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Abstract 

The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing, nationwide study of 

the effects of environmental influences on behavioral and brain development in adolescents. 

The ABCD Study is a collaborative effort, including a Coordinating Center, 21 data acquisition 

sites across the United States, and a Data Analysis and Informatics Center (DAIC). The main 

objective of the study is to recruit and assess over eleven thousand 9-10-year-olds and follow 

them over the course of 10 years to characterize normative brain and cognitive development, 

the many factors that influence brain development, and the effects of those factors on mental 

health and other outcomes. The study employs state-of-the-art multimodal brain imaging, 

cognitive and clinical assessments, bioassays, and careful assessment of substance use, 

environment, psychopathological symptoms, and social functioning. The data will provide a 

resource of unprecedented scale and depth for studying typical and atypical development. Here, 

we describe the baseline neuroimaging processing and subject-level analysis methods used by 

the ABCD DAIC in the centralized processing and extraction of neuroanatomical and functional 

imaging phenotypes. Neuroimaging processing and analyses include modality-specific 

corrections for distortions and motion, brain segmentation and cortical surface reconstruction 

derived from structural magnetic resonance imaging (sMRI), analysis of brain microstructure 

using diffusion MRI (dMRI), task-related analysis of functional MRI (fMRI), and functional 

connectivity analysis of resting-state fMRI. 
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Introduction 

ABCD Study Overview 

The Adolescent Brain Cognitive Development (ABCD) Study offers an unprecedented 

opportunity to comprehensively characterize the emergence of pivotal behaviors and 

predispositions in adolescence that serve as risk or mitigating factors in physical and mental 

health outcomes (Jernigan et al., 2018; Volkow et al., 2018). Data collection for the ABCD Study 

was launched in September 2016, with the primary objective of recruiting over 11,000 

participants - including more than 800 twin pairs - across the United States over a two-year 

period. These 9-10-year-olds will be followed over a period of ten years. This age window 

encompasses a critical developmental period, during which exposure to substances and onset 

of many mental health disorders co-occur. The ABCD Study is the largest project of its kind to 

investigate brain development and peri-adolescent health, and includes a comprehensive 

battery of behavioral assessments (Luciana et al., 2018), multimodal brain imaging (Casey et 

al., 2018), bioassay data collection (Uban et al., 2018), and other assessments (Bagot et al., 

2018; Barch et al., 2018; Lisdahl et al., 2018; Zucker et al., 2018). The longitudinal design of the 

study, large diverse sample, and open data access policies will allow researchers to address 

many significant and unanswered questions; for example, understanding the causal interplay 

between brain development and sleep, exercise, nutrition, and screen time, as well as the 

contribution of numerous other social, genetic, and environmental factors. 

The ABCD consortium is comprised of 21 data acquisition sites in the United States, 

capturing a nationwide cohort with a diverse and inclusive range of geographic, socioeconomic, 

ethnic, and health backgrounds. Recruitment of the sample was designed to closely match the 

demographic profile of the American Community Survey, and the enrollment profiles of 3rd and 
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4th graders from the National Center for Education Statistics, to achieve a sample reflective of 

the sociodemographic variation of the US population (Garavan et al., 2018). Two centers 

oversee the coordination and centralization of resources for the entire consortium, namely the 

Coordinating Center (CC) and the Data Analysis and Informatics Center (DAIC). Specifically, 

the CC provides the organizational framework for the scientific and administrative tasks of the 

ABCD Study and works closely with the DAIC to monitor the progress of each site and the 

collective consortium towards recruitment targets and other study goals. The DAIC provides the 

infrastructure for data storage and management and performs centralized processing, curation, 

and sharing of imaging data. The DAIC is committed to the development of an efficient workflow 

to lower the barrier to accessing complex image analysis methods for researchers with different 

skill sets and levels of expertise. The responsibilities of the DAIC include: 1) establishing a 

harmonized magnetic resonance imaging (MRI) acquisition protocol, with comparable 

acquisition parameters across scanner vendors; 2) quality control of MRI images before and 

after processing; 3) centralized image processing and information extraction; 4) public sharing 

of data and image processing pipelines; and 5) dissemination of imaging-derived measures and 

tools for use by the consortium and the wider scientific community. 

Large Scale Multimodal Image Acquisition 

The past few decades have seen increasing interest in the development and use of non-

invasive in vivo imaging techniques to study the brain. Rapid progress in MRI methods has 

allowed researchers to acquire high-resolution anatomical and functional brain images in a 

reasonable amount of time, which is particularly appealing for pediatric and adolescent 

populations. The ABCD Study builds upon existing state-of-the-art imaging protocols from the 

Pediatric Imaging, Neurocognition Genetics (PING) study (Jernigan et al., 2016) and the Human 

Connectome Project (HCP) (Van Essen et al., 2012) for the collection of multimodal data: T1-

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/457739doi: bioRxiv preprint 

https://doi.org/10.1101/457739


Page 7 of 53 

weighted (T1w) and T2-weighted (T2w) structural MRI (sMRI), diffusion MRI (dMRI), and 

functional MRI (fMRI), including both resting-state fMRI (rs-fMRI) and task-fMRI (Casey et al., 

2018). The fMRI behavioral tasks include a modified monetary incentive delay task (MID) 

(Knutson et al., 2000), stop signal task (SST) (Logan, 1994) and emotional n-back task (EN-

back) (Cohen et al., 2016). These tasks were selected to probe reward processing, executive 

control, and working memory, respectively (Casey et al., 2018). The ABCD imaging protocol 

was designed to extend the benefits of high temporal and spatial resolution of HCP-style 

imaging (Glasser et al., 2016) to multiple scanner systems and vendors. Through close 

collaboration with three major MRI system manufacturers (Siemens, General Electric and 

Philips), the ABCD imaging protocol achieves HCP-style temporal and spatial resolution on all 

three manufacturers’ 3 Tesla systems without the use of non-commercially available system 

upgrades. 

To help address the challenges of MRI data acquisition with children, real-time motion 

correction and motion monitoring is used when available to maximize the amount of usable 

subject data. The prospective motion correction approach, first applied in PING, uses very brief 

"navigator" images embedded within the sMRI data acquisition, efficient image-based tracking 

of head position, and compensation for head motion (White et al., 2010). Significant reduction of 

motion-related image degradation is possible with this method (Brown et al., 2010; Kuperman et 

al., 2011; Tisdall et al., 2016). Prospective motion correction is currently included in the ABCD 

imaging protocol for the sMRI acquisitions (T1w and T2w) on Siemens (using navigator-enabled 

sequences (Tisdall et al., 2012)) and General Electric (GE; using prospective motion (PROMO) 

sequences (White et al., 2010)) and will soon be implemented on the Philips platform. 

Real-time motion monitoring of fMRI acquisitions has been introduced at the Siemens 

sites using the Frame-wise Integrated Real-time Motion Monitoring (FIRMM) software 

(Dosenbach et al., 2017). This software assesses head motion in real-time and provides an 

estimate of the amount of data collected under pre-specified movement thresholds. Operators 
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are provided a display that shows whether our movement criterion (>12.5 minutes of data with 

framewise displacement (FD (Power et al., 2014)) < 0.2 mm) has been achieved. FIRMM allows 

the operators to provide additional feedback to participants and also allows operators to adjust 

their scanning procedures (e.g., skip the final rs-fMRI run) based on whether the criterion has 

been reached. 

  

Challenges of Multimodal Image Processing 

A variety of challenges accompany efforts to process multimodal imaging data, 

particularly with large numbers of subjects, multiple sites, and multiple scanner manufacturers. 

Head motion is a significant issue, particularly with children, as it degrades image quality, and 

potentially biases derived measures for each modality (Fair et al., 2012; Power et al., 2012; 

Reuter et al., 2015; Satterthwaite et al., 2012; Van Dijk et al., 2012; Yendiki et al., 2013). As 

described above, prospective motion correction reduces motion-related image degradation for 

sMRI, and FIRMM can allow for efficient scanning for fMRI. Despite prospective motion 

correction for sMRI, image artifacts may persist in children with excessive head motion, so it 

remains important to include an assessment of motion in data quality reviews. Prospective 

motion correction for dMRI or fMRI is not yet available for routine use, so post-acquisition 

volume registration is necessary. 

The two main causes of motion-induced artifacts are inconsistencies in the k-space data 

acquired and violations of the signal model assumptions used in image reconstruction. For 

example, using an inverse fast Fourier transform image reconstruction assumes the object 

remained stationary during k-space data sampling. Inconsistencies in k-space acquisition can 

result in abnormally strong signals or signal loss due to spin dephasing (Zaitsev et al., 2015). 

For sMRI acquisitions, periodic motion synchronized with the k-space acquisition results in 
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“ghosting” -- a partial or complete replication of the structure along the phase-encoding 

dimension. Furthermore, motion can introduce blurring and/or ringing, depending on the 

specifics of the motion, such as its frequency, degree, and location within k-space. In dMRI and 

fMRI acquisitions, these signal and motion anomalies can result in the subtle corruption of 

individual frames or slices within a series that can alter derived measures (Liu et al., 2010). 

Thus, censoring of individual degraded frames and/or slices is one approach used in the 

literature to minimize contamination of dMRI and fMRI measures (Hagler et al., 2009; Power et 

al., 2014; Siegel et al., 2014). 

The correction of image distortions is another challenge. The single-shot, echo planar 

imaging (EPI) techniques used for dMRI and fMRI are subject to significant spatial and intensity 

distortions due to inhomogeneous static magnetic fields, known as B0 distortions. Anatomically 

accurate, undistorted images are essential for integrating dMRI and fMRI images with 

anatomical (T1w and T2w) images, by enabling accurate spatial registration of information 

across modalities. For longitudinal studies such as the ABCD Study, correcting such B0 

distortions is expected to reduce variance in change estimates caused by differences in the 

precise position of the subject in the scanner. As such, the imaging protocol includes brief spin-

echo "fieldmap" scans with opposite phase encoding polarities, resulting in opposite spatial 

distortion patterns, which can be used to correct for B0 distortion. Alignment of the fieldmap 

images, through nonlinear optimization of deformation fields, enables the removal of spatial and 

intensity distortions from the EPI images obtained for dMRI and fMRI (Andersson et al., 2003; 

Chang and Fitzpatrick, 1992; Holland et al., 2010; Morgan et al., 2004). 

Another prominent source of spatial distortion in MRI scans is caused by the nonlinearity 

of the gradient fields used for spatial encoding in MRI (Jovicich et al., 2006; Wald et al., 2001). 

Distortion due to gradient nonlinearity varies between scanner manufacturers, scanner models, 

and imaging modes, so distortion correction must be tailored to scanner-type-specific definitions 

provided by the MRI scanner manufacturers. Such distortions are of particular importance when 
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estimating subtle structural or functional changes from serial MRI scans, since the distortion 

patterns can vary substantially between scan sessions due to slight differences in subject 

positioning. Correcting gradient distortions significantly improves the accuracy of longitudinal 

change estimates based on serial MRI scans (Holland and Dale, 2011). 

Eddy current distortion is a significant imaging artifact for dMRI. These distortions, 

caused by currents induced by diffusion gradients, appear as translation and scaling along the 

phase-encode direction, with the magnitude and direction of distortions depending on gradient 

amplitudes and orientations. The resulting misalignment between diffusion-weighted images 

would, if uncorrected, reduce spatial resolution and cause inaccurate estimation of diffusion 

metrics (Pierpaoli et al., 1996). There are various implementations of eddy current distortion 

correction, but a common theme of several approaches is to restrict transformations to 

displacements in the phase-encode direction (Andersson and Sotiropoulos, 2016; Barnett et al., 

2014; Rohde et al., 2004; Zhuang et al., 2006). Eddy current distortion corrections may be 

further constrained with a spatial transformation model that accounts for diffusion gradient 

amplitudes and orientations (Zhuang et al., 2006). 

An additional challenge of conducting large multi-site longitudinal investigations is 

addressing image intensity inhomogeneity in structural images, which is particularly problematic 

when using high density, phased array head coils. The ABCD acquisition sites use either 32 

channel head or 64 channel head/neck coils, depending on availability. Standard correction 

methods, such as those used by FreeSurfer (Dale et al., 1999; Fischl, 2012; Sled et al., 1998) 

are limited when compensating for steep spatial intensity variation, leading to inaccurate brain 

segmentation or cortical surface reconstruction. For example, brain tissue farther from the coils, 

such as the temporal and frontal poles, typically has lower intensity values, causing focal 

underestimation of the white matter surface, or even resulting in elimination of large pieces of 

cortex from the cortical surface reconstruction. Furthermore, brain tissue close to coils with 
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extremely high intensity values may be mistaken for non-brain tissue (e.g., scalp). The ABCD 

image processing pipeline includes an improved intensity inhomogeneity correction of the 

structural images, using a smoothly varying bias field optimized to standardize image intensities 

within all white matter voxels (see sMRI Preprocessing). 

In summary, the ABCD image processing pipeline addresses these known challenges of 

head motion, distortion and intensity inhomogeneity. Given that the neuroimaging community 

has been a source of continual development of new methods and improvement and extension 

of existing methods, we anticipate the emergence over time of improved solutions to these and 

other challenges. We must also consider future challenges specific to longitudinal analyses, 

such as the possibility of scanner and head coil upgrade or replacement during the period of 

study. Therefore, the image processing pipeline is expected to evolve over time to incorporate 

future improvements and extensions in order to better address the challenges of large-scale 

multimodal image processing and analysis. 

Data Sharing 

The advent of large-scale data sharing efforts and genomics consortia has created 

exciting opportunities for biomedical research. The availability of datasets drawn from large 

numbers of subjects enables researchers to address questions not feasible with smaller sample 

sizes. Public sharing of processing pipelines and tools, in addition to raw and processed data, 

facilitates replication studies, reproducibility, and meta-analyses with standardized methods, 

and encourages the application of cross-disciplinary expertise to develop new analytic methods 

and test new hypotheses. To this end, data and methods sharing is an integral component of 

the ongoing ABCD Study. Processed data and tabulated region of interest (ROI) based analysis 

results are made publicly available via the National Institute for Mental Health (NIMH) Data 
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Archive (NDA). Processing pipelines themselves are shared as platform-independent data 

processing tools. 

Data Management and Curation 

Due to the magnitude and complexity of the ABCD Study, data management and 

curation pose many challenges. Thus, in addition to providing details of the image processing 

and analysis pipeline, below we also provide brief descriptions of the procedures, processes, 

and tools critical for managing the flow of the large numbers of imaging datasets from 

acquisition sites to the DAIC, through the processing pipeline, and into a curated data release. 

These topics include the transfer of data from sites to the DAIC, MRI protocol compliance 

checking, visual review of data quality, tracking of missing or corrupted datasets, and the 

packaging and uploading of processed data to NDA for public release. However, a full 

description of the design of information systems used for the ABCD Study is beyond the scope 

of a manuscript focused on the image processing pipeline, and we anticipate that more detailed 

descriptions of methods related to these topics will be published separately. 

  

Methods 

Overview 

The ABCD DAIC performs centralized processing and analysis of MRI data from each 

modality, leveraging validated methods used in other large-scale studies, including the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005), Vietnam Era Twin 

Study of Aging (VETSA) (Kremen et al., 2010), and PING (Jernigan et al., 2016). We used a 
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collection of processing steps contained within the Multi-Modal Processing Stream (MMPS), a 

software package developed and maintained in-house at the Center for Multimodal Imaging and 

Genetics (CMIG) at the University of California, San Diego (UCSD). MMPS provides large-

scale, standardized processing and analysis of multimodality neuroimaging data on Linux 

workstations and compute clusters. MMPS is a toolbox of primarily MATLAB functions, but also 

includes python, sh, csh scripts, and C++ compiled executables. MMPS also relies upon a 

number of publicly available neuroimaging software packages, including FreeSurfer (Fischl, 

2012), Analysis of Functional NeuroImages (AFNI) (Cox, 1996), and FMRIB Software Library 

(FSL) (Jenkinson et al., 2012; Smith et al., 2004). The processing pipeline described in this 

manuscript was used for the ABCD Data Release 1.1, available in October 2018, and a beta 

testing version has been made publicly available as a self-contained, platform-independent 

executable (https://www.nitrc.org/projects/abcd_study). 

As described above, the ABCD image acquisition protocol includes sMRI, dMRI, and 

fMRI data. While there are many modality-specific details of the processing and analysis 

pipeline that will be discussed below, we conceptualize five general stages of processing and 

analysis (Fig. 1). In the initial unpacking and conversion stage, the DICOM files are sorted by 

series and classified into types based on metadata extracted from the DICOM headers, and 

then converted into compressed volume files with one or more frames (time points). DICOM 

files are also automatically checked for protocol compliance and confirmation that the expected 

number of files per series was received. In the second stage (processing), images are corrected 

for distortions and head motion, and cross-modality registrations are performed (Fig. 2). The 

third stage is brain segmentation, in which the cortical surface is reconstructed and subcortical 

and white matter regions of the brain are segmented. In the fourth stage (analysis), we carry out 

modality-specific, single-subject level analyses and extract imaging-derived measures using a 

variety of regions of interest (ROIs). For the final stage (summarization), ROI analysis results 

are compiled across subjects and summarized in tabulated form. To provide context for how the 
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centralized image processing is performed in preparation for the public release of data, we will 

also briefly describe MRI data acquisition, data transfer, quality control, and data and methods 

sharing. A diagram documenting the various outputs of the processing pipeline can be found in 

Figure 3. 

 

Figure 1. Overview of MMPS processing pipeline steps. 

 

 

Figure 2. Modality-specific processing steps for bias field, distortion, and/or motion 

correction. 
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Figure 3. Diagram of MMPS processing pipeline input and outputs. 

 

Image Acquisition 

A standard scan session includes sMRI series (T1w and T2w), one dMRI series, four rs-

fMRI series, and three sets of two task-fMRI series (MID, SST, and EN-back). Minimal details of 

the imaging protocol are provided here to contextualize the following description of the 

processing pipeline; additional details have been published previously (Casey et al., 2018). 

Scan sessions typically require ~2 hours to complete, including a mid-session rest break if the 

child requests one; they are sometimes split into two separate sessions that take place within 

one week of each other (3.4% of participants included in ABCD Data Release 1.1). Over 78% of 

the participants included in ABCD Data Release 1.1 successfully completed the entire image 

acquisition protocol. Some participants who are unable to complete one or more of the fMRI 

behavioral tasks (MID, SST, or EN-back), instead perform the missing task or tasks outside the 

scanner on a laptop computer1. 

                                                
1 Whether a participant performed the MID, SST, or EN-back task in the scanner or on a laptop is 
indicated respectively by the following variables: ra_scan_cl_mid_scan_lap, ra_scan_cl_nbac_scan_lap, 
ra_scan_cl_sst_scan_lap. For more details, see “ABCD RA Scanning Checklist and Notes” available at 
https://ndar.nih.gov (instrument ‘abcd_ra’). 
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The T1w acquisition (1 mm isotropic) is a 3D T1w inversion prepared RF-spoiled gradient 

echo scan using prospective motion correction, when available (Tisdall et al., 2012; White et al., 

2010). The T2w acquisition (1 mm isotropic) is a 3D T2w variable flip angle fast spin echo scan, 

also using prospective motion correction when available. The dMRI acquisition (1.7 mm 

isotropic) uses multiband EPI (Moeller et al., 2010; Setsompop et al., 2012) with slice 

acceleration factor 3 and includes 96 diffusion directions, seven b=0 frames, and four b-values 

(6 directions with b=500, 15 directions with b=1000, 15 directions with b=2000, and 60 

directions with b=3000). The fMRI acquisitions (2.4 mm isotropic, TR=800 ms) also use 

multiband EPI with slice acceleration factor 6. Each of the dMRI and fMRI acquisition blocks 

include fieldmap scans for B0 distortion correction. Imaging parameters were made as similar as 

possible across scanner manufacturers, although some  hardware and software constraints 

were unavoidable (for details, see 

https://abcdstudy.org/images/Protocol_Imaging_Sequences.pdf). 

Data transfer 

Imaging data are transferred from the acquisition sites to the DAIC via dedicated 

servers, known as FIONA (Flash I/O Network Appliance) Big Data Network Appliances, 

provided to each scan site by the DAIC. Individual sites push data from their scanner to the local 

FIONA workstation using the DICOM standard. Data received by the FIONA are automatically 

checked for completeness and protocol compliance. Protocol compliance checks are performed 

to ensure that all required scans have been collected and that key parameters such as voxel 

size or repetition time match expected values for the given scanner. Using a secure web-based 

application (https://github.com/ABCD-STUDY/FIONASITE, 

https://scicrunch.org/resolver/SCR_016012) site personnel are able to 1) review data and 

protocol compliance checks on the FIONA; 2) link the study information to the centralized ABCD 
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database (REDCap, https://www.project-redcap.org) using anonymized identifiers as well as 

event-related information: and 3) initiate the transfer of data to the DAIC endpoint FIONA 

device. Data files for each imaging series are packaged separately as compressed archive files 

(tgz format). Sent along with the imaging data are metadata for each series contained in 

machine readable text files in JavaScript Object Notation (JSON) format together with md5sum 

hashes of the tgz files in order to verify the completeness and integrity of data transfer. 

After receipt of the imaging data by the DAIC centralized endpoint FIONA device, data 

are automatically copied to a network attached, high capacity storage device (Synology, 

Taiwan) using a nightly scheduled rsync operation. The contents of this device are automatically 

inventoried using the metadata-containing JSON files to categorize series into the different 

types of imaging series: T1w, T2w, dMRI, rs-fMRI, MID-task-fMRI, SST-task-fMRI, and EN-back-

task-fMRI. Missing data are identified by comparing the number of series received of each type 

to the number of series collected for a given subject, as entered into a REDCap database entry 

form by the site scan operators. The numbers of received and missing series of each type for 

each subject are added to the ABCD REDCap database. Using web-based REDCap reports, 

DAIC staff identify participants with missing data, and either request the data to be re-sent by 

acquisition sites or address technical problems preventing the data transfer. After receiving 

imaging data at the DAIC, the tgz files are extracted. For dMRI and fMRI exams collected on the 

GE platform prior to a software upgrade2, this step includes the offline reconstruction of 

multiband EPI data from raw k-space files into DICOM files, using software supplied by GE. 

                                                
2 Offline reconstruction of multiband data is required for GE scanners with software version DV25. 
Starting in September 2017, GE scanners at three ABCD sites were upgraded to software version DV26, 
supporting online reconstruction of multiband data and providing DICOM files. The remaining GE 
scanners at ABCD sites were upgraded to DV26 in September 2018. 
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sMRI Preprocessing 

T1w and T2w structural images are corrected for gradient nonlinearity distortions using 

scanner-specific, nonlinear transformations provided by MRI scanner manufacturers (Jovicich et 

al., 2006). T2w images are registered to T1w images using mutual information (Wells et al., 

1996) after coarse, rigid-body pre-alignment via within-modality registration to atlas brains. MR 

images are typically degraded by a smooth, spatially varying artifact (receive coil bias) that 

results in inconsistent intensity variations. Intensity inhomogeneity correction is performed by 

applying smoothly varying, estimated B1-bias fields, using a novel implementation that is similar 

in purpose to commonly used bias field correction methods (Ashburner and Friston, 2000; Sled 

et al., 1998). Specifically, B1-bias fields are estimated using sparse spatial smoothing and white 

matter segmentation, with the assumption of uniform T1w (or T2w) intensity values within white 

matter. To normalize T1w and T2w intensities across participants, a target white matter intensity 

value of 110 is used so that after bias correction, white matter voxel intensities are centered on 

that target value and all other voxels are scaled relatively. The value of 110 was chosen to 

match the white matter value assigned by the standard bias correction used by FreeSurfer. The 

white matter mask, defined using a fast, atlas-based, brain segmentation algorithm, is refined 

based on a neighborhood filter, in which outliers in intensity -- relative to their neighbors within 

the mask -- are excluded from the mask. A regularized linear inverse, implemented with an 

efficient sparse solver, is used to estimate the smoothly varying bias field. The stiffness of the 

smoothing constraint was optimized to be loose enough to accommodate the extreme variation 

in intensity that occurs due to proximity to the imaging coils, without overfitting local intensity 

variations in white matter. The bias field is estimated within a smoothed brain mask that is 

linearly interpolated to the edge of the volume in both directions along the inferior-superior axis, 

avoiding discontinuities in intensity between brain and neck. 
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Images are rigidly registered and resampled into alignment with a custom, in-house atlas 

brain that has 1.0 mm isotropic voxels and is roughly aligned with the anterior commissure / 

posterior commissure (AC/PC) axis, facilitating standardized viewing and analysis of brain 

structure. For most participants, a single scan of each type is collected. If multiple scans of a 

given type are obtained, only one is used for processing and analysis. Results of manual quality 

control (QC) performed prior to the full image processing are used to exclude poor quality 

structural scans (refer to the Quality Control section). If there is more than one acceptable scan 

of a given type, the scan with the fewest issues noted is used. In case of a tie, the final 

acceptable scan of the session is used. 

 

dMRI Preprocessing 

Eddy current correction (ECC) uses a model-based approach, predicting the pattern of 

distortions across the entire set of diffusion weighted volumes, based on diffusion gradient 

orientations and amplitudes, with corrections limited to displacement along the phase-encode 

direction (Zhuang et al., 2006) as a function of x-, y-, and z-position. With a total of 16 free 

parameters across the entire set of volumes, we model displacements in the phase encode 

direction as functions of spatial location, gradient orientation and strength, and frame number (to 

model a progressive drift observed in some scanners). For each slice of the dMRI volume, a 

robust tensor fit is calculated in which frames with high residual error -- e.g., signal drop-out in 

single slices caused by abrupt head motion -- are excluded from the standard linear estimation 

of tensor model parameters from log transformed images (Basser et al., 1994a). The root mean 

square (RMS) of the residual error for each frame of each slice is calculated across brain voxels 

and then normalized by the median RMS value across frames within a given slice. For a given 

slice, frames with normalized RMS greater than 3.2 are censored from subsequent tensor fits, 
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resulting in a tighter fit for the non-censored frames. A total of three iterations are sufficient to 

settle upon a stable tensor fit excluding outlier frames for a given slice. To prevent outlier frames 

from influencing the estimation of eddy current distortions, such frames are replaced (for a given 

slice) with the corresponding image synthesized from the censored tensor fit. ECC is optimized 

using Newton’s method through minimization of RMS error between each eddy-current-

corrected image and the corresponding image synthesized from the censored tensor fit, 

accounting for image contrast variation between frames. After applying corrections for the 

estimated distortions, we re-estimate the tensor, again excluding the outlier frames identified 

earlier, to produce a more accurate template for subsequent iterations of ECC, with five 

iterations in total. 

To correct images for head motion, we rigid-body-register each frame to the 

corresponding volume synthesized from the post-ECC censored tensor fit. We remove the 

influence of outlier frames from motion correction and future analysis by replacing those outlier 

frame images with values interpolated from the tensor fit calculated without their contribution. 

The diffusion gradient matrix is adjusted for head rotation, important for accurate model fitting 

and tractography (Hagler et al., 2009; Leemans and Jones, 2009). Mean head motion values 

(average FD) are calculated and made available for possible use as covariates in group-level 

statistical analyses to account for residual effects (Yendiki et al., 2013). 

Spatial and intensity distortions caused by B0 field inhomogeneity are minimized using a 

robust and accurate procedure for reducing spatial and intensity distortions in EPI images that 

relies on reversing phase-encode polarities (Andersson et al., 2003; Chang and Fitzpatrick, 

1992; Holland et al., 2010; Morgan et al., 2004). Pairs of b=0 (i.e., non-diffusion weighted) 

images with opposite phase encoding polarities (and thus opposite spatial and intensity 

distortion patterns) are aligned using a fast, nonlinear registration procedure, and the estimated 

displacement field volume is used to correct distortions in each frame (successive diffusion-

weighted volumes) (Holland et al., 2010). Gradient nonlinearity distortions are then corrected for 
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each frame (Jovicich et al., 2006). The b=0 dMRI images are registered to T1w structural 

images using mutual information (Wells et al., 1996) after coarse pre-alignment via within-

modality registration to atlas brains. dMRI images are then resampled with 1.7 mm isotropic 

resolution (equal to the dMRI acquisition resolution), with a fixed rotation and translation relative 

to the corresponding T1w image that has been rigidly resampled into alignment with an atlas 

brain. This provides a standard orientation for the resulting dMRI images, fitting the brain within 

the set of axial dMRI slices and producing more consistent diffusion orientations across 

participants, as viewed with diffusion encoded color (DEC) fractional anisotropy (FA) map 

images. The diffusion gradient matrix is again adjusted for head rotation. Cubic interpolation is 

used for each of these resampling steps. A registration matrix is provided to specify the rigid-

body transformation between dMRI and T1w images. 

 

fMRI Preprocessing 

Head motion is corrected by registering each frame to the first using AFNI’s 3dvolreg 

(Cox, 1996), which also provides estimates of head motion time courses that are incorporated 

into task-fMRI and resting-state-fMRI single-subject analyses (see below). B0 distortions are 

corrected using the same reversing polarity method used for the dMRI (Holland et al., 2010). To 

avoid signal “drop-out” due to within-voxel field gradients in gradient-echo acquisitions, the 

displacement field is estimated from separate spin-echo calibration scans, then adjusted for 

estimated between-scan head motion, and finally applied to the series of gradient-echo images. 

Images are next corrected for distortions due to gradient nonlinearities (Jovicich et al., 2006). 

Finally, all fMRI scans for a given participant’s imaging visit are resampled with cubic 

interpolation into alignment with each other, correcting between-scan motion, using a scan in 

the middle of the session as the reference. Automated registration between the spin-echo, B0 
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calibration scans (i.e., field maps) and T1w structural images is performed using mutual 

information (Wells et al., 1996) with coarse pre-alignment based on within-modality registration 

to atlas brains. A registration matrix is provided to specify the rigid-body transformation between 

fMRI and T1w images. The resulting fMRI images remain in “native-space” and have 2.4 mm 

isotropic resolution. 

  

Brain Segmentation 

Cortical surface reconstruction and subcortical segmentation are performed using 

FreeSurfer v5.3.0, which includes tools for estimation of various measures of brain 

morphometry and uses routinely acquired T1w MRI volumes (Dale et al., 1999; Dale and 

Sereno, 1993; Fischl and Dale, 2000; Fischl et al., 2001; Fischl et al., 2002; Fischl et al., 1999a; 

Fischl et al., 1999b; Fischl et al., 2004; Segonne et al., 2004; Segonne et al., 2007). The 

FreeSurfer package has been validated for use in children (Ghosh et al., 2010) and used 

successfully in large pediatric studies (Jernigan et al., 2016; Levman et al., 2017). Cortical 

surface reconstruction includes skull-stripping (Segonne et al., 2004), white matter 

segmentation, initial mesh creation (Dale et al., 1999), correction of topological defects (Fischl 

et al., 2001; Segonne et al., 2007), generation of optimal white and pial surfaces (Dale et al., 

1999; Dale and Sereno, 1993; Fischl and Dale, 2000), and nonlinear registration to a spherical 

surface-based atlas based on the alignment of sulcal/gyral patterns (Fischl et al., 1999b). 

Because intensity scaling and inhomogeneity correction are previously applied  (refer sMRI 

Preprocessing), the standard FreeSurfer pipeline was modified to bypass the initial intensity 

scaling and N3 intensity inhomogeneity correction (Sled et al., 1998). As of ABCD Data Release 

1.1, the T2w MRI volumes are not used in the cortical surface reconstruction and subcortical 

segmentation, but this may be incorporated in future releases. 
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Subcortical structures are labeled using an automated, atlas-based, volumetric 

segmentation procedure (Fischl et al., 2002) (Supp. Table 1). Labels for cortical gray matter and 

underlying white matter voxels are assigned based on surface-based nonlinear registration to 

the atlas based on cortical folding patterns (Fischl et al., 1999b) and Bayesian classification 

rules (Desikan et al., 2006; Fischl et al., 2004) (Supp. Table 2). Fuzzy-cluster parcellations 

based on genetic correlation of surface area are used to calculate averages of cortical surface 

measures for each parcel (Chen et al., 2012) (Supp. Table 3). Functionally-defined parcels, 

based on resting-state correlations in fMRI (Gordon et al., 2014), are resampled from atlas-

space to individual subject-space, and used for resting-state fMRI analysis (Supp. Table 4). 

Major white matter tracts are labelled using AtlasTrack, a probabilistic atlas-based 

method for automated segmentation of white matter fiber tracts (Hagler et al., 2009). The fiber 

atlas contains prior probabilities and orientation information for specific long-range projection 

fibers, including some additional fiber tracts not included in the original description (Hagler et al., 

2009), such as cortico-striate connections and inferior to superior frontal cortico-cortical 

connections (Supp. Table 5). sMRI images for each subject are nonlinearly registered to the 

atlas using discrete cosine transforms (DCT) (Friston et al., 1995), and diffusion tensor imaging 

(DTI)-derived diffusion orientations for each subject are compared to the atlas fiber orientations, 

refining the a priori tract location probabilities, individualizing the fiber tract ROIs, and minimizing 

the contribution from regions inconsistent with the atlas. Voxels containing primarily gray matter 

or cerebral spinal fluid, identified using FreeSurfer’s automated brain segmentation (Fischl et al., 

2002), are excluded from analysis. 
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sMRI Morphometric and Image Intensity Analysis 

Morphometric measures include cortical thickness (Fischl and Dale, 2000; Rimol et al., 

2010), area (Chen et al., 2012; Joyner et al., 2009), volume, and sulcal depth (Fischl et al., 

1999a). Image intensity measures include T1w, T2w, and T1w and T2w cortical contrast 

(normalized difference between gray and white matter intensity values) (Westlye et al., 2009). 

We sample intensity values at a distance of ±0.2 mm -- relative to the gray-white boundary -- 

along the normal vector at each surface location and calculate cortical contrast from gray and 

white matter values ( [white - gray] / [white  + gray] / 2). We calculate averages for each cortical 

parcel in the default FreeSurfer parcellation scheme (Desikan et al., 2006) using unsmoothed, 

surface-based maps of morphometric and image intensity measures. For each of the fuzzy-

cluster parcels (Chen et al., 2012), we calculate weighted averages (weighted by fuzzy cluster 

membership values ranging from 0 to 1) for each measure using smoothed surface maps (~66 

mm FWHM, matching the level of smoothing used for derivation of the fuzzy cluster parcels). 

We also calculate averages of the unsmoothed intensity measures for the volumetric subcortical 

ROIs, in addition to the volume of each structure. 

  

dMRI Microstructural Analysis 

We calculate several standard measures related to microstructural tissue properties 

using DTI (Basser et al., 1994b; Basser and Pierpaoli, 1996), including FA and mean, 

longitudinal (or axial), and transverse (or radial) diffusivity (MD, LD, and TD). Diffusion tensor 

parameters are calculated using a standard, linear estimation approach with log-transformed 

diffusion-weighted (DW) signals (Basser et al., 1994a). Frames with b>1000 are excluded from 

tensor fitting (leaving 6 directions with b=500, 15 directions with b=1000) so that the DTI-derived 

measures better correspond to those derived from traditional, single-b-value acquisitions (and 
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better correspond to the assumptions of the DTI model). Tensor matrices are diagonalized using 

singular value decomposition, obtaining three eigenvectors and three corresponding 

eigenvalues. FA is calculated from the eigenvalues, as described elsewhere (Basser and 

Pierpaoli, 1996). MD is calculated as the mean of the eigenvalues. LD is the first eigenvalue, 

and TD is the mean of the second and third eigenvalues (Alexander et al., 2007). 

Taking advantage of the multiple b-value acquisition, we also fit a Restriction Spectrum 

Imaging (RSI) model (White et al., 2013a; White et al., 2014; White et al., 2013b), a linear 

estimation approach that allows for mixtures of “restricted” and “hindered” diffusion within 

individual voxels . We use RSI to model two volume fractions, representing intracellular 

(restricted) and extracellular (hindered) diffusion, with separate fiber orientation density (FOD) 

functions, modeled as fourth order spherical harmonic functions, allowing for multiple diffusion 

orientations within a single voxel. For both fractions, LD is held constant, with a value of 1x10-3 

mm2/s. For the restricted fraction, TD is modelled as 0. For the hindered fraction, TD is modelled 

as 0.9 x 10-3 mm2/s. Measures derived from this RSI model fit (summarized in Supp. Table 6) 

include the following: restricted normalized isotropic (N0), restricted normalized directional (ND), 

restricted normalized total (NT), hindered normalized isotropic (N0_s2), hindered normalized 

directional (ND_s2), and hindered normalized total (NT_s2). Each of these measures is defined 

as the Euclidean norm (square root of the sum of squares) of the corresponding model 

coefficients divided by the norm of all model coefficients. These normalized RSI measures are 

unitless and range from 0 to 1. The square of each of these measures is equivalent to the signal 

fraction for their respective model components. N0 and NT_s2 are derived from the 0th order 

spherical harmonic coefficients of the restricted and hindered fractions, respectively, and reflect 

varying contributions of intracellular and extracellular spaces to isotropic diffusion-related signal 

decreases in a given voxel. ND and ND_s2 are calculated from norm of the 2nd and 4th order 

spherical harmonic coefficients of the restricted and hindered fractions, respectively. These 

higher order components reflect oriented diffusion; diffusion that is greater in one orientation 
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than others. Qualitatively, ND is very similar to FA, except that, by design, it is unaffected by 

crossing fibers. NT and NT_s2 reflect the overall contribution to diffusion signals of intracellular 

and extracellular spaces, and are calculated from the norm of the 0th, 2nd, and 4th order 

coefficients of the restricted and hindered fractions, respectively, again divided by the norm of 

all model coefficients. 

Mean DTI and RSI measures are calculated for white matter fiber tract ROIs created 

with AtlasTrack and for ROIs derived from FreeSurfer’s automated subcortical segmentation. 

With fiber tracts represented as thresholded probability maps, probability estimates are used to 

calculate weighted averages of DTI and RSI measures. DTI and RSI measures are also 

sampled onto the FreeSurfer-derived cortical surface mesh to make maps of diffusion properties 

for cortical gray matter and white matter adjacent to the cortex (Govindan et al., 2013; Kang et 

al., 2012) and calculate surface-based ROI averages. Values are sampled with linear 

interpolation perpendicular to the gray/white boundary (“white” surface) in 0.2 mm increments, 

ranging from 0.8-2 mm in both directions. White and gray matter values are calculated by 

combining samples within tissue type using a weighted average based on the proportion of 

white or gray matter in each voxel (Elman et al., 2017). For subcortical ROIs, contamination due 

to partial voluming in the ROI with CSF is suppressed by calculating weighted averages. 

Specifically, weighting factors for each voxel in the ROI are calculated based on the difference 

of MD values relative to the median within each ROI. The typical dispersion of MD values is 

defined for each ROI as the median absolute deviation from the median (MAD), averaged 

across subjects. Weighting factors are calculated using Tukey’s bisquare function such that 

lower weights are assigned to voxels with MD values farther from the median value, relative to 

the dispersion values multiplied by 4.7 (Tukey, 1960). 
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Task-fMRI Behavioral Measures 

Behavioral measures specific to each of the three tasks are calculated to assess the 

performance of the participant during the task and identify participants with poor accuracy or 

slow reaction times (Casey et al., 2018). For the MID task, there are three types of trials; 

participants have a chance to either win money, lose money, or earn nothing. Wins and losses 

are further subdivided into small and large magnitudes. After a short response time window, 

positive or negative feedback informs the participant about performance in each trial. The 

behavioral metrics for each type of MID trial are: the number of trials, mean and standard 

deviation (SD) of the reaction times to the different incentive magnitudes, and total monetary 

earning. For the SST, participants are asked to indicate by button press if the direction of an 

arrow presented is leftward or rightward during a short response time window; this is a Go trial. 

On some trials, a signal is subsequently presented to withhold the motor response, making it a 

Stop trial. The primary categories of trial-response combinations are “Correct Go”, “Incorrect 

Go”, “Correct Stop”, and “Incorrect Stop”. Additional, typically rare, categories are “Correct Late 

Go” (a “Late Go” response is defined as >1000 ms after arrow presentation), “Incorrect Late 

Go”, “Stop Signal Delay” (response during interval between arrow presentation and stop signal 

onset), and “No Response”. For each category, number of trials and mean and SD of the 

reaction times are provided. Additional metrics include mean stop signal delay and mean stop 

signal reaction time. The EN-Back task is a block design of 0-back and 2-back working memory 

tasks in which participants are asked to respond to emotionally positive, negative, or neutral 

faces, or to pictures of places. For each type of trial, behavioral metrics include: total number of 

trials presented, number of correct responses, and accuracy (number of correct responses 

divided by the total number of trials). The mean and SD of the reaction times for correct 

responses are also included. Following the imaging session, the EN-Back Recognition Memory 

task asks the participants to decide if the pictures presented were previously seen in the EN-
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Back task. For each stimulus type (old and new), hit rates and false alarm rates are calculated. 

In addition, relevant metrics including corrected accuracy, response bias and d-prime are 

computed. 

Task-fMRI Analysis 

Estimates of task-related activation strength are computed at the individual subject level 

using a general linear model (GLM) implemented in AFNI's 3dDeconvolve (Cox, 1996). Pre-

analysis processing steps, which are not part of the fMRI preprocessing, include the removal of 

initial frames3 to ensure equilibration of the T1w signal and normalization of voxel time series by 

the mean across time of each voxel. Nuisance regressors are included to model the baseline 

and quadratic trends in the time-series data. Motion estimates and their derivatives are also 

included as regressors (Power et al., 2014). Time points with FD greater than 0.9 mm are 

censored (Siegel et al., 2014). 

Prior to the use of motion estimates for regression and censoring, estimated motion time 

courses are temporally filtered using an infinite impulse response (IIR) notch filter, to attenuate 

signals in the range of 0.31 - 0.43 Hz. This frequency range corresponds to empirically 

observed oscillatory signals in the motion estimates that are linked to respiration and the 

dynamic changes in magnetic susceptibility due to movement of the lungs in the range of 18.6 - 

25.7 respirations / minute. With the removal of these fast oscillations linked to respiration, the 

filtered motion estimates and FD values more accurately reflect actual head motion (Fair et al., 

2018). 

                                                
3 A total of 16 initial frames (12.8 seconds) are discarded. On Siemens and Philips scanners, the first 
eight frames make up the pre-scan reference, and are not saved as DICOMS. An additional eight frames 
are discarded as part of the pre-analysis processing, for a total of 16 initial frames. On GE scanners with 
software version DV25, the first 12 frames make up the pre-scan reference. Instead of being discarded, 
those 12 reference scans are combined into one, and saved as the first frame, for a total of five initial 
frames to be discarded as part of the pre-analysis processing for GE DV25 series. On GE scanners with 
software version DV26, the pre-scan reference is not retained at all, and a total of 16 initial frames are 
discarded for GE DV26 scans as part of the pre-analysis processing. 
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Hemodynamic response functions are modelled with two parameters using a gamma 

variate basis function plus its temporal derivative (using AFNI's ‘SPMG’ option within 

3dDeconvolve). The MID analysis model includes cue-elicited anticipation of large and small 

rewards or losses, or no incentive and feedback for large and small wins and losses. Linear 

contrasts are computed for anticipation of large and small reward vs. no incentive, anticipation 

of large and small loss vs. no incentive, feedback of win vs. missed win, and feedback of loss 

vs. avoided loss (Supp. Table 7). The SST model includes predictors for successful go trials 

(“correct go”), failed go trials (“incorrect go”), successful stop trials (“correct stop”), and failed 

stop trials (“incorrect stop”). Contrasts computed include correct go vs. fixation, correct stop vs. 

correct go, incorrect stop vs. correct go, any stop vs. correct go, correct stop vs. incorrect stop, 

incorrect go vs. correct go, and incorrect go vs. incorrect stop (Supp. Table 8). The EN-back 

model includes predictors for each type of stimulus (i.e., place and emotional face) in each of 

the EN-back conditions (i.e., 0-back and 2-back) plus fixation. Linear contrasts are obtained for 

2-back vs. 0-back across stimulus types, emotional faces vs. places across memory loads, 2-

back vs. 0-back for each stimulus type, and each memory load and each stimulus type vs. 

fixation (Supp. Table 9). For MID and SST analyses, events are modeled as instantaneous; for 

EN-back, the duration of cues (~3 s) and trial blocks (~24 s) are modeled as square waves 

convolved with the two parameter gamma basis function (i.e., block duration specified when 

using AFNI's ‘SPMG’ option). 

GLM beta coefficients and standard errors of the mean (SEM; calculated from the ratio 

of the beta and t-statistic) for voxels containing cortical gray matter are sampled onto the 

surface, projecting 1 mm from the gray/white boundary (“white” surface) into cortical gray matter 

along the surface normal vector at each cortical surface mesh point, or vertex (using 

FreeSurfer’s mri_vol2surf with “-projdist 1” option and default “nearest” interpolation). For each 

linear contrast specified for a given task, average coefficients and standard errors are calculated 

for cortical surface-based ROIs using FreeSurfer's standard, anatomically-defined parcellation 
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(Desikan et al., 2006), as well as a functionally-defined parcellation based on resting-state 

functional connectivity patterns (Gordon et al., 2014). Averages are also calculated for 

subcortical ROIs (Fischl et al., 2002). ROI average beta coefficients and standard errors are 

computed for each of two runs. We compute the average across runs for each participant 

weighted by the nominal degrees of freedom (number of frames remaining after motion 

censoring minus number of model parameters, but not accounting for temporal autocorrelation), 

which differs between runs due to motion censoring. Runs with fewer than 50 degrees of 

freedom are excluded from the average between runs. 

The frequency and magnitude of head movements varies widely in children. Some 

participants exhibit frequent periods of motion resulting in a greatly reduced number of time 

points with which to estimate model parameters. Depending on when supra-threshold head 

movements (FD>0.9 mm) occur in relation to the instances of a given event type, rare 

conditions may be severely under-represented in some participants, or even lack representation 

entirely. For unrepresented conditions, beta and SEM values are undefined and shared as 

empty cells in the tabulated data. If conditions are under-represented, the design matrix of the 

GLM analysis becomes ill-conditioned, making the estimated beta weights unreliable for those 

event types and the contrasts that include them. In rare cases, this results in extreme values for 

the beta estimates, as much as several orders of magnitude different from typical beta values 

for a given contrast. The SEM is similarly increased in these cases. In the presence of extreme 

outliers, which violates standard parametric assumptions, group-level statistical analyses can 

produce invalid and nonsensical results. To prevent this, we censor the beta and SEM values if 

they are identified as having extremely high SEM values and therefore low reliability beta 

estimates. For a given subject with an extreme value for a particular contrast and ROI, there are 

typically outliers in other brain regions for the same subject and contrast and generally greater 

variation across brain regions. We censor the beta and SEM values for all ROIs for those 

contrasts that have root mean square (RMS) of SEM values across the brain greater than 5% 
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signal change. This represents less than 0.5% of all subject-task-contrast-run combinations. 

The censored values are replaced with empty cells. 

Resting-State fMRI Analysis 

Measures of functional connectivity are computed using a seed-based, correlational 

approach (Van Dijk et al., 2010), adapted for cortical surface-based analysis (Seibert and 

Brewer, 2011). Pre-analysis processing steps, which are not part of the fMRI preprocessing, 

include the removal of initial frames, normalization, regression, temporal filtering, and 

calculation of ROI-average time courses. After removing the initial frames2, we normalize voxel 

time series by the mean across time of each voxel and then use linear regression to remove 

quadratic trends, signals correlated with estimated motion time courses, and the mean time 

courses of cerebral white matter, ventricles, and whole brain, as well as their first derivatives 

(Power et al., 2014; Satterthwaite et al., 2012). The white matter, ventricle, and whole brain 

ROIs used to calculate mean time courses were derived from FreeSurfer’s automated brain 

segmentation (aseg), resampled into voxel-wise alignment with the fMRI data, and then eroded 

by a single fMRI-resolution voxel. Motion regression includes six parameters plus their 

derivatives and squares. Only frames with displacement (FD) below 0.3 mm are included in the 

regression (Power et al., 2014). This threshold is chosen only for the regression stage, and was 

viewed as a reasonable compromise, as ranges for FD thresholds for analysis stages might 

vary depending on the dataset. The analysis thresholds were set to FD < 0.2 mm (Power et al., 

2014). After regression, time courses are band-pass filtered between 0.009 and 0.08 Hz 

(Hallquist et al., 2013). As described above for task fMRI analysis, estimated motion time 

courses are temporally filtered to attenuate signals linked to respiration. 

Preprocessed time courses are sampled onto the cortical surface for each individual 

subject. Voxels containing cortical gray matter are sampled onto the surface in the same 
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manner as the task-fMRI data. Average time courses are calculated for cortical surface-based 

ROIs using FreeSurfer's standard, anatomically-defined parcellation (Desikan et al., 2006), as 

well as a functionally-defined parcellation based on resting-state functional connectivity patterns 

(Gordon et al., 2014), which are resampled from atlas-space to individual subject-space. 

Average time courses are also calculated for subcortical ROIs (Fischl et al., 2002). Variance 

across time is calculated for each ROI, a measure that reflects the magnitude of low frequency 

oscillations. 

We calculate correlation values for each pair of ROIs, which are Fisher transformed to z-

statistics and averaged within or between networks to provide summary measures of network 

correlation strength (Van Dijk et al., 2010). Within the Gordon parcellation, ROIs are grouped 

together into several networks (e.g., default, fronto-parietal, dorsal attention, etc.) (Gordon et al., 

2014) (Supp. Table 4). Average correlation within a network is calculated as the average of the 

Fisher-transformed correlations for each unique, pairwise combination of ROIs belonging to that 

network. Average correlation between one network and another is calculated similarly by 

averaging the correlations for each unique, pair-wise combination of ROIs in the first network 

with the ROIs in the second. In addition, we calculate the correlation between each network and 

each subcortical gray matter ROI by averaging the correlations between each ROI in the 

network and a given subcortical ROI. 

Motion censoring is used to reduce residual effects of head motion that may survive the 

pre-analysis regression (Power et al., 2012; Power et al., 2014). As noted above, time points 

with FD greater than 0.2 mm are excluded from the variance and correlation calculations. Time 

periods with fewer than five contiguous, sub-threshold time points are also excluded. The 

effects of head motion can potentially linger for several seconds after an abrupt head motion, for 

example due to spin-history or T1 relaxation effects (Friston et al., 1996), so an additional round 

of censoring is applied based on detecting time points that are outliers with respect to spatial 

variation across the brain. SD across ROIs is calculated for each time point, and outlier time 
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points, defined as having an SD value more than three times the median absolute deviation 

(MAD) below or above the median SD value, are excluded from variance and correlation 

calculations. 

  

Quality Control 

The DAIC in collaboration with ABCD partners are continually investigating ways to 

better curate these large datasets using enhanced QC procedures. This section is an overview 

of the QC procedures for ABCD Data Release 1.1. A detailed report of the ABCD QC 

procedures and an analysis of these QC metrics for the total baseline data (i.e., ABCD Data 

Release 2.0) is anticipated to be released in early 2019. 

Using a combination of automated and manual methods, we review datasets for 

problems such as incorrect acquisition parameters, imaging artifacts, or corrupted data files. 

Automated protocol compliance checks are performed by the on-site FIONA workstations, 

providing feedback to the scan operators before upload to the DAIC about the completeness of 

the dataset and the adherence to the intended imaging parameters. After receipt of the data at 

the DAIC, protocol compliance information is recreated and uploaded to the ABCD REDCap 

Database. Out-of-compliance series are reviewed by DAIC staff, and sites are contacted if 

corrective action is required. 

Protocol compliance criteria include whether key imaging parameters, such as voxel size 

or repetition time, match the expected values for a given scanner. For dMRI and fMRI series, 

the presence or absence of corresponding B0 distortion field map series is checked. Each 

imaging series is also checked for completeness to confirm that the number of files matches 

what was expected for each series on each scanner. Missing files are typically indicative of 

either an aborted scan or incomplete data transfer, of which the latter can usually be resolved 
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through re-initiating the data transfer. Errors in the unpacking and processing of the imaging 

data at various stages are tracked, allowing for an assessment of the number of failures at each 

stage and prioritization of efforts to resolve problems and prevent future errors. 

Automated quality control procedures include the calculation of metrics such as signal-

to-noise ratio (SNR) and head motion statistics. For sMRI series, metrics include mean and SD 

of brain values. For dMRI series, head motion is estimated by registering each frame to a 

corresponding image synthesized from a tensor fit, accounting for variation in image contrast 

across diffusion orientations (Hagler et al., 2009). Overall head motion is quantified as the 

average of estimated FD. Dark slices, an artifact indicative of abrupt head motion, are identified 

as outliers in the RMS difference between the original data and data synthesized from tensor 

fitting. The total numbers of the slices and frames affected by these motion artifacts are 

calculated for each dMRI series. For fMRI series, measures include mean FD, or frame-to-frame 

head motion, the number of seconds with FD less than 0.2, 0.3, or 0.4 mm (Power et al., 2012), 

and temporal SNR (tSNR) (Triantafyllou et al., 2005) computed after motion correction. 

Trained technicians visually review image series as part of our manual QC procedures, 

including T1w, T2w, dMRI, dMRI field maps, fMRI, and fMRI field maps. Reviewers inspect 

images for signs of artifacts and poor image quality, noting various imaging artifacts and 

flagging unacceptable data, typically those with the most severe artifacts or irregularities. 

Reviewers are shown several pre-rendered montages for each series, showing multiple slices 

and views of the first frame, and multiple frames of individual slices if applicable. For multi-frame 

images, linearly spaced subset of frames are shown as a 9x9 matrix of 81 frames. For dMRI 

and fMRI, derived images are also shown. For dMRI series, derived images include the average 

b=0 image, FA, MD, tensor fit residual error, and DEC FA map. For fMRI series, derived images 

include the average across time and the temporal SD (computed following motion correction). 

All series are consensus rated by two or more reviewers. In the case of a rejection, the reviewer 

is required to provide notes indicating the types of artifacts observed using a standard set of 
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abbreviations for commonly encountered artifacts. Series rejected based on data quality criteria 

are excluded from subsequent processing and analysis. 

To ensure the quality of derived measures, trained technicians additionally review post-

processed sMRI data to evaluate the accuracy of cortical surface reconstruction. For each 

cortical surface reconstruction, reviewers gauge the severity of five categories of image artifact 

or reconstruction inaccuracy: motion, intensity inhomogeneity, white matter underestimation, 

pial overestimation, and magnetic susceptibility artifact. Numeric values are assigned on a scale 

of 0-3, indicating absent, mild, moderate, and severe levels of each type of artifact, respectively. 

The reviewers assign an overall QC score indicating whether the cortical surface reconstruction 

is recommended for use (1) or recommended for exclusion (0). Exclusion is recommended if 

any of the five categories are rated as severe (a value of 3). 

For post-processed dMRI data, reviewers compare RSI-derived ND images (see dMRI 

Microstructural Analysis) to corresponding, co-registered T1w images, and rate each dMRI 

series along five dimensions of quality: residual B0 distortion, registration to the T1w image, 

image quality, segmentation integrity, and field of view (FOV) cutoff. For each, numeric values 

of 0-3 are assigned, indicating absent, mild, moderate, and severe. Residual distortion is 

assessed by looking for stretching or compression of white matter tracts in the ND image 

relative to the rigid-body co-registered T1w image, focusing on the corpus callosum and frontal 

lobe. Poor registration is rated on the basis of visible rotation or translation between the T1w and 

RSI-ND images. The image quality rating is based on the presence of banding, graininess, 

motion, artifacts, or poor gray/white contrast in the ND image. The automatic white matter tract 

segmentation is assessed for incompleteness, absence, or gross mis-location. FOV cutoff 

indicates clipping of the dorsal or ventral aspect of the cortex. Each dMRI series is then 

assigned an overall QC score of recommended for use (1) or recommended for exclusion (0). A 

series will be recommended for exclusion (QC score of 0) if B0 warp, registration, image quality, 
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or segmentation are rated as severe (a value of 3). While FOV cutoff is assessed, it is not used 

as a factor in deciding the overall QC score. 

For ABCD Data Release 1.1, only automated and manual QC of fMRI data was 

performed as detailed above. The DAIC and partners are currently investigating optimal post-

processed fMRI reviews, which would resemble in part the dMRI QC procedure. Further details 

will be provided with the full baseline release in ABCD Data Release 2.0. 

Data Sharing 

Public sharing of unprocessed, preprocessed, and derived imaging data is undertaken in 

partnership with the NDA. We have implemented methods and procedures for sharing of 

imaging data in the following three forms: DICOM files, preprocessed NIfTI files, and tabulated 

results of ROI-based analyses for each modality. Starting April 2017, DICOM files were made 

publicly available via a Fast Track mechanism. These DICOM files are released on NDA 

(https://data-archive.nimh.nih.gov/abcd) on a continual basis within approximately one month of 

data collection using the ABCD fast-track image sharing scripts 

(https://scicrunch.org/resolver/SCR_016021). DICOM files are arranged in BIDS directory 

format with folders of DICOM images per image series packaged in individual archive files (tgz) 

for each series. Metadata are included in the form of JSON-format text files, and task-fMRI 

series also include files containing stimulus and behavioral response timing information 

exported from the stimulus program (E-prime). A copy of the meta data is uploaded to NDA’s 

‘image03’ datatype to link information to non-imaging-based assessments for the same 

participants. 

In addition to the Fast Track data sharing, there are curated data releases that include 

results derived from imaging data using the processing pipeline described herein. The first of 

these curated data releases (ABCD Data Release 1.0) was made public on February 12, 2018 
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(https://data-archive.nimh.nih.gov/abcd). It is considered an "interim" release because it 

includes slightly less than half of the projected baseline sample. The second annual release 

(ABCD Data Release 2.0) includes the complete 2016-2018 baseline sample and is scheduled 

for mid-2019. As participants return every two years for successive waves of imaging, 

subsequent releases will include longitudinal data. Mid-year "patch" releases (e.g., ABCD Data 

Release 1.1) may also be shared as appropriate to address minor issues or salvage previously 

missing data. Descriptions of the specific changes between successive data releases will be 

included in comprehensive data release notes provided with each release. This manuscript 

documents the methods and data shared as part of the ABCD Data Release 1.1, available 

November 2018. 

Preprocessed imaging data, as described in the "preprocessing" sections above, are 

packaged in archive files (tgz) for each image series containing BIDS formatted directory trees 

and NIfTI format data files (software to share preprocessed data: 

https://scicrunch.org/resolver/SCR_016016; consistent with BIDS specifications version 1.1.1: 

http://bids.neuroimaging.io/bids_spec.pdf). Imaging metadata derived from the original DICOM 

files are packaged along with each preprocessed data series as JSON files. Additional dMRI-

specific information included diffusion gradients adjusted for head rotation (bvecs.txt), diffusion 

gradient strengths (bvals.txt), and a rigid-body transformation matrix specifying the registration 

between the dMRI image and the corresponding processed sMRI T1w image (stored in the 

JSON file). Additional fMRI-specific information includes estimated motion time courses and a 

rigid-body transformation matrix specifying the registration between the fMRI image and the T1w 

image (stored in the JSON file). For task-fMRI series, event timing information is included as 

tab-separated value (tsv) files. 

The results of additional processing and ROI analysis are shared in tabulated form to the 

NDA database (https://scicrunch.org/resolver/SCR_016010), from which users can export 

spreadsheet files (tsv). Tabulated results derived from sMRI image analysis include 
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morphometrics and image intensity measures, as well as quality control measures for 

FreeSurfer cortical surface reconstruction. Measures derived from dMRI include the results of 

DTI and RSI analyses, providing information about brain tissue microstructure. Resting-state 

fMRI-derived tabulated results include correlations within and between pre-defined cortical 

networks, average correlation between each network and each subcortical ROI, and the low 

frequency BOLD signal variance in each subcortical ROI (Fischl et al., 2002), Gordon parcel 

(Gordon et al., 2014), and standard FreeSurfer parcellation (Desikan et al., 2006). Also included 

are mean motion measures and the number of fMRI time points (TRs) before and after 

censoring of frames with excessive motion. For task-fMRI, beta and SEM values are averaged 

within ROIs and tabulated for each contrast for a given task, for run 1, run 2, and the average 

across runs. Also included are mean motion measures, the number of TRs before and after 

censoring, the number of degrees of freedom, and a comprehensive set of behavioral 

performance measures. 

Methods Sharing 

Because faithfully reproducing complex image processing methods and workflows based 

on published descriptions alone has become increasingly difficult, public sharing of methods is 

an integral part of the data sharing mission of the ABCD Study. We have packaged the 

processing pipeline described here within a portable container format (Docker container), which 

includes a lightweight, virtualized Linux environment, and the complete execution environment, 

including all required software dependencies. This stand-alone, platform-independent 

executable can be used in any Docker-enabled processing environment and is specifically 

designed to work with ABCD DICOM data shared via the Fast Track data sharing mechanism. 

Packaging the processing pipeline in this way eliminates the need to install third-party 

processing tools and libraries, enabling easy and generic installation on all systems and 
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removing hidden dependencies, and guarantees standardized processing workflows. For tools 

written with MATLAB, including those contained within MMPS, MATLAB functions were 

compiled and packaged with the MATLAB Compiler Runtime library. Because the executable 

Docker container contains third party software requiring licenses (i.e., FreeSurfer), users must 

supply a license file to be embedded in the local copy of the Docker container. Users may 

currently download a beta-testing version of the executable Docker container from NITRC 

(https://www.nitrc.org/projects/abcd_study). In the future, these tools will be made available 

through NDA with execution in the Amazon cloud. Also, a "Dockerfile", which is a text file 

specifying the contents of a Docker container, will be made available via GitHub 

(github.com/ABCD-STUDY), enabling automated download and installation of the software 

components. 

Discussion 

The ABCD Study will provide the most comprehensive longitudinal investigation to date 

of the neurobiological trajectories of brain and behavior development from late childhood 

through adolescence to early adulthood. There are many risk processes during adolescence 

that lead to chronic diseases in later life, including tobacco use, alcohol and illicit substance use, 

unsafe sex, obesity, sports injury and lack of physical activity (Patton et al., 2017). Furthermore, 

this developmental period can give rise to many common psychiatric conditions including 

anxiety disorders, bipolar disorder, depression, eating disorders, psychosis, and substance 

abuse (Hafner et al., 1989; Kessler et al., 2005). The ABCD Study is well-positioned to capture 

the behavioral and neurobiological changes taking place during healthy development, prodromal 

behavioral issues and antecedent neuroanatomical changes . Identifying neuropsychological, 

structural and functional measures as potential biomarkers of disorders may better inform the 

diagnosis and treatment of youth who present with early mental and physical health concerns.  
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Rigorous acquisition monitoring and uniform image processing of a large cohort of 

ethnically diverse young people regularly over adolescence is necessary to characterize subtle 

neuroanatomical and functional changes during such a plastic developmental period. Curated 

data releases providing canonical neuroimaging measures for this large dataset will enable the 

scientific community to test innumerable hypotheses related to brain and cognitive development. 

Meanwhile, the DAIC and ABCD collaborators will continue working to improve and extend the 

image processing pipeline, resulting in new and evolving imaging metrics to be evaluated for 

potential inclusion in future, curated data releases. Considering these novel metrics alongside 

canonical measurements provides the ability to compare and contrast new and existing 

analytical techniques. The capability to regularly reprocess all data for new analytic pipelines is 

made possible by the framework described in this manuscript. The intent is for the methods 

developed here to be shareable and deployable for other large scale neuroimaging studies. 

  

Limitations and Caveats 

On an ongoing basis, the Fast Track data sharing mechanism occurs shortly after data 

collection, without processing, quality control, or curation, and includes all ABCD imaging data 

available and permitted to be shared. Imaging series with the most severe artifacts or those with 

missing or corrupted DICOM files are excluded from subsequent processing, and so are not 

included in the preprocessed or tabulated data sharing. For a given modality, additional 

participants may be missing from the tabulated data due to failures in brain segmentation or 

modality-specific processing and analysis. However, successfully processed data with moderate 

imaging artifacts are included in the preprocessed and tabulated data sharing. This is necessary 

to enable certain studies, such as methodological investigations of the effect of imaging artifacts 

on derived measures. For most group analyses, we recommend excluding cases with significant 
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incidental findings, excessive motion, or other artifacts, and we provide a variety of QC-related 

metrics for use in applying sets of modality-specific, inclusion criteria (Supplemental Table 10; 

see NDA 1.1 Release Notes ABCD Imaging Instruments for additional details). Some 

researchers may wish to use this as a template for customized inclusion criteria that could 

include additional QC metrics or apply more conservative thresholds. 

While Fast Track provides early access to DICOM data, this comes with the caveat that 

users may process the data inappropriately, resulting in inaccurate or spurious findings. The 

purpose of the ABCD processing pipeline is to provide images and derived measures for 

curated releases using consensus-derived approaches for processing and analysis. We suggest 

that authors clearly state the version of the curated release used (e.g., DOI: 10.15154/1460410, 

ABCD Data Release 1.1, November 2018), as the processing pipeline is expected to change 

over time. Each new release will document changes and will include data provided in previous 

releases, reprocessed as necessary to maintain consistency within a particular release. 

Combining data between curated releases is not recommended. 

  

Future Directions 

Mirroring the general progression of neuroimaging processing tools and analysis 

methods in the field, the processing pipeline used for future ABCD data releases is expected to 

evolve over time. Other image analysis methods, either recently developed or soon to be 

developed, may better address particular issues, perhaps by providing superior correction of 

imaging artifacts, more accurate brain segmentation, or additional types of biologically relevant, 

imaging-derived measures. Alternative approaches for a given stage of processing or analysis 

will be compared using quantitative metrics of the reliability of the derived results. We seek to 
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enhance and augment ABCD image analysis over time by incorporating new methods and 

approaches as they are implemented and validated. 

To enable researchers to more easily take advantage of this data resource, the DAIC is 

providing a web-based tool called the ABCD Data Exploration and Analysis Portal (DEAP, part 

of the ABCD Data Release 2.0). This tool provides convenient access to the complete battery of 

ROI-based, multimodal imaging-derived measures as well as sophisticated statistical routines 

using generalized additive mixed models to analyze repeated measures and appropriately 

model the effects of site, scanner, family relatedness, and a range of demographic variables. 

Future releases will also support voxel-wise (volumetric) and vertex-wise (surface-based) 

analyses. 

As a ten-year longitudinal study with participants returning every two years for 

successive waves of imaging, future data releases will include multiple time points for each 

participant. All of the imaging-derived measures provided for the baseline time point will also be 

generated independently for each successive time point. In addition, within-subject, longitudinal 

analyses will provide more sensitive estimates of longitudinal change for some imaging 

measures.  For example, the FreeSurfer longitudinal processing stream reduces variability and 

increases sensitivity in the measurement of changes in cortical thickness and the volumes of 

subcortical structures. It does this by creating unbiased, within-subject templates and re-

initializing surface reconstruction and brain segmentation using consensus information (Reuter 

and Fischl, 2011; Reuter et al., 2010; Reuter et al., 2012). With this approach, the within-subject 

template would be recreated with each new time point and all longitudinal change estimates 

recomputed. Analyses of cortical and subcortical changes in volume with even greater 

sensitivity is available through Quantitative Analysis of Regional Change (QUARC) (Holland et 

al., 2009; Holland and Dale, 2011; Holland et al., 2012; Thompson and Holland, 2011). A 

diffusion-based variant of QUARC is also available for longitudinal analysis of dMRI data with 

improved sensitivity (Holland and Dale, 2011; McDonald et al., 2010). The goal of future 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/457739doi: bioRxiv preprint 

https://doi.org/10.1101/457739


Page 43 of 53 

development and testing will be to provide a collection of longitudinal change estimates for a 

variety of imaging-derived measures that are maximally sensitive to small changes, are 

unbiased with respect to the ordering of time points, and have a slope of one with respect to 

change estimated from time points processed independently. 

An important factor when analyzing multi-site and longitudinal imaging data is ensuring 

the comparability of images between scanners, referred to as data harmonization. Statistical 

harmonization procedures are presently available to correct for variations between scanners. 

For example, the unique identifier for each scanner (i.e., DeviceSerialNumber) can be used as a 

categorical covariate to account for potential differences between individual scanners in the 

mean value of a given measure (Brown et al., 2012). Recently, a genomic batch-effect 

correction tool has been proposed as a tool for data harmonization across multiple scanners for 

measures of cortical thickness (Fortin et al., 2017a) and diffusivity (Fortin et al., 2017b). This 

procedure can be applied to curated data releases by individual researchers or incorporated into 

the statistical manipulation front-end tool (DEAP, https://scicrunch.org/resolver/SCR_016158) if 

considered reliable and robust. Another harmonization approach attempts to retain site-specific 

features by generating study-specific atlases per scanner, which was shown to yield modest 

improvements in a longitudinal aging investigation (Erus et al., 2018). However, that particular 

study-specific approach is technically complicated and processor intensive for replication. For 

diffusion imaging, one promising approach uses rotation invariant spherical harmonics within a 

multimodal image registration framework (Mirzaalian et al., 2018). The DAIC is actively testing 

new approaches for harmonization of images prior to segmentation, parcellation, and DTI/RSI 

fitting to improve compatibility across sites and time. Over the coming years, the ABCD Study 

will incorporate refinements to these harmonization techniques and reprocess data from prior 

releases to reduce between-scanner differences. 
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Conclusion 

We have described the processing pipeline being used to generate the preprocessed 

imaging data and derived measures that were included in the ABCD Data Release made 

available October 2018 in a public data release through NDA (DOI: 10.15154/1460410, ABCD 

Data Release 1.1, October 2018; see https://data-archive.nimh.nih.gov/abcd). This resource 

includes multimodal imaging data, a comprehensive battery of behavioral assessments, and 

demographic information, on a group of 4,521 typically developing children between the ages of 

9 and 10. Neuroimaging-derived measures include morphometry, microstructure, functional 

associations, and task-related functional activations. This is the first of two years of baseline 

recruitment for this ten-year, longitudinal study of brain development and peri-adolescent health. 

Data collection for the second year of baseline recruitment will be completed in late 2018. 

Processed data and derived measures for the entire baseline sample, projected to be 

approximately 11,500 participants, will be included in ABCD Data Release 2.0, which will be 

made available mid-2019. When complete, the ABCD dataset will provide a remarkable 

opportunity to comprehensively study the relationships between brain and cognitive 

development, substance use and other experiences, and social, genetic, and environmental 

factors. It will allow the scientific community to address many important questions about brain 

and behavioral development and about the genetic architecture of neural and other behaviorally 

relevant phenotypes. The processing pipeline we have described provides a comprehensive 

battery of multimodal imaging-derived measures. The processing methods include corrections 

for various distortions, head motion in dMRI and fMRI images, and intensity inhomogeneity in 

structural images. Collectively, these corrections are designed to reduce variance of estimated 

change (Holland et al., 2010), increase the accuracy of registration between modalities, and 

improve the accuracy of brain segmentation and cortical surface reconstruction. 
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Figure Legends 

Figure 1. Overview of processing pipeline steps. 

Figure 2. Modality-specific processing steps for bias field, distortion, and/or motion correction. 

Figure 3. Diagram of processing pipeline input and outputs.  
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