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Abstract

The over-segmentation of images into atomic regions has

become a standard and powerful tool in Vision. Traditional

superpixel methods, that operate at the pixel level, can-

not directly capture the geometric information disseminated

into the images. We propose an alternative to these meth-

ods by operating at the level of geometric shapes. Our al-

gorithm partitions images into convex polygons. It presents

several interesting properties in terms of geometric guaran-

tees, region compactness and scalability. The overall strat-

egy consists in building a Voronoi diagram that conforms to

preliminarily detected line-segments, before homogenizing

the partition by spatial point process distributed over the

image gradient. Our method is particularly adapted to im-

ages with strong geometric signatures, typically man-made

objects and environments. We show the potential of our ap-

proach with experiments on large-scale images and com-

parisons with state-of-the-art superpixel methods.

1. Introduction

The partitioning of images into meaningful atomic re-

gions is very popular to address vision problems. When

used as pre-processing for image segmentation [14], stereo

matching [32] or object boundary extraction [12] for in-

stance, such an image decomposition offers very interesting

advantages in terms of algorithmic complexity and spatial

consistency. Traditional methods create image partitions at

the pixel level, atomic regions being commonly called su-

perpixels. Each region is delimited by a set of pixels form-

ing a free-form contour. This representation brings high

flexibility, but is free of higher level information. In partic-

ular, it does not exploit geometric information disseminated

into images, which can be a precious source of knowledge

to analyze scenes and objects, especially in man-made en-

vironments.

In this paper, we address the problem of partitioning im-

ages into atomic regions with convex polygons while im-

posing geometric guarantees on the shape and connection

of these regions. Figure 1 illustrates our goal.

Figure 1. Our algorithm partitions images into regular convex

polygons. Three different polygon sizes are displayed. The use of

floating polygons allow for the preservation of object boundaries

at a subpixelic scale (close-up).

1.1. Related works

Our review of previous work covers three main facets

of our problem statement: segmentation into superpixels,

shape detection, and object polygonalization.

Segmentation into superpixels. Methods partitioning

images into superpixels are usually evaluated on five

criteria: (i) adherence to boundaries, (ii) low running time,

(iii) compactness of regions, (iv) memory efficiency and

(v) simplicity of use. Among the numerous algorithms

proposed in the literature, the most popular strategy con-

sists in iteratively refining superpixels from an initial rough

partitioning of pixels. These methods, eg [1, 13, 25, 28, 29],

are usually time and memory efficient and capture well

boundaries. Some methods address the problem with more

global strategies, in particular with energy minimization

on graph, eg [15, 20]. Results are usually of higher quality

but require more algorithmic efforts. Globally speaking,

each method has its own advantages and drawbacks, and

scores differently on the five criteria mentioned above.

Nevertheless, adherence to boundaries is usually favored at

the expense of region compactness by a large majority of

methods [21]. Apart from certain algorithms as SLIC [1],

no control on the shape of regions is possible.

Geometric shape detection. The automated detection

of geometric shapes is an instance of the general problem

1



of fitting parametric functions to data. There is a wide

variety of shapes in all dimensions, the most common one

in image problems being line-segments. This parametric

shape is known to capture well the image discontinuities,

in particular for man-made environments. Interpreting

line-segments from images can bring precious information

for discovering the scene structure [11] or recognizing

people [18]. If the Hough detector has been widely used

in the literature, recent algorithms deeply improved the

quality of line-segment detection while guaranteeing fast

running times [7], and even false detection control [27].

Closely related to line-segments, textons [31] also proposes

a compact representation of the image structure in between

the pixel and geometric shape scales.

Object polygonalization. Beyond simple geometric

shapes, polygons also constitute valuable tools to capture

objects or parts of objects. Generating polygons is usually

performed by assembling line-segments preliminarily de-

tected. In [9], convex polygons are extracted using a greedy

search guided by local geometric constraints. Extracting

free-form polygon is algorithmically more complex. It can

be done, for instance, by searching for cycles in a graph

of line-segments with a scoring function that measures the

quality of cycles [22]. Another solution is to exploit a gap-

filling strategy to connect the line-segments [30]. If poly-

gons are common tools for capturing objects, their use is

more marginal for interpreting entire scenes, or said differ-

ently, for partitioning images. One of the main reasons is

the difficulty to create a partition of polygons that are per-

fectly connected, ie without overlap and empty space.

1.2. Positioning

Few works have addressed the problem of the geometric

partitioning of images. Traditional superpixel decomposi-

tions are flexible and powerful tools for a large panel of

computer vision applications, but cannot efficiently exploit

the geometric knowledge disseminated into images. This

is particularly penalizing in some applications or specific

contexts for which the shape and adjacency of regions are

expected to have strong geometric constraints. In stereo

matching for instance, guaranteeing convexity of regions

make the matching procedure more robust than the sub-

sequent extraction of their convex hull [4]. Also, in pres-

ence of man-made objects and urban environments [19, 6],

prefering regions with straight line boundaries is a natural

choice which can be a precious source of geometric knowl-

edge for subsequent processing steps.

Integrating such geometric knowledge after superpixel

decomposition is a complex and delicate task. Inconsis-

tencies within the graph of region adjacency are frequent

and lead to generate structural incoherences in subsequent

processing. Also, modifying the region shapes typically

Figure 2. Overview. Left: line-segments are first extracted from

the input image, and consolidated to bring spatial coherence

(Sec.3). Middle: an initial Voronoi partition that preserves the

line-segments and their junctions is then created by inserting an-

chors at some specific locations (Sec.4). Right: the Voronoi parti-

tion is homogenized by point process (Sec.5).

destroys the effort done to make superpixels adherent to

the image. Ideally, both geometry and radiometry must be

jointly exploited to generate the regions.

The proposed solution consists of partitioning images

into connected convex polygons using Voronoi diagrams

for which a brief introduction in given in Sec. 2. Region

convexity has many advantages, in particular for (i) sim-

plifying subsequent geometric operations as the computa-

tion of region distances, (ii) favoring the region compact-

ness, and (iii) insuring a unique adjacency graph between

regions, without ambiguities. In our approach, geometric

properties are guaranteed by construction of the Voronoi di-

agram whereas radiometry is exploited to (i) align edges

separating two neighboring polygons with image discon-

tinuities, and (ii) center the polygons in homogeneous ar-

eas. Contrary to interest point based-strategies [24, 5], we

approximate image discontinuities through the detection of

geometric shapes, ie line-segments similarly to [22, 30].

1.3. Contributions

Our algorithm takes an image as input and produces, as

output, a partition into polygons defined into the continuous

bounded domain supporting the image. A model parameter

ǫ has to be specified to fix the partition scale; concretely ǫ
corresponds to the average radius of a region, assuming the

region approaches a rounded shape. Our main contributions

are as follows:

• Shape anchoring. We propose a strategy to preserve

geometric shapes within the Voronoi partitions. The

key idea relies on the insertion of pairs of Voronoi

seeds, called anchors, close enough to each other to

constrain the Voronoi edges to be part of a geomet-

ric shape. Beyond preservation, we also structure the



connexion of the geometric shapes, in particular for

enhancing shape junctions.

• geometric guarantees. Our output provides some geo-

metric guarantees related to the shape and adjacency of

the atomic regions. First, each region is a convex poly-

gon with a low number of edges. Contrary to many

superpixel methods, the adjacency of regions is also

guaranteed to be unique by construction, two polygons

being neighbors if they share a common edge. Finally,

region boundaries are polygons with exact geometry,

ie under the pixel scale.

• Efficiency. By manipulating geometric entities, we

simplify the pixel-based information and strongly re-

duce the algorithmic complexity of the partitioning

process. If the efficiency of superpixel methods can be

strongly affected by big size images, our algorithm is

weakly impacted both in terms of time efficiency and

memory consumption.

The proposed strategy is composed of three steps illustrated

in Figure 2.

2. Mathematical background

We briefly introduce two mathematical tools that play a

central role in our algorithm: Spatial point processes and

Voronoi Diagrams. Deeper presentations of these tools can

be found in [2, 17].

Spatial point process. A point process describes

random configurations of points P = {p1, ..., pn} in a

continuous bounded set K, in our case the 2D domain

of the input image. The number of points n is itself a

random variable that typically follows a discrete Poisson

distribution. What makes point processes appealing is the

possibility to create spatial interactions between points, in

particular using the Markovian property (points interact

only in a local neighborhood). The most common process

using Markovian interactions is the Strauss process in

which a repulsion domain is located around each point

to avoid points to be too close to each other. When

dimK = 2, this domain is a disk whose radius is a model

parameter. The sampling of point process is usually a

fastidious operation relying on Monte Carlo methods [26].

However, fast sampling mechanisms exist for certain types

of point processes. This is the case of Strauss processes for

which efficient Poisson-disk sampling allows the random

generation of points either homogeneously distributed [8],

or following an arbitrary density [3].

Voronoi diagram. Given a configuration of points P
in K, called seeds, the Voronoi cell associated to the seed

pi ∈ P , denoted as V (pi), corresponds to the region in

which the points are closer to pi than to any other seed in

P :

V (pi) = {x ∈ K / ‖x− pi‖ ≤ ‖x− pj‖, ∀pj ∈ P, i 6= j}
(1)

The Voronoi diagram generated by P is the set of the

Voronoi cells {V (p1), ...V (pn)}. Voronoi digrams have in-

teresting geometric properties, in particular they entirely

partition the domain K without region overlap. By using

the Euclidean distance in Eq. 1, Voronoi cells are guaran-

teed to be convex polygons. The dual graph of a Voronoi

diagram also corresponds to the Delaunay triangulation of

its seeds, and gives the adjacency relation between regions.

Finally the algorithmic complexity to build a Voronoi dia-

gram when dimK = 2 is only in O(n log n).
Spatial point processes can be used to generate the seeds

of a Voronoi diagram. In particular, Poisson-disk sampling

constitutes a fast and efficient way to create partitions of

homogeneous Voronoi cells.

3. Shape detection

The first step of our algorithm consists of extracting

line-segments from the input image, and then consolidating

them to bring spatial coherence.

Line-segment extraction. As mentioned in Sec. 1.1,

many methods have been proposed in the literature. Our

choice focuses on the Line-Segment Detector (LSD) [27]

for the detection quality, the running times and the false de-

tection control. We fix the minimal length of line-segments

to ǫ. Note that our algorithm is not restricted to LSD and

can be used with other line-segment or polyline extraction

methods.

removing

merging

concurrence

Figure 3. Line-segment consolidation. Three different operations

applied greedily over the adjacency graph (dashed grey lines)

bring spatial coherence between the detected line-segments. Such

a consolidation procedure also reduces the problem complexity as

the number of line-segments becomes lower.

Consolidation. The extraction of line-segments is a lo-

cal process that can generate heap of shapes with noise

and outliers. Such raw detected line-segments is sometimes

hardly exploitable. We thus propose a consolidation proce-

dure to bring spatial coherence between the line-segments.
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Figure 4. Anchoring. A set of anchors is positioned orthogonally to each line-segment, each seed of an anchor being at the same orthogonal

distance ǫ from the line-segment (left). Three (resp. five) junction-anchors are positioned to preserve junctions between two (resp. three)

lines (middle). We start positioning the junction-anchor (p0, p
′

0) at the intersection of the junction-circle with the bisector of the line-

segment pair having the smaller angle. We then create the other junction-anchors by orthogonal symmetry with respect to the line-segments

(right).

An adjacency graph is built: two line-segments li and lj are

considered as adjacent if d(li, lj) ≤ ǫ, where d(., .) is the

minimal euclidean distance between any pair of points of

the two line-segments. As illustrated in Figure 3, we con-

solidate sets of adjacent line-segments using three types of

operators:

• Merging. The merging operator tests whether two ad-

jacent line-segments are near-collinear, and, if valid,

replaces them by one large line-segment that covers

their length.

• Removing. A small line-segment is removed when ad-

jacent to a large near-parallel line-segment.

• Concurrence. The concurrence operator tests whether

the inscribed circle of three mutually adjacent line-

segments, ie of a simple cycle of order 3 in the adja-

cency graph, is small, and, if valid, translates the three

line-segments onto the center of the inscribed circle.

Note the adjacency graph is updated after each effective op-

erations. Merging, removing and concurrence operators are

successively applied over the line-segments using a greedy

procedure.

4. Conforming Voronoi partition

Our objective is now to create a Voronoi partition that

conforms to the detected line-segments. Said differently,

the line-segments must not cross the Voronoi cells, but

must be included onto the Voronoi edges. Manipulating

a Voronoi partition to make the cells align with some

geometric shapes or radiometric information is a delicate

operation because, for the displacement of a single seed,

even small, the whole group of connected cells is usually

strongly perturbed. This explains why the use of Voronoi

diagrams in vision has mainly be restricted to the creation

of basic isotropic partitions, eg in texture segmentation[23].

Inspired by a recent work in surface reconstruction to

conform 3D Delaunay triangulation to planes [10], we

propose a mechanism to create a Voronoi partition that

conforms to the line-segments by construction.

Shape anchoring. The key idea consists in sampling

pairs of seeds, that we call anchors, located on each side

of a line-segment. As illustrated on Figure 4, each anchor

is positioned so that the Voronoi edge separating the cells

induced by the two seeds is exactly on the line-segment.

Junction preservation. The sampling of anchors is a

local procedure on individual line-segments that does not

preserve their junctions. We thus create junction-anchors

by positioning pairs of seeds on a circle, called the

junction-circle, centered at the intersection of the adjacent

line-segments, and of radius 2ǫ. Anchors located inside

junction-circles are first removed. Then, junction-anchors

are inserted onto the junction-circle as explained in Figure

4. Note that three mutually adjacent line-segments are

necessarily intersecting in one point as a consequence of

the consolidation process.

The anchoring procedure is entirely controlled by the pa-

rameter ǫ. Note that cells generated from junction-anchors

have typically a triangular shape that reduce the global com-

pactness of the partition. This is the price to pay for pre-

serving the exact intersection of the line-segments into the

partition. Junctions between at least four line-segments are

marginal in practice: this case is not handled by our system.

5. Spatial homogenization

The Voronoi partition from anchors generates cells

of heterogeneous size. In particular, large cells poorly



captures the homogeneous areas of the input image. If

line-segments capture well the main image discontinuities,

they are less adapted to secondary boundaries, as those

formed by the sail frames of the windmill on Figure 5.

We thus refines the Voronoi partition by sampling a point

process for a better spatial homogenization of polygons.

gradient-driven samplinguniform sampling

Figure 5. Spatial homogenization. Initial Voronoi partition from

anchoring (top left) is refined into a partition (top right) with

regular-sized cells (see histograms of the distribution of the Eu-

clidean distance between boundary pixels and region centroid).

When no line-segments are detected in an area, our Poisson-disk

sampling driven by the image gradient allows the preservation of

secondary boundaries contrary to a uniform sampling (see close-

up).

Sampling domain. We first define a sampling domain

so that the Voronoi edges supporting line-segments and

their junction will not be affected by the insertion of new

seeds. This domain is defined as the complementary, over

the image domain, of the accumulated disks centered on

each seed and of radius 2ǫ.

Poisson-disk sampling. New seeds are then distributed

over this domain using a Poisson-disk sampling, the disk

radius being equal to ǫ. Instead of considering a homo-

geneous sampling, we guide the seed distribution with a

spatial density, similarly to [3]. We define the density as

proportional to the inverse of the image gradient, as detailed

in Figure 6. The intuition behind that is to avoid new seeds

to be positioned on image discontinuities. This procedure

does not guarantee to produce Voronoi edges that perfectly

align with secondary boundaries, but it encourages the

positioning of seeds at the center of local homogeneous

areas, as illustrated on Figure 5, bottom middle. Note that

other types of spatial densities can also be used, eg texture

or distance maps depending on the study context.

low
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Figure 6. Poisson-disk sampling with non-homogeneous spatial

distribution. Each new disk to insert is positioned into a circular

domain of width ǫ (blue contour). The sampling is guided by the

inverse of the image gradient (grey scale), here from the close-up

of Figure 5.

6. Experiments

The algorithm is implemented in C++, using the Com-

putational Geometry Algorithms Library1 for the Voronoi

diagram structure as well as for the basic geometric opera-

tions as the computation of the line-segment distance. All

timings are measured on an Intel Core i7 clocked at 2GHz.

We experiment with both small size images from the Berke-

ley dataset and large size satellite images.

The main parameter of our algorithm, ǫ, allows the

control of the cell size. This parameter steps in the different

stages our system. Four additional parameters are used

during line-segment consolidation (Sec. 3): a maximal

angle and a maximal distance to define the near parallelism

and near-colinearity of line-segments, as well as a maximal

radius of inscribed circle of three line-segments, and a

minimal large to small line-segment length ratio. These

four parameters are fixed respectively to 5o, 0.5ǫ, 0.5ǫ and

5 in all the experiments.

Flexibility. Because of the nature of the geometric

shapes, our algorithm is particularly suitable for man-made

environments in which boundaries are often accurately

described by line-segments. It also produces convincing

results on free-form boundary images as illustrated on

Figures 2 and 9 (top row), even if the piecewise-linear

approximation of object contours can be penalizing. Ra-

diometric information are exploited at two different levels

in the algorithm, ie during line-segment extraction and

Poisson-disk sampling. The former plays a more important

role as its conditions the positioning of the Voronoi edges

onto the main image discontinuities.

Comparison with superpixel methods. Although our

algorithm produces polygonal regions different from super-

pixels, it can be evaluated using the standard quality criteria

required for superpixel methods. Four quality criteria are

taken into account: boundary recall [1], undersegmentation

error [13], compactness [21], and running times. We com-

pare our algorithm on the Berkeley dataset [16] with three

1www.cgal.org

www.cgal.org
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Figure 7. Quantitative evaluation on Berkeley dataset. Boundary recall, undersegmentation error, compactness and runtime are given for

the entire dataset (top) and for a subset of 30 images in which man-made structures are dominant (see some samples in bottom right).

state-of-the-art superpixel methods: SLIC [1], SEEDS [25]

and ERS [15]. For measuring the quality criteria on our

method, the edges of the polygonal regions are discretized

into pixel-based boundaries.

Figure 7 shows the results on the four quality criteria.

Because our regions are convex polygons of homogeneous

size, our algorithm outperforms the other methods in terms

of compactness by a significant margin. The algorithm also

competes well in terms of undersegmentation error and run-

ning time. Contrary to SEEDS and SLIC, our running time

increases in function of the number of regions. Neverthe-

less, as we manipulate geometric objects, our algorithm

is less impacted when the image size increases. In addi-

tion, our memory consumption is very low, even on very

big images. Our result on the boundary recall scores low

with respect to the three other methods. The use of line-

segments logically penalizes the boundary accuracy, in par-

ticular when the number of regions is low. This is the price

to pay to guarantee highly compact regions, boundary re-

call and compactness being hard to conciliate. Neverthe-

less, the boundary recall of our method improves when we

restrict the evaluation to a subset of images for which man-

made structures are dominant, as shown in Figure 7, bottom

row. In particular, the boundary recall becomes quite close

to SLIC. For such images, the boundary accuracy is less

penalized by the use of line-segments. In terms of model

parameters, our algorithm does not have a weight balanc-

ing between image faithfulness and region regularity as in

SLIC or ERS. On the one hand, this characteristic reduces

the flexibility of our algorithm. On the other hand, it al-

lows us to guarantee some geometric properties (polygonal

shape, region convexity, unique adjacency graph) contrary

to the other methods. Results with other quality criteria are

presented in Supplementary Material.

Figure 9 shows some visual comparisons with these

three superpixel methods. Our method competes well,

specially for indoor and urban scenes. If the other methods

typically perform better for capturing thin irregular details

with large region size, we compensate by a higher region

compactness, some geometric guarantees on the result, and

region boundaries under the pixel scale.

Large-scale satellite images. Figure 8 shows a use

case in which the algorithm characteristics are particularly

attractive. Because of the scale and the geometric signature

of the urban satellite images, the image partition preserves

well shape of buildings, in particular the facade and rooftop

edges, as well as building corners. This knowledge can be

used later, for instance, in a geometry-aware classification

of urban scenes.

church Manhattan Denvers

154Kpixels 39.1Mpixels 104Mpixels

line extraction 36ms 29.9s 114.2s

consolidation 3ms 9.1s 107.4s

anchoring 3ms 2.7s 32.7s

homogenization 32ms 10.2s 48.4s

total time 72ms 51.9s 302.7s

memory peak 12.63Mb 372.20Mb 756.26Mb

Table 1. Performances on different image sizes (church from Fig-

ure 1, and Manhattan/Denvers from Figure 8) in terms of running

time and memory consumption.
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Figure 8. Large scale satellite images. Our algorithm decomposes a 104Mpixel (resp. 39Mpixel) image of Denver (resp. Manhattan) into

0.8M (resp. 0.2M) convex polygons in a few minutes. The image partition nicely preserves the facade edges and rooftop junctions in spite

of low image contrast (see close-ups).

Performances. Our algorithm performs well from

very big size images as shown in Table 1. Five minutes

and 0.8Gb of memory are necessary from a 100Mpixel

image. By contrast, the superpixel method ERS requires

39 minutes and 34Gb memory, and the released versions

of SLIC and SEEDS do not run on such image size.

Manipulating geometric shapes instead of pixels makes our

algorithm particularly scalable. In terms of storage, our

polygon partition can be saved in a very compact way as a

planar graph where each node refers to a polygon.

Limitations. Our algorithm is designed to partition

images with a polygonal approximation of region bound-

aries. If this approximation is usually relevant for man-

made environments, it might be of lower interest for images

with weaker geometric signatures. The accuracy of our re-

sults is also dependent of the quality of the detected line-

segments. We used the state-of-the-art line-segment detec-

tor [27]: it produces accurate line-segments but still lacks

of global regularization to get line-segment configuration

of very high quality.

7. Conclusion

In this work, we propose a novel algorithm to partition

images into convex polygons. Contrary to superpixel meth-

ods, we operate at the scale of the geometric shape, and not

directly at the pixel scale. Our algorithm has demonstrated

several interesting properties in terms of geometric guar-

antees, region compactness and scalability, and has shown

potential for partitioning images with strong geometric sig-

natures, typically man-made environments. The key tech-

nical ingredient of our work is an anchoring procedure to

conform Voronoi diagrams to geometric shapes, more pre-

cisely to line-segments.

This work brings a geometric dimension to traditional

superpixel segmentation methods. Used as preprocessing,

we wish it will serve Vision to exploit more efficiently

the geometric knowledge disseminated into images, for in-

stance by polygonalyzing objects with region grouping,

classifying scenes at a subpixelic scale or matching regions

for stereo. Some applications presented in Supplementary

Material illustrate the potential of our approach in Vision.

The use of line-segments is however not fully adapted

to images with weak geometric signatures. In future

works, we would like to investigate the use of more flexi-

ble geometric shapes that capture better free-form objects.

Quadrics or B-splines are potential solutions assuming we

can build Voronoi diagram in non-Euclidean space that con-

form to these shapes.



SLIC SEEDS ERS ours

Figure 9. Visual comparison. Our algorithm produces competitive results for man-made objects or environments (four middle rows) in

which the geometric structures are preserved. Only SLIC presents regions of the same order of compactness than ours algorithm, but with

more outliers (see the histograms representing the distribution of the Euclidean distance between boundary pixels and region centroid, for

the medium region size). Contrary to these methods, our regions are polygons able to preserve the geometric signatures of images at a

subpixelic scale (see close-ups, bottom row).
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