM IMPULSE RESPONSE 

C R=VECTOR RADIUS TO RECEIVER IN SAMPLE PERIODS =LENGTH/(C*T) 
C R0 =VECTOR RADIUS TO SOURCE IN SAMPLE PERIODS 

C RL =VECTOR OF BOX DIMENSIONS IN SAMPLE PERIODS 

C BETA=VECTOR OF SIX WALL REFLECTION COEFS (0 <BETA <=1) 
C HT=IMPULSE RESP ARRAY 

C NPTS=# OF POINTS OF HT TO BE COMPUTED 

C ZERO DELAY IS IN HT(1) 
C 

SUBROUTINE SROOM(R, R0, RL, BETA, HT, NI•TS) 
DIMENSION HT(NPTS) 

DIMENSION R(3), R0(3), NR(3), RL(3), DELP(8), BETA(2,3) 
EQUIVALENCE (NR(1), NX), (NR(2), IVY), (NR(3), NZ) 
DO 5 I=l, NPTS 

5 HT(I) =0 
C CK FOR MIC AND SOURCE AT SAME LOCATION 

DIS = 0 

DO 6 I=1,3. 
6 DIS = (R(1)-R0 (I))*'2 +DIS 

DIS = SQRT(DIS) 
IF (DIS.LT..5) HT (1) = 1 
IF(DIS.LT..5)RETURN 

C FIND RANGE OF SUNI 

N1 = N-PTS/(RL(1)*2) + 1 
N2 = NPTS/(RL(2)*2) +1 
N3 = NPTS/(RL(3)* 2) + 1 
DO 20 NX=-N1, N1 
DO 20 NY =-N2, N2 
DO 20 NZ =-N3, N3 

948 J. Acoust. Soc. Am., Vol. 65, No. 4, April 1979 J. Allen and O. Berklev: Method for simulating small-room acoustics 948 



C GET EIGHT IMAGE LOCATIONS FOR MODE it NR 

CALL LTHIMAGE (R, R0, RL, NR, DELP) 
I0=0 

DO 10 L=0,1 
DO 10 J =0, 1 
DO 10 K=0, 1 
I0=I0+l 

C MAKE DELAY AN INTEGER 

ID =DELP (I0) +.5 
FDM1 =ID 

ID=ID+i 

IF(ID.GT.NPTS)GO TO 10 
C PUT IN LOSS FACTOR ONCE FOR EACH WALL REFLECTION 

GID = BETA(1,1)**IABS(NX-L) 
1 *BETA(2,1)**IABS(NX) 
2 *BETA(I,2)** IABS(NY-J) 
3 *BETA(2,2)** IABS(NY) 
4 * BETA (1,3'* IABS (NZ-K) 
5 *BETA(2,3)**IABS(NZ) 
6 /FDM1 

C CHECK FOR FLOATING POINT UNDERFLOW HERE; 
C IF UNDER FLOW, SKIP NEXT LINE 

HT (ID) = HT (ID) + GID 
10 CONTINUE 

20 CONTINUE 

C IMPULSE RESP HAS BEEN COMPUTED 

C FILTER WITH HI PASS FILT OF 1% OF SAMPLING FREQ (I.E'. 100 HZ) 
C IF THIS STEP IS NOT DESIRED, RETURN HERE 

W = 2.* 4.*ATAN(1 .)* 100. 
T = 1E-4 

R1 = EXP (-W* T) 
R2 =R1 

B1 = 2.* Ri* COS (W* T) 
B2 = -RI*R1 

A1 =-(1. +R2) 
A2 =R2 

Yi=0 

Y2=0 

Y0 =0 

C FILTER HT 

DO 40 I=1, N-PTS 
X0 =HT(I) 
HT(I) =Y0 +AI*YI+A2*Y2 
Y2 =Y1 

Y1 =Y0 

Y0 =Bi*Y1 +B2*Y2 +X0 

40 CONTINUE 

RETURN 

END 

NOTE CONTINUATION 
LINES 

C PGM: LTHIMAGE 
PGM TO COMPUTE EIGHT IMAGES OF A POINT IN BOX 

SUBROUTINE LTHIMAGE(DR, DR0, RL, NR, DELP) 

DR IS VECTOR RADIUS TO RECEIVER IN SAMPLE PERIODS 

DR0 IS VECTOR RADIUS TO SOURCE IN SAMPLE PERIODS 

RL IS VECTOR OF BOX DIMENSIONS IN SAMPLE PERIODS 

Nit IS VECTOR OF MEAN IMAGE NUMBER 

DELP IS VECTOR OF EIGHT SOURCE TO IMAGE 

DISTANCES IN SAMPLE PERIODS 

DIMENSION R2L(3), RL(3), NR(3),DELP(8) 
DIMENSION DR0(3), DR(3), RP(3,8) 

C LOOP OVER ALL SIGN PERMUTATIONS AND COMPUTE H + / -- H0 
I0= 1 

DO 10 L =-1,1,2 
DO 10 J =--1,1,2 
DO 10 K=-1,1,2 
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C NEAREST IMAGE IS L=J=K=--I 

RP (1, I0) = DR(1) + L'DR0(1) 
RP(2,I0) =DR(2) +J'DR0(2) 
RP(3, I0) =DR(3) +K'DR0(3) 
IO=IO+l 

10 CONTINUE 

C ADD IN MEAN RADIUS TO EIGHT VECTORS TO GET TOTAL DELAY 

R2L (1) = 2.* RL (1)* NR(1) 
R2L (2) = 2.*RL (2)* NR(2) 
R2L (3) = 2.*RL(3)*NR(3) 
DO 20 I=1,8 
DE LSQ: 0 

DO 25 J=l,3 
R1 = R2L (J)-RP(J, I) 
DELSQ =DELSQ +Rl**2 

25 CONTINUE 

DELP(I) = SQRT(DELSQ) 
20 CONTINUE 

RETURN 

END 
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