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Abstract

In this paper, we propose a partially-blurred-image clas-

sification and analysis framework for automatically detect-

ing images containing blurred regions and recognizing the

blur types for those regions without needing to perform blur

kernel estimation and image deblurring. We develop several

blur features modeled by image color, gradient, and spec-

trum information, and use feature parameter training to ro-

bustly classify blurred images. Our blur detection is based

on image patches, making region-wise training and classi-

fication in one image efficient. Extensive experiments show

that our method works satisfactorily on challenging image

data, which establishes a technical foundation for solving

several computer vision problems, such as motion analysis

and image restoration, using the blur information.

1. Introduction

In this paper, we focus on detecting and analyzing par-

tially blurred images and propose a novel method to au-

tomatically detect blurred images, extract possible blurred

regions, and further classify them into two categories, i.e.,

near-isotropic blur and directional motion blur.

Our method attempts to tackle two major problems. One

is blur detection with simultaneous extraction of blurred re-

gions. The result in this step provides useful high-level

regional information, facilitating a variety of region-based

image applications, such as content-based image retrieval,

object-based image compression, video object extraction,

image enhancement, and image segmentation. It can also

serve as one of the criteria of measuring the quality of cap-

tured images.

The second objective of our method is to automatically

classify the detected blur regions into two types: near-

isotropic blur (including out-of-focus blur) and directional
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(a) (b)
Figure 1. Two image examples with (a) motion blurred regions and

(b) out-of-focus blurred regions.

motion blur. We classify image blur into these two classes

because they are most commonly studied in image restora-

tion. The blur classified images also easily find applications

in motion analysis and image restoration. Two partial-blur-

image examples are illustrated in Figure 1.

Although the topics of image blur analysis have attracted

much attention in recent years, most previous work focuses

on solving the deblurring problem. General blur detection,

on the contrary, is seldom explored and is still far from prac-

tical. Rugna et al. [5] introduced a learning method to clas-

sify blurry or non-blurry regions in one input image. This

method is based on an observation that blurry regions are

more invariant to low pass filtering. In our experiments, we

find that only using this information is not sufficient for de-

signing a reliable classifier. Different blur measures should

be combined in order to achieve high-quality blur detection.

This method also does not distinguish blur types.

Utilizing the statistics of gradient information along dif-

ferent directions, the method in [18] builds an energy func-

tion based on the inferred blur kernel in order to segment

image into blur/nonblur layers. This method only discovers

motion blurred regions by inferring directional blur kernels.

Other blur estimation methods, such as the one proposed

in [7], only provide a measure of blur extent, which cannot

be directly used to discriminate blurry against non-blurry

regions.

In this paper, we present a new blur detection and anal-

ysis method for automatically extracting blurry regions by

combining specifically designed blur features represented



by spectral, gradient, and color information, respectively.

Then we use the direction information of local autocorrela-

tion function, which evaluates how well a local window in

a blur region matches a spatially-shifted version of itself, to

further discriminate the type of blur. In our blur classifica-

tion, no blind deconvolution, which may involve complex

kernel estimation, is performed.

Our features are extracted in local regions using the

color-structure information relative to that collected glob-

ally in each image. This process is based on a key thought:

if we directly use the image color information for each lo-

cal region, it is hard to define a threshold for classification

due to the variation of natural image structures. We, thus,

take account of the relative information between the patch

and the image, which makes our feature analysis reliable

in regard to the color-structure diversity in natural images.

Extensive experiments show that our method works satis-

factorily with challenging image data.

2. Related Work and Overview of Our System

We first review related work of blur detection, image

deblurring, and low Depth of Field (DoF) image auto-

segmentation, and then give an overview of our system.

2.1. Previous Work in Blur Analysis

For blur detection and estimation, previous approaches

aim at measuring blur extent of edges and are based on the

analysis of edge sharpness [20]. Chuang et al. [4] extended

this idea by first fitting gradient magnitude along edge di-

rection to a normal distribution. Then the standard devia-

tion of this distribution, together with gradient magnitude,

are regarded as the blur measure. Elder and Zucker [7]

modeled focal blur by a Gaussian blur kernel and calcu-

lated the response using the first and second order deriva-

tive steerable Gaussian basis filters [11]. Therefore, fo-

cal blur is estimated by the thickness of object contours.

Zhang and Bergholm [26] defined Gaussian Difference Sig-

nature, which functions similarly to the first-order deriva-

tive of Gaussian, in order to measure the diffuseness caused

by out-of-focus objects. Note that all these methods assume

that the Point Spread Function (PSF) is modeled by a Gaus-

sian blur filter. They cannot be applied to detecting ubiqui-

tous non-Gaussian blur.

Blind image deconvolution [8, 14] aims to estimate the

blur filter and latent unblurred images. It is a severely ill-

posed problem. Although recently many methods have been

proposed in image deblurring, most of them only tackle

spatially-invariant blur, i.e., all pixels in the input image are

blurred by the same PSF. Some methods [1, 18, 22] were

proposed to tackle the partial blur problem with the help

of user interaction or blur kernel assumption. For all these

methods, if the PSF can be correctly reconstructed, the type

of blur is also known using the structure of PSF. However,

in practice, blind deconvolution usually performs unsatis-

factorily even by making restrictive assumptions on image

and kernel structures. It does not handle well our partially-

blurred images. Besides, a visually plausible deconvolution

result does not imply that the PSF is correctly estimated.

These factors make blind deconvolution not a good choice

for general blur detection in terms of efficiency and accu-

racy, especially for handling images in a large database.

Another type of blur analysis is Low Depth of Field

(DoF) image auto-segmentation. Low DoF is a photogra-

phy technique which abstracts the photographer’s intention

by giving a clear focus only on an Object of Interest (OOI).

Previous methods for automatic OOI extraction [15, 17, 24]

are not suitable for our blur detection because they only

work on low DoF input images containing out-of-focus

background. In [6], Low DoF images are detected by calcu-

lating a low DoF indicator, defined by the ratio of wavelet

coefficients in high-frequency of the central regions of the

whole image. This method simply assumes that low DoF

images contain focused object near the center and surround-

ing pixels are out of focus. This method also does not suit

our general-purpose blur detection.

2.2. System Overview

Due to the diversity of natural images, in this paper, we

propose a learning framework with a training process to de-

tect partially blurred images. These images are further clas-

sified into two blur types.

In our system, blur detection and blur type classification

are achieved in two steps. First, detection of blurred im-

ages is performed. In this step, we propose to use a com-

bination of three features, namely, Local Power Spectrum

Slope, Gradient Histogram Span, and Maximum Saturation,

to model the blur characteristics in different ways. Second,

directional motion blurred regions are distinguished from

out-of-focus blurred regions by using another feature, i.e.,

Local Autocorrelation Congruency.

Note that automatic blur detection without really esti-

mating the blur kernels is not straightforward. In our sys-

tem, besides introducing spectral and visual clues, we also

include analysis of the characteristics of the two blurs and

design corresponding features.

3. Blur Features

There are four different features developed and com-

bined in our system. These features are derived by ana-

lyzing the visual and spectral clues from images.

• Local Power Spectrum Slope. Due to the low-pass-

filtering characteristic of a blurred region, some high

frequency components are lost. So the amplitude spec-



trum slope of a blurred region tends to be steeper than

that of an unblurred region.

• Gradient Histogram Span. The distribution of gradient

magnitude serves as an important visual clue in blur

detection. Blurred regions rarely contain sharp edges,

which results in small gradient magnitude. Accord-

ingly, the distributions of the log gradient magnitude

for blurred regions should have shorter tails than that

for other regions.

• Maximum Saturation. Unblurred regions are likely to

have more vivid colors than blur regions. The max-

imum value of saturation in blurred regions is cor-

respondingly expected to be smaller than that in un-

blurred regions.

• Local Autocorrelation Congruency. If a region is

blurred by relative motion between an object and the

background in a certain direction, all edges of the ob-

ject will be blurred, except those sharing the same di-

rection with the motion. This is regarded as another

important visual clue in our blur analysis.

In order to handle partial blur, our approach adopts a

region-based feature extraction. Specifically, we partition

the input image into blocks and analyze features in each of

them. We show in the following subsections that this local

representation provides reliable blur measures.

In our blur description, flat regions, i.e., the blocks con-

taining absolutely no edge structures, are ambiguous since

they can be interpreted as either blur or non-blur. So, in

our system, these ambiguous regions are automatically re-

moved beforehand. This makes our blur detection reliable

for many natural images containing, for example, cloudless

sky or textureless walls.

3.1. Local Power Spectrum Slope

We first compute the power spectrum of an image I with

size N ×N by taking the squared magnitude after Discrete

Fourier transform (DFT)

S(u, v) =
1

N2
|I(u, v)|2, (1)

where I(u, v) denotes the Fourier transformed image. We

then represent the two-dimensional frequency in polar co-

ordinates, i.e., u = f cos θ and v = f sin θ, and construct

S(f, θ). According to [3, 9], by summing the power spectra

S over all directions θ, S(f), using polar coordinates, can

be approximated by

S(f) =
∑

θ

S(f, θ) ≃ A/f−α, (2)

where A is an amplitude scaling factor for each orientation

and α is the frequency exponent, called slope of power spec-

trum.

A number of studies [3, 9, 23] have demonstrated that,

using image-wise computation, the power spectra of most

natural images make α ≈ 2. A blurred image usually has a

large α [2, 10] while an unblurred image, contrarily, corre-

sponds to a small α. However, a natural image may contain

objects with different boundary sharpness. Our experiments

show that it is not reliable to simply set a threshold to α for

blur estimation since the value of α varies in different im-

ages in a pretty wide range.

In [12], α discrimination experiments showed that hu-

man has sufficient ability to discriminate changes in α even

using very small image patches. This indicates that the blur

is not determined by the absolute value of α over the whole

image, but the relative local-to-global α differences.

Based on the above observation, we introduce the local

and relative blur estimation using the slope of power spec-

trum α. We first compute αo, the global measure of the

slope of power spectrum for the whole image. Then we

compare αp computed in each local block p with αo. If αp

is much larger than αo, it is quite possible that this block is

blurred. Our metric q1, accordingly, is given by

q1 =
αp − αo

αo

. (3)

We show in Fig. 2 the computed local αp with patch size

17×17. Pixels with warmer color indicate higher blur possi-

bility. The α value distribution coincides with human visual

perception.

(a) (b) (c) (d)

Figure 2. Local αp illustration. αp is calculated in patches with

size 17 × 17 in these examples. (a) and (c) show two natural im-

ages. (b) and (d) illustrate the corresponding local αp maps where

warmer color pixels correspond to pixels with larger αp values.

3.2. Gradient Histogram Span

Recent research in natural image modeling [21] has

shown that the gradient magnitudes of natural images usu-

ally follow a heavy-tailed distribution, which means natu-

ral images are with primarily small or zero gradient magni-

tudes. However, in a blurred image, since blurred regions

usually do not contain too many sharp edges, the gradient

magnitude distribution should have much of its mass with

small or zero values.



For the two input images in Fig. 3(a) and (b), the gradient

magnitude distributions for two blurred patches shown in

Fig. 3(c) and (d) exhibit no apparent tail while those for two

unblurred regions contain heavy tails as shown in Fig. 3(e)

and (f). We choose to fit the local gradient magnitude dis-

tribution by a mixture of two-component Gaussian model

using Expectation-Maximization:

π0G(x;u0, σ0) + π1G(x;u1, σ1) (4)

with mean u0 = u1 = 0 and variance σ1 > σ0. The com-

ponents of the fitted Gaussian mixture models are illustrated

as red curves in Fig.3. The Gaussian component with larger

variance σ1 is mainly responsible for causing the heavy tail

in the original distribution.

However, the value of σ1 alone is not suitable to be used

directly for blur detection. Different images containing un-

blurred objects may also have different levels of edge sharp-

ness, making σ1 variant. So we also adopt relative measure-

ment and combine σ1 with the structure contrast inside each

patch. Specifically, we give large blur confidence to patches

with significant structure contrast but relatively small gradi-

ent magnitude, which are most likely to be blurred. The

local contrast is calculated by

C =
Lmax − Lmin

Lmax + Lmin

, (5)

where Lmax and Lmin denote the maximum and minimum

intensity values of all pixels in a region. We set the region

size as 10 × 10 in our experiments, smaller than the size of

a patch. Our metric q2 for patch p is defined as

q2 =
τσ1

Cp + ǫ2
, (6)

where Cp is calculated as the maximum local contrast C
over all structural regions inside patch p, ǫ is a small value

to prevent dividing by zero. Using our definition, q2 will

have small response when a patch has large Cp but small

σ1. Parameter τ is set to 25 in experiments to balance the

scales of σ1 and Cp.

3.3. Maximum Saturation

We also take the color information into blur detection. It

is observed that blurred pixels tend to have less vivid colors

than unblurred pixels because of the smoothing effect of the

blurring process. So we first compute pixel saturation by

Sp = 1 −
3

(R + G + B)
[min(R,G,B)] . (7)

Then, within each patch p, we compute saturation Sp for

each pixel and find the maximum value max(Sp). It will be

compared with max(So), the maximum saturation value of

the whole image. Our metric q3 is defined as

q3 =
max(Sp) − max(So)

max(So)
. (8)
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Figure 3. The distributions of gradient magnitudes and their ap-

proximations by mixture of Gaussians in patches. (a) One fo-

cal blurred image with two patches containing blurred and un-

blurred pixels respectively. (b) One motion blurred image with

two patches selected similarly. (c) and (e) show the respective dis-

tributions of gradient magnitudes of the two patches in (a). The

original distributions are shown in blue whereas the two Gaussian

components are illustrated using red curves. (d) and (f) show the

respective distributions of gradient magnitudes of the two regions

in (b).

3.4. Local Autocorrelation Congruency

The local autocorrelation function [25] is a measure of

how well a signal matches a time-shifted version of itself.

As for an image, it can be interpreted as a measure of how

well a local window in a blurred region matches a spatially-

shifted version of itself. In our method, we use the direc-

tional information of local autocorrelation function to fur-

ther discriminate the type of blurs inside those detected blur

regions.

The image power spectrum is related to the autocorrela-

tion function through the Wiener-Khinchin theorem, which

states that the auto-correlation function and the power spec-

trum form a Fourier transform pair [25]. So besides the

analysis of local power spectrum slope in defining feature

q1, we further analyze the local autocorrelation characteris-

tics of blurred regions.

The local autocorrelation function at a point (x, y) under



a shift (∆x,∆y) in image space can be calculated by

f(x, y) =
∑

(xk,yk)∈W

[I(xk, yk) − I(xk + ∆x, yk + ∆y)]2 ,

where W is a local window centered at point (x, y). Using
first-order Taylor expansion to approximate I(xk+∆x, yk+
∆y), f(x, y) can be represented using a local autocorrela-
tion matrix M :

f(x, y) ≃
∑

(xk,yk)∈W

{

[Ix(xk, yk), Iy(xk, yk)]

[

∆x

∆y

]}2

= [∆x, ∆y] M

[

∆x

∆y

]

, where

M =
∑

(xk,yk)∈W

[

I2
x(xk, yk) Ix(xk, yk)Iy(xk, yk)

Ix(xk, yk)Iy(xk, yk) I2
y(xk, yk)

]

.

When taking a close look at the blurring process, one can

notice that the color of one pixel is spread to its neigh-

borhood after blurring, increasing its color similarity to its

neighboring pixels. Besides, the color spreading strategy of

each pixel is defined by the PSF. So the local autocorrelation

function in blurred images, which depends on (∆x,∆y),
should also be strongly related to the shape and value of

PSF.

In fact, the Harris corner descriptor [13] is closely related

to local autocorrelation function by adding a window func-

tion when calculating matrix M . If the window function is

binary and rectangular, the two representations are actually

identical. So we adopt the idea of Harris corner detector

and calculate matrix M with a Gaussian window function

to suppress noise.
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Figure 4. The histograms of weighted eigenvector directions for

two sample patches. (a) A focal blurred patch. (b) A motion

blurred patch. (c) Histograms of weighted eigenvector directions

of (a) and (b). The blue histogram is for the focal blurred patch

and the red histogram is for the motion blurred patch. Directional

motion blur produces distinctive peak value.

We compute the eigenvalues λ1(x, y) and λ2(x, y) of

M for each pixel (x, y) inside an image patch p, where

λ1(x, y) > λ2(x, y), and denote their corresponding eigen-

vectors as V1(x, y) and V2(x, y). The values of the two

eigenvalues are proportional to the principal curvatures of

the local autocorrelation function and form a rotationally

invariant description of Matrix M . Two classes can be pro-

duced by our blur type analysis:

1. If image patch p is mostly directional-motion blurred,

the edges with gradient perpendicular to the blur direction

will not be smoothed, leaving strong gradient only along

one direction.

2. If the image patch is approximately focal blurred, the

gradient magnitudes along all directions are attenuated.
To be more specific, the eigenvector V2(x, y), which cor-

responds to the smaller eigenvalue λ2(x, y), represents the
major axis direction of the ellipse-shaped contour of a lo-
cal autocorrelation function at point (x, y). We thus con-
struct a directional response histogram hist(θ) for patch p,
where each bin represents one direction θ and the value of
each bin is the number of pixels with eigenvector V2 along
direction θ in patch p, weighted by their ellipse axis ratio
√

λ1/λ2. One illustration is shown in Figure 4. In order to
use the information of the histogram, we also normalize the
bin values by dividing the total pixel number in one patch.
Then our Local Autocorrelation Congruency measure is to
check whether the histogram in this region has a distinctive
peak. In our method, we compute the variance of the nor-
malized bin values as our feature of Local Autocorrelation
Congruency, i.e.

q4 = Var{hist(θ)}. (9)

4. Classification

Using the defined blur features, our system consists of

two steps. In the first step, we train a blur/nonblur classifier

to discriminate different regions. This classifier is based on

features proposed in Sections 3.1, 3.2, and 3.3. Then, in

the second step, the detected blurry regions are measured

by Local Autocorrelation Congruency in order to recognize

the blur types.
Given the list of features for discriminating unblurred

and blurred regions, we apply the Bayes classifier:

ηa =
P (Blur | q1, q2, q3)

P (Sharp | q1, q2, q3)

=
P (q1, q2, q3 |Blur) P (Blur)

P (q1, q2, q3 |Sharp) P (Sharp)
, (10)

where P (Sharp | q1, q2, q3), by the Bayes’ rule, denotes
the probability of labeling a region as “nonblur” given the
defined features. Assuming the independence of different
features, we simplify (10) to

ηa =
P (q1 |Blur) ...P (q3 |Blur)

P (q1 |Sharp) ...P (q3 |Sharp)
. (11)

Then each conditional probability above is trained using the

training image set.



In the second step, we further classify blurred re-

gions into “motion blur” and “focal blur”, using our fea-

ture defined in Section 3.4. Conditional probabilities

P (q4 | focal blur) and P (q4 |motion blur) are trained,

and the blur type classification is achieved by computing

ηb = P (q4 | focal blur) /P (q4 |motion blur).

5. Experiments and Results

We describe our experiments in this section. In the first

part, we construct training and testing datasets with manu-

ally labeled patches, and use them to test the accuracy of

our patch classification algorithm. We also apply our algo-

rithm to ranking the confidence of blur for an image. In

the second part, we experiment with partially blurred image

segmentation.

5.1. Blur Patch Detection

We collect totally 100 partially blurred images and 100

unblurred images from photo sharing websites, such as

Flickr.com and PBase.com, to form our dataset. In each cat-

egory, half of the images are used for training and the other

half are for testing. All the images are manually segmented

into square patches. The size of each patch ranges from

50 × 50 to 500 × 500 pixels, which occupies 5% ∼ 20%
of the size of the original images. Examples of images and

patches in our datasets are shown in Fig. 6. Then we la-

bel each patch as one of the following three types: “sharp”,

“motion blur”, or “focal blur”. In total, we generated 290

focal blur patches, 217 motion blur patches, and 516 un-

blurred patches from training set and 223, 139, and 271

patches, respectively, from testing set.
We evaluate the performance of our classifier using the

Precision-Recall curve. Let N be the number of patches to
be classified, fi be the label for patch i, and ai be the ground
truth label for patch i, we define the measurements as

Recall =
|{i; fi = ai&ai = true}|

|{i; fi = ture}|
,

P recision =
|{i; fi = ai&ai = true}|

|{i; ai = true}|
,

Accuracy =
|{i; fi = ai}|

N
.

In the first step of our algorithm, patches labeled

as “blur” are considered as true instances in evaluating

blur/nonblur classifier whereas, in the second step, patches

labeled as “motion” are considered as true in evaluating

motion/focal blur classifier.

For evaluating individual features in blur detection, we

plot precision-recall curves to show the discriminatory

power. Similar to the definition of ηa, we set ηi =
P (qi |Blur) /P (qi |Sharp), where i = {1, 2, 3} and

show in Fig. 5(a) the precision-recall curves for each

blur metric ηi and the combined metric ηa in classifying

blur/nonblur regions. Our classifier ηa, in general, is with

the best performance and achieves over 95% precision for

low recall. Among our blur metrics, the feature of gradient

magnitude span η2 shown in blue is the most discriminative

one. This is not surprising since blurred patches rarely con-

tain steep changes of intensities. Table 1 shows the max-

imum accuracy rate, as well as the overall accuracy rate

calculated by averaging over all recall levels. The maxi-

mum accuracy rate 76.98% for blur/nonblur classification

is achieved when ηa = 0.4. This threshold is used later for

our application of blur region recognition and segmentation.
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Figure 5. Precision-Recall curves of our classification. (a)

Blur/nonblur classification results. The curve corresponding to the

classifier using ηa is shown in red, whereas the curves for classi-

fiers using η1, η2, and η3, are shown in green, blue, and purple,

respectively. (b) Precision-Recall curve for motion/focal blur clas-

sification.

Classification Overall Maximum

Tasks Accuracy Rate Accuracy Rate

Blur / Nonblur 63.78% 76.98%

Motion / Focal blur 65.45% 78.84%

Table 1. Accuracy Rate on the testing dataset.

In the second step, we test motion/focal blur classifica-

tion using ηb. Fig. 5(b) shows the precision-recall curve.

As listed in Table 1, the maximum accuracy rate is 78.84%

when ηb = 1.3. This threshold is also used later for blur

segmentation.

Because of the similarity of the blurred and low-contrast

regions in natural images, our classification results in-

evitably contain errors. We examined incorrectly classified

patches and found that the latent ambiguous texture or struc-

ture in patches is the main cause of errors. For example,

Fig. 7(a) and (b) show patches wrongly classified as blurred

regions due to the shadow or low contrast pixels. The patch

in Fig. 7(c) is mistakenly classified as motion blur because

of the strong directional structures.

The patch-based blur detection and classification can

serve as a foundation for ranking the degree of image blur.

In experiments, we collect a set of flower pictures searched

from Google and Flickr. Each image is segmented into



focal blur motion blur sharp

Figure 6. Selected examples of images(first row) and manually labeled patches(second row) from our datasets.

(a) (b) (c)

Figure 7. Examples of wrongly classified patches.

patches with size 20 × 20. We rank each image by a

blur confidence value defined proportional to the number of

blurred regions in each image. Fig. 9 shows the blur recog-

nition results by our method where the blur confidence of

each image increases from left to right, coincident with hu-

man visual perception.

5.2. Blur Region Segmentation

Our method can also be used in partially blurred image

segmentation. Because the blur classification is performed

on patches, we detect the blur information of one pixel by

using a local patch centered at it. The spatial similarity of

blur types for neighboring pixels is also considered by in-

troducing a smoothness term similar to that defined in [19].

Combining the blur detection and the pair-wise blur type

similarity, we construct a Markov Random Field for each

image. The corresponding Gibbs energy is minimized by

applying the Graph Cuts method [16].

We show two blur segmentation examples in Fig. 8,

where (a) and (b) give a comparison of the segmenta-

tion results produced by the method described in [18] and

our approach. With comparable segmentation results, our

method do not need to infer the blur kernel and make the

directional motion assumption. Our features are computed

within patches of size 50 × 50 centered at each pixel.

In (c) and (d) of Fig. 8, we show that our method is

able to partition an image into several segments with re-

spect to different blur types. In this example, we ap-

ply our blur/nonblur classifier to first segment out the un-

blurred regions (shown in red in (d)) and then extract mo-

(a) (b)

(c) (d)

Figure 8. Blur segmentation results for partially blurred images.

(a) Blur segmentation result presented in [18]. (b) Our result on

the same example without needing to infer the blur kernels. (c)

shows a challenging image example containing unblurred, motion

blurred, and focal blurred regions. (d) Our segmentation result

with unblurred regions in red, motion blurred region in yellow,

and focal blurred regions in blue.

tion blurred regions (shown in yellow in (d)). Differently

blurred regions are faithfully segmented, indicating that our

automatic method can serve as a reliable basis for many

region-based image applications, such as motion estima-

tion, content-based image retrieval, and object extraction.



Images with increasing blur confidence

Figure 9. Partial blur recognition for flower images. Images are shown in an ascending order in term of the size of blurry regions.

6. Conclusion and Future Work

In this paper, we have proposed a partial-blur image de-

tection and analysis framework for automatically classify-

ing whether one image contains blurred regions and what

types of blur occur without needing to performing image

deblurring. Several blur features, measuring image color,

gradient, and spectrum information, are utilized in a param-

eter training process in order to robustly classify blurred im-

ages. Extensive experiments show that our method works

satisfactorily with challenging image data and can be ap-

plied to partial-blur image detection and blur segmentation.

Our method, in principal, provides a foundation for solv-

ing many blur-oriented and region-based computer vision

problems, such as content-based image retrieval, image en-

hancement, high-level image segmentation, and object ex-

traction.
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