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Image Normalization by Complex Moments

YASER S. ABU-MOSTAFA anp DEMETRI PSALTIS, MEMBER, 1EEE

Abstract—The role of moments in image normalization and invariant
pattern recognition is addressed. The classical idea of the principal axes
is analyzed and extended to a more general definition. The relationship
between moment-based normalization, moment invariants, and circular
harmonics is established. Invariance properties of moments, as opposed
to their recognition properties, are identified using a new class of normal-
ization procedures. The application of moment-based normalization in
pattern recognition is demonstrated by experiment.

Index Terms—Circular harmonics, complex moments, invariance,
moment invariants, normalization, pattern recognition, principal axes,
template matching.

I. INTRODUCTION

RECURRING problem in pattern recognition is the

question of between-class discrimination versus within-
class invariance. Ideally, classification features should be sen-
sitive to the identity of the class, but not to the variations
within the class. In general, however, features that are invari-
ant to within-class variations tend to be insensitive to between-
class differences, and vice versa.

Moments have been proposed as a solution to this problem
intwo ways [1]:

1) by using moment invariants as features of the image that
retain their values when the image is shifted, scaled, or rotated ;

2) by using moments through the second order to normalize
the image, i.e., transform it into a standard form, and then ex-
tracting suitable features to classify the normalized image.

We have recently introduced complex moments [2] to char-
acterize the ability of moment invariants to discriminate be-
tween classes. We use the same formalism here to define a
general class of normalization procedures using higher order
moments. The establishment of normalization procedures
based on higher order moments allows us to directly compare
the invariance properties of moment invariants versus those of
images that have been normalized through moments. In par-
ticular, we show that an image normalized in the manner we
propose retains all the invariance properties of moment in-
variants in the presence of noise. The significance is that pat-
tern recognition algorithms can be devised that operate on
normalized images and, in principle, have all the within-class
insensitivity of moment invariants but not their shortcomings
with regard to distinguishing between different classes.

In Section II, we define the classical moment-based normal-
ization in terms of complex moments. In Section III, we gen-
eralize the classical method and interpret the normalization
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process geometrically. The invariance properties of moment
invariants are the subject of Section IV. In Section V, we
present experimental results in support of using moments for
normalization, but not for classification.

II. MOMENT-BASED NORMALIZATION

In this section, we define image normalization and investigate
the classical moment-based normalization procedure, extend it
to admit scale and contrast normalization and redefine it in
terms of complex moments as a basis for its generalization in
the next section.

A. Introduction

Normalization is the process of transforming the image func-
tion g, (x, y) into the function g,(x, ) so that it retains all the
relevant information of the original image and also satisfies a
set of conditions which we call the normalization criteria.
Therefore, g, (x, ) can be considered as a “standard” version
of the original image g, (x, »).

Throughout this work, we shall consider all image functions
to be nonnegative, vanishing outside a bounded domain and
possessing positive integrals. A class of normalization processes
of special interest is described by the following relations be-
tweeng; and g,:

82(x2,¥2) = Gg(x1,y) + B
X, X a b||x,
+
Vi Y c d 2
where G, B,a, b, c,d, X, Y are real constants. In most cases,
conditions (2.1) are further restricted by the following relations:

i}

Q1)

G>0, B=0
a b cos® -sin P
=(1/D)| 2.2)
c d sin® cos®P
D>0.

The conditions on G (contrast level) and B (bias) maintain
the nonnegative nature of the image function. The condition
on D (dimensional scale) excludes reflection of the image, and
the form of the matrix given by (2.2) implies that the scaling is
isotropic and that g, is rotated by a clockwise angle ® (or the
image plane axes rotated by a counterclockwise angle ). From
this point on, we shall consider only this type of transforma-
tion for normalization.

The values of the parameters in (2.1), (2.2) are specified by
requiring that g, satisfies a set of normalization criteria. By
“moment-based normalization,” we mean a normalization pro-
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cess for which the normalization criteria are conditions imposed
on the moments of g,(x, v). We shall use complex moments
because the normalization can be conveniently defined in terms
of them. The fact that the kernels of ordinary moments and
complex moments are both bases for the space of polynomials
with complex coefficients guarantees the equivalence of this
approach and the approach using ordinary moments.

It should be pointed out that the normalization need not be
unique, i.e., the function g,(x, ) which satisfies the normal-
ization criteria and is obtained from g, (x, ») by means of rela-
tions (2.1), (2.2) is not necessarily unique.

B. The Classical Normalization

In classical mechanics, a moment-based normalization pro-
cedure tackling the translation and rotation of two-dimensional
objects has been introduced through the definition of centroid
and principal axes. The same procedure has been applied to
the image function g(x, y). This procedure, which we denote
by N, o, will be generalized in the following section to a class
of normalization procedures denoted by {V, ,} which are
based on complex moments of the image function g(x, y). This
approach will also admit normalization against scale and con-
trast changes. We start here by redefining the classical normal-
ization in terms of complex moments.

The ordinary moment of order (p, ¢) is defined as

400 400
My, =f f xPylg(x,y) dx dy 2.3)

whereas the complex moment of order (p, ¢) is defined by the
following equation:

Cpq = f 3} f ) e tiy)P (e -iv)7g(x,y)dxdy (2.4)

where i =+/-1. Complex moments can be expressed as a linear
combination of ordinary moments and vice versa, and any con-
dition involving ordinary moments can be expressed in terms
of complex moments. For example, the classical definition of
the centroid can be restated as the new origin of the image
plane with respect to which the following condition holds [for
&2(x, n]:

Cyo =0. (2.5)

Since Cy9 =My +iMy,, the coordinates of the centroid
(X, Y) can be expressed in terms of the ordinary moments of
g1(x,y). They are given by

Mo
MOO ’

_ My,

X= = .
Moo

Y (2.6)

Furthermore, after the image is centralized around its cen-
troid, the orientation of the principal axes can be defined as
the angle through which the image plane axes are rotated to
make the condition

C, is real

Q.7

hold. Indeed, C,o can be expressed in terms of ordinary mo-
ments as

Cro =Mag - Moy +2iMy, (2.8)

and the condition (2.7) applied to (2.8) is equivalent to My, =
0, which is the classical definition of the principal axes. How-
ever, there is ambiguity in this definition since rotation of these
principal axes by any integer multiple of #/2 radians yields
yet another valid pair of principal axes. Most attempts to get
rid of this ambiguity impose further inequality conditions on
other moments to define a unique orientation of the principal
axes (e.g., [1]). A unified treatment for the ambiguity ques-
tion will be given in the next section.

A possible extension of the classical normalization uses fur-
ther conditions on Cyq (EMyo) and Cyy (FM,o +My,) to
normalize g(x, ¥) against scale and contrast changes. For
example, the conditions Cyq =« and C;; =8 can be used,
where « and § are positive real constants. These conditions
together provide two equations in two unknowns, D (dimen-
sional scale) and G (contrast level), which can be solved for
the two unknowns:

N My /2
D= vhlax <M20 +M02>
G = (a?/B) X MZ_O%.A_/IE (2.9)
Mo

These parameters are then used to transform g, (x, y) into the
normalized version g,(x, y) = Gg(x/D, /D). The value of D
in (2.9) is independent of the image contrast and the value of
G is independent of the image scale. Adjusting the scale and
contrast of an image using D and G is equivalent to adjusting
moment invariants as described in [4] to achieve independent
scale and contrast invariance.

In summary, in the classical normalization procedure N, g,
the centroid (X, Y) is determined by the conditionon C,,,the
scales D, G are determined by the conditions on Cyq, Cy,, and
the rotation angle & is determined by the condition on C,,
(which is the rationale for denoting the procedure by NV, o). We
are now in a position to introduce the broader class {N,, ,} of
normalization procedures.

III. THE (p,q) NORMALIZATION

Guided by the classical normalization discussed in the pre-
vious section, we introduce a class of normalization procedures
{Np, 4} based on complex moments of different orders (p, ¢)
and interpret these procedures geometrically.

A. Definition

We define the normalization procedure N, o (where p >gq,
p > 1) of the image function g, (x, ») as the transformation de-
fined in (2.1) and (2.2) which has the following normalization
criteria (independent of p and ¢):

Coo =
Ciy =8 (3.1
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where « and § are positive real constants, and the following
normalization criterion which is dependent on p and ¢:

Cpq is positive real. (3.2)

Significantly, the extension of the classical normalization pro-
cedure involves imposing phase constraint on higher order
complex moments [the condition on Cpg in (3.2)] which is
completely analogous to the derivation of higher order moment
invariants [2]. We observe that since Cp, is the complex con-
jugate of Cgp,, Np 4 is equivalent to N, , (we get rid of the re-
dundancy by requiring that p >¢). By simple enumeration,
we find that the number of distinct normalization procedures
NpgisN(N+1)-1forp+q<2N.

We now consider the question of whether for a general image
g1(x, ¥) there exists a normalized image g, (x, y) obtained by
the transformation (2.1) and (2.2) and satisfying (3.1) and
(3.2). We also examine the uniqueness question. As discussed
in the previous section, conditions (3.1) determine X, Y, D, G
for any image g,(x, ). These values, given by (2.6) and (2.9),
are unique and independent of ® [the rotational parameter of
(2.2)]. Therefore, for a given image g,(x, »), all the (p, q)
normalization procedures N, , have the same centroid (X, Y),
the same dimensional scale D, and the same contrast level G.

The existence of the N, ,-normalized image g,(x, y) now
amounts to satisfaction of condition (3.2). Denotingby Cp, (0)
the value of Cp,, when the axes of the original image are ro-
tated through a counterclockwise angle ¢, we have the follow-
ing relation:

Coq (p) = Cpq (0) e~ ip-Dy

which follows by substitution in (2.4). Equation (3.3) says
that as the image is rotated, each complex moment goes
through all possible phases of a complex number (recall that
p > q in the definition of N, ;) while its magnitude [Cpg| re-
mains unchanged. Therefore, unless the magnitude happens
to be zero, Cp, will become positive real at some angle ¢ = ®.
In fact, there will be exactly p - g values of the angle ¢, equally
spaced at 27/(p - q) radians apart, for which Cp, is positive
real, as follows from (3.3). This means that the normalization
procedure N, , has a degeneracy of p - ¢ and is not unique
unlessp-g=1.

For example, NV, o has p - g =2 possible normalized versions
g,(x, y) for an image g,(x, »). Thesetwo versions are rotations
of one another with angular separation 27/2 = radians. For
each of them, condition (3.2) is equivalent to

(3.3)

Without the second part of (3.4), it becomes the classical def-
inition of principal axes. The condition M,, > M, has been
traditionally added to reduce the ambiguity of ® from four
possible angles to two possible angles.

On the other hand, V, | hasdegeneracy p - ¢ = 1 and, hence,
is unique. In this case, condition (3.2) reduces to

Mos + My =0 and Mag +M,, >0 (3.5)

which will be satisfied for only one angle ®.
In conclusion, we point out that the normalization scheme
we propose here is one of several possible schemes that can be

defined in a similar way. For example, another set of condi-
tions can be used instead of (3.1) to define the centroid and
normalization scales. Also, condition (3.2) can be replaced,
for instance, by a condition on a linear combination of Cpg’s
having the same value of p - g (the value p - ¢ is called the
repetition of Cp,) like the Zernike moments [3]. We now give
a geometrical interpretation of N, , in order to develop more
insight into moment-based normalization.

B. Phasor Diagrams

The normalization procedure N, , has an interesting inter-
pretation that becomes apparent when we rewrite (2.4) after
substituting the circular harmonic expansion [6] for the func-
tion g(x, y):

+ oo

g(rcosd,rsind)= %" cp(rye™?.

n=—c0

(3.6)

Complex moments can then be written in terms of the coef-
ficients of this expansion as follows:

+ o0

Cpq =21rf rPrA el L (r)dr. 3.7)
0

Equation (3.7) shows that the complex moment of order
(p, q) depends only on the (g - p)th circular harmonic coef-
ficient function cg_,(r) of the image function g(x, ). This
accounts for the (p - ¢)-fold ambiguity of N, , (which is
based on Cp,) since the component of g(x, ) in (3.6) that
depends on ¢, _, (r) is of the form ¢4 _p () e HP=D% ang re-
peats itself every 2n/(p - q) radians. Also, for images with
n-fold rotational symmetry, all C,,’s for which p - ¢ is not
divisible by # are identically zero, as their corresponding cir-
cular harmonic coefficient functions are zeros. Interestingly,
a normalization procedure, which in our notation is N3 o, was
suggested in [1] as an alternative condition for defining the
principal axes for images having threefold rotational symmetry,
because V, ¢ fails since [Cy4| = 0 for such images.

Assume now that the image g(x, ) has been centered and
properly scaled according to conditions (3.1). We fix the co-
ordinate system and consider the complex moments
W pq

c

pg =4

(3.8)

For all Cp,’s having the same repetition » = p - g, we plot a
phasor diagram, denoted by £,,in which each C,, isrepresented
by a vector or phasor of length 4, and orientation ¥, . Thus,
we get phasor diagrams Py, P,, - - -, P which represent sub-
sets of Cp,’s having repetitions 1,2, -+, R.

According to (3.3),if the image plane axes are rotated through
an angle A®, each phasor diagram P, will rotate through an
angle -#A®. Therefore, phasors in the same diagram maintain
their relative phases upon rotation of the image. Furthermore,
as the image plane axes are rotated one complete cycle, the
phasor diagram F, rotates 7 cycles and each phasor coincides
with the positive real axis r times.

As a result, there is an r-fold ambiguity in the orientation of
the N, , principal axes in the image plane, which corresponds
to the repetition p - ¢ = r of the complex moment C,,,. Denote

pq €
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(@) (b)

(©

I'ig. 1. (a) Two phasors in the phasor diagram with repetition = 1. (b)
Two phasors in the phasor diagram with repetition = 2. (c) The cor-
responding x-axes of the (p, ¢) normalization procedures drawn on
the image plane.

by @, , the orientation of these principal axes with respect to
(w.r.t.) the fixed coordinate system in the image plane (@, , is
ambiguous for p - g # 1). Therelation between @, , (an angle
in the image plane) and ¥, [the phase of Cp, as defined in
(2.4)] is

Vg =(p-q)Pp g (3.9)

as follows from (3.2) and (3.3). Using (3.9), we can draw the
principal axes of N, . in terms of the phasor diagram 7, .

Fig. 1(a) shows two phasors in P; for a sample image. Fig.
1(b) shows two phasors in P, for the same image. These phasor
diagrams do not have the same repetition (speed of rotation).
Fig. 1(c) shows the image plane with the x-principal axes of
N, o corresponding to the phasors in (a) and (b). Observe
that the phasors in Fig. 1{a) and (b) relate to the principal
axes in Fig. 1(c) according to (3.9).

Since Np, 4’s corresponding to the phasor diagram Py, ie.,
having degeneracy p - ¢ =1, are not ambiguous, they can be
used to remove the ambiguity in allother NV, ,’s. For example,
let the principal axes of N3 , (unambiguous) be the fixed co-
ordinate system. For any N, , with p - ¢ > 1, one can un-
ambiguously define the N, , principal axes by requiring the
orientation of the x-axis of the NV, ,-normalized image to fall
within (-7/(p - q), +7/(p - q)} from the fixed x-axis of N3 ,.
This will specify only one of the p - g possible values of the
angle ®, , as the unique orientation of the NV, 4 principal axes.
For example, this will exclude the two LHS axes, denoted by
N, o and N, in Fig. 1(c) from consideration because they
are not within (-n/2, #/2] from the fixed x-axis denoted by
N3, in this figure.

IV. INVARIANCE ANALYSIS

In this section, we relate the class {Np,q} of normalization
procedures to moment invariants. Through this relation, mo-
ment invariants are shown to be varignt features of a normal-
ized image. In other words, if the image is normalized and,
due to noise and quantization, the normalized version is off-
set from the standard form, this error is equally sensed by a
moment invariant computed in terms of the original image.
This result puts moment invariants on an equal footing with
other possible pattern recognition features of the normalized
image as far as invariance is concerned.

A. Moment [nvariants

There are several ways to define moment invariants. Algebraic
invariants [1] were the original basis of their definition. For
our purposes, we define them in an equivalent way using com-
plex moments [2] and normalized images.

Let g,(x, v) be the normalized version of g, (x, ») obtained
by shifting, contrast scaling, and dimensional scaling of g, (x, )
so that g,(x, y) satisfies the normalization criteria given by
(3.1),i.e.,

é\l(x’J’)ZGg1(X+x/D,Y+J’/D) (4.1)

where X, Y, D, G are given by (2.6) and (2.9). £,(x,y) can be
thought of as a preliminary step in obtaining the normalized
version g,(x, ») of g,(x, y) using an NV, , procedure. We shall
refer to g, (x, y) as the prenormalized version of g;(x, y). Let
Cpq be the complex moment of g, (x, y), i.e., with g(x, ») in
(2.4) replaced by g,(x, ¥). Consider the phasor diagrams P,’s
Ofé\l (x>y)'

When the axes of g,(x, y) are rotated by A®, the phasors of
P, rotate by ~-rA®. We can combine phasors with the appro-
priate relative speeds of rotation in such a way that the result
does not rotate at all, i.e., the result becomes invariant under
rotation of g, (x, y). For example,

(4.2)

where * denotes the complex conjugate are indeed invariant
under rotation of g,(x, »). The power k is meant to “speed
up” the phasors in P, so that they rotate at the same speed as
the ones in Py,. The forms in (4.2) are usually added to their
conjugates to obtain real invariants.

Using simple algebra, this definition of moment invariants
can be shown to be strictly equivalent to the definition based
on scaling combinations of central moments. Similar defini-
tions can be formulated for other forms of moment invariants.

C("l +NHn C():n +Hm O C&“’)n C(Tn +kr)ym

B. Invariance

Before characterizing the invariance of moment invariants,
one should define what is meant here by “invariance.” If the
image g,(x, y) is noise-free and no sampling or quantization
errors occur, moment invariants as well as any valid normaliza-
tion procedure provide perfect invariance. In this ideal case,
the equivalence in terms of invariance of normalizing the image
and then classifying it with general features and using moment
invariants in the first place is obvious.

On the other hand, when noise and errors are present, we

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 27, 2009 at 11:06 from IEEE Xplore. Restrictions apply.



50 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 1, JANUARY 1985

have a different situation. The additional issue of robustness
of the invariance scheme in these conditions becomes a crucial
point in evaluating invariance. One should consider which in-
variance or normalization scheme is less vulnerable to noise.
Another consideration is how tolerant the classification features
are w.r.t. the expected errors in the normalization scheme.

Assume now that a noise process {n,(x, y)} is added to the
image function s,(x, y) (where s, stands for the input signal)
so that the input to the system g, (x, ) is given by

g:1(x,3) =510, 3) + n1(x, ). (4.3)

Suppose now that we use some normalization procedure NV to
obtain the normalized version g,(x,y) from g, (x, y). By def-
inition, the normalized image g,(x, ) will satisfy the normal-
ization criteria. The two components of g,(x, y), namely
s,(x, ») and n;(x, y), will be transformed according to (2.1)
and (2.2) into two functions, s,(x, ¥) and n,(x, y). These
functions are not normalized versions of s, (x, y) and ny (x, ),
i.e., they do not necessarily satisfy the normalization criteria,
but the image g,(x, ¥) = s,(x, ¥) + n,(x, y) does satisfy these
criteria.

In this setup, robustness of a feature F extracted from the
overall normalized image function g,(x, ) is twofold: how F/
tolerates the presence of the noise component n,(x, y), ie.,
noise tolerance, and how F tolerates the erroneous normaliza-
tion of the signal component s,(x, »), i.e., invariance. We now
turn to the question of invariance characterization using these
concepts. We shall carry out the discussion using moment in-
variants of the form C,,, Cpr, [defined on 2y (x, )] .

C. Shift and Scale

According to our discussion in Section IV-A, the shift and
scale invariance properties of moment invariants are derived by
a method that is equivalent to computing the moments in terms
of an image that has been normalized against scale and shift
changes. We now investigate whether the equivalence is valid in
the presence of noise. Suppose that the noisy image g, (x, ) =
s,(x, y)+n,(x, y) is normalized using the prenormalization
procedure described in Section IV-A into the prenormalized
version £; (x, ¥) =5,(x, ¥) + A, (x, ). Due to the presence of
n,(x, y), the estimate for X, Y, D, G using (2.6) and (2.9) is
offset from the nominal values which would be obtained were
ny(x, y) absent. The offset values, say X, ¥y, Dy, G, will
misnormalize the signal part s, (x, ») such that s, (x, ») is mis-
placed and misscaled.

In order to identify the shift and scale invariance properties
of moment invariants, we consider, for example, the moment
invariant whose value in terms of the input image g, (x, y) is
the same as Cp, Cpy in terms of the prenormalized image
£1(x, ¥) (as discussed in Section IV-A). A glance at (2.4),
which defines Cp in terms of an image g(x, y), shows that
if x and y are shifted or scaled, or if g is scaled, the value of
Cpq C;,“q does change. For example, if the prenormalized
image £, (x, ) is obtained from the input image g, (x, ¥) using
the wrong contrast level G, instead of the correct value G, the
value of the moment invariant Cpy C;"q will be changed by a
factor of (G1/G)?. The value of the moment invariant will be

Fig. 2. Representation of signal and noise in the phasor diagram. The
noise-free image contributes the vector # while the noise contributes
the vector v in the overall value of the (p, ¢) complex moment repre-
sented by the vector w. The projection of ¥ on w depends on the
orientation error A¥p,.

invariant only as long as the estimates for X, ¥, D, G are cor-
rect. In other words, the shift and scale invariance of moment
invariants is captured in the prenormalization procedure de-
scribed in Section IV-A.

We conclude that the shift and scale invariance of moment
invariants is provided entirely by the prenormalization pro-
cedure. If, due to the presence of noise, the normalization is
imperfect, then their values are altered. The question becomes
how much they are altered in comparison to other potential
features defined on the prenormalized image that are a priori
variant but perhaps tolerant to the expected errors in the pre-
normalization procedure.

D. Rotation

Rotation of the image g, (x, ) about any point is equivalent
to a shift operation together with rotation about its centroid,
and hence, g;(x, y) will only rotate as a result (the shift in-
variance of g,(x, ) was treated in Section IV-C). Therefore,
we need to investigate the invariance properties of Cp, C;,"q de-
fined on g, (x, y) as this image rotates.

The image g,(x, ») is composed of the signal part §;(x, »)
and the noise part 7,(x, y). Therefore, the complex moment
of the overall image g, (x, »), denoted by Cpq (1), is given by

Cpq(gl)chq(é\l)'*'cpq (ﬁ\l) (44)

where Cpq(ﬁ\/{ ) and Cpq(rz,) are the corresponding complex
moments of §;(x, ¥) and #,(x, y). Fig. 2 represents this rela-
tion in the phasor diagram P,_, of the image 2.(x,y). Letus
take p- g =1 to fix the ideas without having to deal with the
ambiguity associated with p - ¢ > 1. The orientation of the
x-axis of the principal axes in the normalization procedure
Np,q will be in the same direction as Cpg (£)), the vector w in
Fig. 1, according to relation (3.9).

Now, the value of Cpq ) C:q (g,), or equivalently |Cpq @),
is the length of the vector w. This length corresponds to the
total value (signal + noise) of the moment invariant. It is the
sum of the projections of the signal vector # (Cpq (5)) and the
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Vig. 3. The four objects of the experiment (extracted edges): Spade,
Heart, Diamond, and Club.

noise vector v (Cpq (1)) on the direction of w. Should noise
have been absent, the value of leql would be the length of
the vector u only.

Let us examine the invariance of |Cpq (&)} in view of Fig. 2.
The component of the noise-free value |Cp, (s1)l contributing
to the total value |Cpg (£1)] is 1Cpq (51)] cos AW, whichis the
same as the real part of Cp, (5;) (referred to the N, 4 axes). In
other words, the signal part of the moment invariant |Cp, @)l
is precisely Re(Cpq (5,)). Let us define R, (g) to be the real
part of Cp, () for any image g(x, y), i.e.,

Rpg(®)=Re [ f (+ip)P(x - i) g (x,y) dx dy

f fomrp%os(p—q)ﬁ)

-g(rcosd,rsind) rdrdd. 4.5)

The value of Rp,(g;) is the same as |Cp, (&))l. Moreover,
Rpq (s;) is indeed the component of the moment invariant
|Cpq (£1)] coming from the signal part s, (x, ).

Therefore, the invariance of this moment invariant, in the
sense defined in Section IV-B, is captured in the normaliza-
tion procedure N, ,. The value of Rp,(g) as a function of
g(x, y) is not rotation invariant. In fact, asg(x, y)is rotated,
R4 (g) assumes all values from ~|Cp, (g)| to +|Cpq (g)l. Com-
parison between the rotation invariance of this moment invari-
ant and any other feature F(g) defined on the N, ,-normal-
ized image g{(x, y) now amounts to comparison between the
tolerance of R,,(g) and F(g) to the orientation error A®, .
Other forms of moment invariants can be treated in a similar
way using hybrid normalization procedures instead of Np, 4.

E. Conclusion

We have traced moment invariants of the form Cp, C;‘q or
leq] in order to characterize their invariance with respect to
shift, dimensional scaling, contrast, and rotation. We have
found that this invariant can be expressed as the feature R, (g)
in (4.5) applied to an N, ,-normalized image. It is simple to
verify that R, (g) is a considerably variant feature of the image
function g(x, y) by substituting the transformation (2.1),
(2.2) in (4.5). Similar derivations can be carried out for other
forms of moment invariants.

We conclude that moment invariants are variant features of a
normalized image. After the ambiguity of the normalization
procedure is removed, as discussed in Section III-B, one can
utilize the invariance of moment invariants, which is captured
in the corresponding normalization procedures, and use an-
other feature of the normalized image for classification. It isa
problem-oriented question to choose an optimal normalization
procedure w.r.t. the noise conditionsand a set of features which
are tolerant w.r.t. the expected normalization errors and dis-
criminant w.r.t. the classes in question.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate an application of image
normalization in pattern recognition. The experiment is in-
tended to exemplify that normalizing the image using moments,
and then classifying it using an alternative method, such as
template matching, can be superior to direct classification us-
ing moment invariants in the case of high noise level or small
object size (large sampling error).

A. The Experiment

In this experiment, we implemented a digital pattern recog-
nition system to distinguish between the four playing card
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Fig. 4. (a) The maximum error in orientation of the Spade for correct classification. (b) Positioning error of the Club for
90 percent matching ratio. (c) Scaling error of the Heart for 90 percent matching ratio. (d) The maximum noise level
for correct classification of a normalized Club (thresholded image). (e) The smallest grid for correct classification of the
Diamond.
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Iig. 5. A plot of the confidence region for correct classification on log-
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sponds to 2 dB). The extremal points 4, B, C are the subject of the
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verification experiment reported.

symbols, Spade, Heart, Diamond, and Club, irrespective of
position, size, orientation, or contrast within a noisy image
(Fig. 3 shows the edges of these objects for clarity, as in most
figures of this section). The scheme utilized was to normalize
the image using the procedure N, , described in Section III,
and then to classify the normalized image using multiple tem-
plate matching (to make up for the ambiguity in N, o). To
compare with the method of moment invariants, we used noise
levels and object sizes for which the feature space of moment
invariants, requiring approximately the same amount of com-
putation, was used in a similar experiment and resulted in
erroneous classification decisions.

Template matching was expected to be tolerant to normaliza-
tion errors in this particular experiment, since the objects in
question did not have a wide band of spatial frequencies [5].
We ran some preliminary tests to estimate this tolerance. For
example, Fig. 4(a) shows the maximum error in the orientation
of the Spade symbol for which template matching leads to cor-
rect classification. Fig. 4(b) and (c) shows shift and scale errors
for the Club and Heart symbols which diminish the matching
ratio to 90 percent. Fig. 4(d) shows the maximum noise level
over a properly normalized Club symbol (the Club symbol
looks very vague in the center of this noisy image) to be cor-
rectly classified, and Fig. 4(e) shows the worst sampling grid
(minimum object size) for which a Diamond symbol is correctly
classified.

Combining these factors, we derived the “confidence region”
for reliable operation of our pattern recognition system. The
coordinates in question are the object size and the signal-to-
noise ratio. Fig. 5 shows a plot of the confidence region in the
size-SNR plane using a logarithmic scale. At any point within
the confidence region, the system was expected to operate
reliably.

B. The Result

Guided by Fig. 5, we chose three extremal points, denoted
by A, B, C in this figure, to test the moment normalization/
template matching classification scheme. We chose the test
object to be Diamond for point 4, Club for point B, and Heart
for point C. For the noise we used a pseudorandom process

which is periodically correlated. Fig. 6(a), (c), and () shows
the input images in these experiments.

The results in all three experiments were positive. Each sym-
bol was classified correctly with reasonable reliability. The
matching ratios for the three symbols were 93, 89, and 94 per-
cent, respectively. The closest potential misclassification was
when the Spade symbol had a matching ratio of 83 percent
with the Club symbol. Fig. 6(b), (d), and (f) show the normal-
ized versions of the three input images just before carrying out
the template matching. The correct positions should be central
and either vertical or horizontal, so one can see that the toler-
ance of template matching in this case admitted notable error
in the value of moments used for normalization.

V1. CONCLUSION

We have been concerned with distinguishing between aspects
of normalization and aspects of classification in moments, i.e.,
how moments behave in telling where the object is as opposed
to what the object is, and analyzing moment-based normaliza-
tion more closely. We found that the classical definition of
centroid and principal axes is a special case of a class of normal-
ization procedures directly related to moment invariants. From
this relation, we found that moment invariants could be viewed
as variant features of a moment-normalized image. This led to
consideration of other features for recognition in place of
moment invariants, and we reported an experiment where this
proved to be favorable.

It was also pointed out that several variations of the moment-
based normalization procedures introduced here were possible.
It is suggested that the behavior of these normalization pro-
cedures in the presence of noise be analyzed, and specific ques-
tions as to how to combine them in an optimal way to produce
an immune normalization procedure for given noise conditions
be addressed.
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(e)

Fig. 6. (a) Input Diamond image. (b) Normalized Diamond image. (c) Input Club image. (d) Normalized Club image.
(e) Input Heart image. (f) Normalized Heart image.
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