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Pitting corrosion can lead to critical failures of infrastructure elements. *erefore, accurate detection of corroded areas is crucial
during the phase of structural health monitoring. *is study aims at developing a computer vision and data-driven method for
automatic detection of pitting corrosion. *e proposed method is an integration of the history-based adaptive differential
evolution with linear population size reduction (LSHADE), image processing techniques, and the support vector machine (SVM).
*e implementation of the LSHADE metaheuristic in this research is multifold. *is optimization algorithm is employed in the
task of multilevel image thresholding to extract regions of interest from the metal surface. Image texture analysis methods of
statistical measurements of color channels, gray-level co-occurrence matrix, and local binary pattern are used to compute
numerical features subsequently employed by the SVM-based pattern recognition phase. In addition, the LSHADE metaheuristic
is also used to optimize the hyperparameters of the machine-learning approach. Experimental results supported by statistical test
points out that the newly developed approach can attain a good predictive result with classification accurate rate� 91.80%,
precision� 0.91, recall� 0.94, negative predictive value� 0.93, and F1 score� 0.92. *us, the newly developed method can be a
promising tool to be used in a periodic structural health survey.

1. Introduction

Currently, ageing infrastructure elements with constraints
on maintenance budgets are the main concern of infra-
structure management agencies around the world. *ese
facts urge the implementation of smart and cost-effective
methods in the field of structure health monitoring [1–7].
Typical objectives of structure health monitoring include the
correct recognition of the presence, the location, and the
type of the structural defects. *ese pieces of information
can be then used by various assessment models to support
decisions on rehabilitation options to maximize the service
life of infrastructure elements [8, 9].

For metal infrastructure elements, corrosion negatively
affects their durability and operability. It is reported that
corrosion is a dominant form of defects with 42% of

frequency of failure mechanisms in engineering structures
[10]. *erefore, recognition as well as diagnostics of cor-
roded areas is an important task in periodic structural heath
surveys [11, 12]. *e surveys’ outcome significantly helps
owners or maintenance agencies to judge the effectiveness of
the currently employed protection methods and to prioritize
rectifying measures [13, 14].

Particularly, pitting corrosion, recognized by isolated
corroded damage units within the metal surface, is a severe
type of structural defect [3, 13]. *is defect appears on the
surface of various civil engineering structures including
bridges, high-rise buildings, pipelines, and storage tanks (see
Figure 1). Pitting corrosion is generally more harmful than
uniform corrosion since it is hard to detect and predict, as well
as design against its damages [15]. *is localized corrosion
damages may have diverse shapes (often hemispherical or
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cup-shaped).Moreover, pits can be covered by amembrane of
corrosion products.

If left undetected, pitting corrosion can lead to cata-
strophic failure of civil engineering structures. It is because
this kind of damage only causes small loss of material with
insignificant effect on its surface, while it can bring about
extremely dangerous damages to deep areas of structures
below the tiny pits. One example of the devastating effect of
pitting corrosion is the explosion caused by gasoline fumes
leaking from a steel gasoline pipe in Guadalajara (Mexico)
on April 22, 1992; this accident caused the deaths of 12
people [10, 16]. Pitting corrosion is also the cause of the
deadly collapse of the U.S. Highway 35 bridge in 1967 within
which 46 people died [17]. On 04/22/1992, a gas explosion in
Guadalajara (Spain) is believed to be brought about by
pitting corrosion appeared on gas pipes [10]; this event
caused the deaths of 252 people and injuries of about 1,500
people [10].

In Vietnam, as well as in many other nations, surveying
infrastructure elements is usually performed manually by
human inspectors. Although the manual method can help to
attain accurate detection results, its notable downsides are
low productivity and effects of subjective criteria [14]. *ese
are due to the time-consuming processes of measurement
and data report as well as inconsistent experience/assess-
ment of surveyors. Moreover, the sheer number of existing
structure elements creates a significant challenge to human
inspectors to perform surveying works frequently and detect
structural damage timely.*erefore, automatic approach for
pitting corrosion detection is an urgent need of infra-
structure management agencies.

Accordingly, this study aims at constructing an intelli-
gent method for automatic recognition of metallic surface
area subject to pitting corrosion. *e newly constructed
model is an integration of metaheuristic, image processing
techniques, and machine learning. *e History-Based
Adaptive Differential Evolution with Linear Population Size
Reduction (LSHADE) metaheuristic approach is employed
for multileveling image thresholding as well as optimizing
the performance of the Support Vector Machine- (SVM-)
based data classifier. *e LSHADE optimized multileveling
image thresholding supported by the connected component
labeling algorithm is used to extract the region of interest
(ROI) from image samples. Based on the extracted ROI,
texture information including statistical measurements of
color channels, gray-level co-occurrence matrix, and local
binary pattern is used to characterize properties of the metal

surface. *e SVM relies on the texture information to
separate input samples into two categories of nonpitting
corrosion (the negative class) and pitting corrosion (the
positive class). A dataset consisting of 213 image samples has
been collected to train and verify the proposed integrated
model.

Furthermore, the model training phase of the SVM
necessitates an appropriate setting of its hyperparameters
including the penalty coefficient and the kernel function
parameter. *e task of determining such hyperparameters
is generally regarded as the model selection problem [18].
*is is a crucial task in machine learning because hyper-
parameters strongly influence the generalization capability
of prediction models [19–21]. A poor model selection may
either result in an overfitted or underfitted model. *e
model selection can be a challenging task because hyper-
parameters are often searched in continuous domains
[22–25].

Accordingly, there are infinite possible solutions to the
model selection problem and an exhaustive search to de-
termine the optimal set of hyperparameters is infeasible.
*erefore, metaheuristic can be utilized to tackle the model
selection task [26]. Metaheuristic is regarded as a high-level
heuristic designed to seek for a sufficiently good solution to a
global optimization problem. *is advanced method gen-
erally does not require assumptions regarding the optimi-
zation task being solved and can be applied to a wide range of
problems [27–31]. Metaheuristics have been demonstrated
to be capable optimization methods which can help to
identify solutions with quality superior to conventional
methods (e.g., iterative algorithms and gradient descent-
based algorithms) [32–34]. With this motivation, this study
employs the LSHADE algorithm [35], a state-of-the-art
metaheuristic to optimize the SVMmodel performance. *e
LSHADE is selected in this study due to its outstanding
performance reported in recent works [36–38].

In summary, the main contributions of the current study
can be stated as follows. (1) A novel integrated framework
based on image processing techniques, metaheuristic opti-
mization, and machine-learning prediction for pitting
corrosion is proposed. (2) An autonomous model operation
is achieved by means of the LSHADE metaheuristic which
minimizes human’s efforts for model construction and
parameter tuning. (3) An integrated approach of the
LSHADE and SVM algorithms is proposed for achieving
better corrosion detection accuracy compared to benchmark
machine-learning models.

(a) (b) (c)

Figure 1: Pitting corrosion found in (a) bridge structure, (b) pipeline, and (c) cladding structure.
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*e rest of the paper is organized as follows: Section 2
reviews the research method; Section 4 is dedicated to de-
scribing the newly developed model which employs the
aforementioned methods of the LSHADE, multilevel image
thresholding, image texture computation, and SVM; Section
5 reports the experimental results, followed by Section 6
which summarizes this study with several concluding
remarks.

2. Related Works

Among various methods of automatic structural health
monitoring, image processing-based visual inspection is
commonly employed due to the available of low-cost
digital cameras and a fast advance of computer vision
techniques. Choi and Kim [39] relies on attributes (color,
texture, and shape) extracted from digital images. In ad-
dition, data dimensionality reduction and linear classifiers
are employed to identify corrode areas from metal surface
[39]. However, due to the complexity of the problem of
interest, the accuracy of the aforementioned detection
model can be enhanced with nonlinear and more so-
phisticated data classification approaches. Valor et al. [12]
constructed Markov chain models for stochastic modeling
of pitting corrosion appearing on metallic structures.
Medeiros et al. [40] demonstrated the effectiveness of the
gray level co-occurrence matrix and color descriptors in
classification of corroded and noncorroded surfaces. High
dynamic range imaging is used in [3] for the recognition of
pitting corrosion via visual inspection [3].

Chen et al. [41] employed Fourier-transform-based and
color image processing methods for recognition of defects
on the steel bridge surface. Ji et al. [42] put forward a
computer vision-based method for rating of corrosion de-
fects on coated materials using the watershed segmentation
method. Shen et al. [43] established an automatic method for
detecting steel bridge coating rust defect based on image
texture analysis and discrete Fourier transform. Jahanshahi
and Masri [44] investigated the influence of color space,
color channels, and subimage block size on corrosion de-
tection capability. *is model also employed color wavelet-
based texture analysis algorithms for recognition of defective
areas [44].

A digital image processing method based on the K-means
clustering algorithm, the double-center-double-radius algo-
rithm, and the least-square support vector machine has been
used by Liao and Lee [45] to detect rust defects on steel bridge
coatings. Liao and Cheng [46] relied on the least-square
support vector machine, spectral power distribution, spectral
reflectance, and matrix restoration to detect discoloration
status of a steel bridge coating. Amodel used for detection and
assessment of corrosion on pipelines through image filtering
and morphological operations has been constructed by
Bondada et al. [13]. Enikeev et al. [14] utilized the linear
support vector machine method for recognizing pitting
corrosion on aluminum surfaces. Zhao et al. [47] employed
deep-learning and artificial bee colony algorithm to identify
material corrosion. Zhang et al. [48] put forward a seg-
mentation process for detecting localized corrosion on the

rust-removed metallic surface using deep-learning technique.
Ivasenko and Chervatyuk [49] propose an image processing-
based method for segmentation of rusted areas on painted
construction surfaces. Based on a recent review work carried
out by Ahuja and Shukla [50], there is an increasing trend of
applying image processing techniques for automatic corro-
sion detection; this work also points out a great potentiality of
machine learning for corrosion recognition performed on
large area. Following this trend of research, the current study
proposes a novel approach for automatic detection of pitting
corrosion. *e proposed method is an integration of image
processing techniques, metaheuristic optimization, and ma-
chine-learning-based pattern recognition. *e individual
components needed to establish the newly developed model
for pitting corrosion detection are presented in the subse-
quent section of the article.

3. Research Method

3.1. Multilevel Image (resholding. In the field of image
processing, multilevel thresholding of a gray image is a
widely utilized method for coping with a variety of computer
vision tasks including feature extraction, object detection,
and image analysis [51–55]. Particularly for multilevel
thresholding, the image histogram is first computed. Based
on this histogram, the gray levels of an image are categorized
into multiple clusters based on a set of thresholds. To de-
termine such thresholds appropriately, the Otsu criterion,
formulated by Otsu [56], that relies on the maximization of
between-class variance approach can be used due to its ease
of implementation simplicity and good image segmentation
performance [57–59]. Since the computation of the
threshold values based on the Otsu criterion is a compu-
tationally expensive image processing operation, meta-
heuristic approaches are often employed [60, 61].

Given a digital image in L gray levels 0, 1, . . ., L− 1, its
histogram H�H � f0, f1, . . . , fL−1{ } can be constructed.
Herein, fi denotes the occurrence frequency of gray level i.
Let N � ∑L−1i�0 fi represent the total number of pixels in the

image; the ith gray level occurrence probability is computed
as follows:

pi �
fi
N
. (1)

*eobjective is to segment the image of interest intoK+1
clusters (C0, C1, . . .., Ck, . . ., CK) using K thresholds chosen
from the set T�T � t0, t1, . . . , tk, . . . , tK{ }, where 0≤ tk≤ L.
Ck denotes a set of gray levels. For each cluster Ck, the
cumulative probability wk and mean gray level ηk can be
obtained via

wk � ∑
i∈Ck

pi,

ηk � ∑
i∈Ck

i × pi
wk

, where k ∈ 0, 1, . . . , K{ }.

(2)

*e mean intensity ηT of the whole image and the be-
tween-class variance σ2B are computed as follows [59]:
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ηT � ∑K
k�0

wk × ηk � ∑L−1
i�0

i × pi,

σ2B � ∑K
k�0

wk × ηk − ηT( )2 � w0 × η0 − ηT( )2 + w1

× η1 − ηT( )2 + · · · + wK × ηK − ηT( )2.
(3)

It is noted that the threshold levels for a given number of
clusters are determined based on maximizing the separation
between cluster means. *us, the optimal thresholding
values can be attained by maximizing the between-class
variances mathematically stated as follows:

t
Op
1 , t

Op
2 , . . . , t

Op
K( ) � argmax

t1 ,t1 ,...,tK( )∈K
σ2B t1, t1, . . . , tK( ){ }. (4)

3.2. Connected Component Labeling (CCL). Connected
component labeling (CCL) is an operation on a binary image.
*is method analyzes the binary-1 pixels and divides the
binary image into distinctive component regions [62–64].*e
CCL is often followed by further property measurement
operations on each region [57, 65]. In essence, the CCL al-
gorithm carries out the unit change from individual pixel to
region; all pixels having value binary 1 and are connected to
each other are grouped into one cluster [64]. In this study, the
iterative algorithm proposed by Haralick [66] is employed for
performing CCL. *is method is selected due to its simplicity
and the fact that it does not require auxiliary storage to yield
the labeled image from the binary image. *e iterative al-
gorithm includes an initialization step and a sequence of top-
down label propagation followed by bottom-up label prop-
agation repeated until no label changes is observed.

3.3. Image Texture Analysis. In the field of computer vision,
an image texture is commonly regarded as a set ofmetrics used
to quantify the perceived texture or regional characteristic of
an image [64]. *is set of metrics provides information re-
garding the spatial arrangement of color intensity in an image
sample. Image textures can express intuitive quantities of the
surface image including the degrees of roughness and
smoothness. Due to such reasons, image texture analysis can
be highly useful for pitting corrosion recognition.

3.3.1. Measurement of Statistical Properties of Color
Channels. Since corrosion often results in areas on the metal
surface with distorted color, using the statistical properties of
image color channels (red, green, and blue) can be helpful
for the task of interest. Let I be a variable that denotes the
gray levels of an image sample. *e first-order histogram
P(I) is obtained as follows [67]:

Pc(I) �
NI,c

W ×H
, (5)

where c denotes a color channel, NI,c is the number of pixels
having intensity value I, and H and W are the height and
width of the image sample, respectively.

Accordingly, the mean (μc), standard deviation (σc),
skewness (Sc), kurtosis (Kc), entropy (Ec), and range (Rc) of
color channel are given as follows [68]:

μc � ∑NL−1
i�0

Ii,c × Pc(I),

σc �

�������������������
∑NL−1
i�0

Ii,c − μc( )2 × Pc(I)
√√

,

Sc �
∑NL−1i�0 Ii,c − μc( )3 × Pc(I)

σ3c
,

ηc �
∑NL−1i�0 Ii,c − μc( )4 × Pc(I)

σ4c
,

Kc � − ∑NL−1
i�0

Pc(I) × log2 Pc(I)( ),
Rc � Max Ic( ) −Min Ic( ),

(6)

where since the image samples are 8 bit, NL� 256 denotes
the number of discrete intensity values.

3.3.2. Gray-Level Co-Occurrence Matrix (GLCM).
Properties extracted from the Gray-Level Co-Occurrence
Matrix (GLCM) [69, 70] are highly effective for texture
discrimination. *is method aims at analyzing the repeated
occurrence of certain gray-level patterns existing in an image
texture. *erefore, it can be used to assess the coarseness of
image regions [67, 71]. Let r and θ denote a distance and a
rotation relationship between two pixels. *e GLCM,
denoted as Pδ, represents a probability of the two gray levels
of i and j having the relationship specifying by r and θ.

As suggested by Haralick et al. [69], four GLCMs with
r� 1 and θ� 0o, 45o, 90o, and 135o can be used to charac-
terize an image texture. Accordingly, the measurements of
angular second moment (AM), contrast (CO), correlation
(CR), and entropy (ET) can be computed and employed for
texture discrimination [69, 72]:

AM �∑Ng

i�1

∑Ng

j�1

PNδ (i, j)
2,

CO � ∑Ng−1

k�0

k2 ∑Ng

i�1

|i−j|�k

∑Ng

j�1

PNδ (i, j),

CR �
∑Ng

i�1∑Ng

j�1 i × j × P
N
δ (i, j) − μXμY

σXσY
,

ET � −∑Ng

i�1

∑Ng

j�1

PNδ (i, j)log P
N
δ (i, j)( ),

(7)
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whereNg is the number of gray level values; μX, μY, σX, and
σY denote the means and standard deviations of the mar-
ginal distribution associated with PNδ (i, j) [69].

3.3.3. Local Binary Pattern (LBP). Local Binary Patterns
(LBP), proposed by [73, 74], is a nonparametric approach
used to summarize local structures of an image sample. *is
approach essentially compares each pixel with its neigh-
boring ones. *e notable advantages of the LBP are its
computational efficiency and tolerance of monotonic illu-
mination variations [75]. *is image processing technique
has been applied successfully for analyzing texture and has
also been extended to be applied in various computer vision
tasks face image analysis [76–78], image and video retrieval
[79], visual inspection [80], remote sensing [81], and human
action recognition [82].

*e LBP algorithm labels the pixels of an image sample
with LBP codes, which expresses the local structure
around each pixel of interest. *e size of the neighboring
pixels is usually 3 × 3. Accordingly, the center pixel is
compared with its eight neighbors. *e neighboring pixel
is coded as 1 if its gray intensity is greater than that of the
center pixel. Otherwise, neighboring pixel is coded as 0.
Given a center pixel at xc and yc, its LBP can be obtained as
follows [75]:

LBP xc, yc( ) � ∑p−1
p�0

s ip − ic( ) × 2p, (8)

where ic and ip denote gray intensities of the center pixel and
its neighboring pixels. s(x) is 1 if x≥ 0 and 0 if x< 0.

3.4. Support Vector Machine (SVM) for Pattern Recognition.
*e Support Vector Machine (SVM), formulated by Vapnik
[83], is a powerful method for solving nonlinear and
complex pattern recognition tasks. *is machine-learning
approach relies on the concept of structural risk minimi-
zation to construct the decision hyperplane that classifies
data into distinctive groups.*erefore, the SVM is less prone
to overfitting than other machine-learning methods such as
neural networks which are relied on the theory of empirical
risk minimization [18, 84]. Notably, to deal with noisy data
as well as nonlinear separability problems, the SVM employs
the framework of maximummargin construction and kernel
tricks [22, 85–87]. In addition, the learning phase of a SVM
model used for data classification is formulated as to solving
a convex optimization problem (i.e., a quadratic program-
ming problem); this fact ensures a global convergence of the
model training phase [18].

Given a training dataset xk, yk{ }Nk�1 with a vector xk ∈ Rn
representing image texture information and a scalar
yk ∈ −1,+1{ }, denoting the class labels (either nonpitting
corrosion or pitting corrosion), a SVM model constructs a
decision boundary expressed in the form of a hyperplane to
separate the data samples into two categories. To do so, it is
required to solving a nonlinear programming problem
described as follows [88–90]:

Maximize Jp(w, e) �
1

2
wTw + c

1

2
∑N
k�1

e2k

s.t. yk w
Tϕ xk( ) + b( )≥ 1 − ek, k � 1, . . . , N, ek ≥ 0,

(9)
where w ∈ Rn denotes a normal vector to the classification
hyperplane and b ∈R is the model bias; ek > 0 represents slack
variables; c denotes a penalty constant; and ϕ(x) is the
employed nonlinear data mapping function.

Notably, an explicit expression of the data mapping
function ϕ(x) is not required. *e model training and
prediction phases only necessitate the product of ϕ(x) in the
input space which is called a Kernel function:

K xk, xl( ) � ϕ xk( )Tϕ xl( ). (10)

*e Radial Basis Function Kernel (RBFK) is often used
for nonlinear data classification:

K xk, xl( ) � exp −
xk − xl




 



2

2σ2
 , (11)

where σ denotes a model hyperparameter which needs to be
specified by the user.

Accordingly, the final SVM model used for pitting
corrosion is given by

y xl( ) � sign ∑SV
k�1

αkykK xk, xl( ) + b , (12)

where αk represents the solution of the dual form of the
abovementioned nonlinear programming problem and SV
denotes the number of support vectors found by the model
training phase.

3.5. (e History-Based Adaptive Differential Evolution with
Linear Population Size Reduction (LSHADE). *e History-
Based Adaptive Differential Evolution with Linear Pop-
ulation Size Reduction (LSHADE), proposed in [35, 91], is a
popular variant of the standard Differential Evolution (DE)
[92]. *e LSHADE inherits the integrated mutation-cross-
over operation of the DE used for exploring and exploiting
the search space. Tanabe and Fukunaga [91] also enhances
the searching capability of the standard optimization al-
gorithm by a novel adaptive strategy used for fine-tuning the
mutation scale (F) and the crossover probability (CR) co-
efficients which are the two crucial hyperparameters of the
DE. *is adaptive strategy is based on a record of successful
population members. In addition, to improve the mutation
operator, a method called DE/current-to-pbest/1 is imple-
mented. Finally, for meliorating enhance convergence rate of
the LSHADE, a population size shrinking schedule is
implemented. Due to such advantages, superior perfor-
mance of the LSHADE algorithm has been reported in
various comparative studies [36, 93–95].

*e overall structure of the LSHADE metaheuristic
method is illustrated in Figure 2. Given the searched domain
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(lower and upper boundaries), the number of decision
variable, and the population size (PS), a population of PS
members is randomly generated within the searched do-
main. *e DE/current-to-pbest/1 and the crossover opera-
tions are used to generate a new candidate solution via the
creations of mutated solution (vi,g+1) and trial solution
(ui,g+1) [35, 91]:

vi,g+1 � xi,g + Fi xr1,g − xr2,g( ) + Fi xpbest,g − xi,g( ),
uj,i,g+1 �

vj,i,g+1, if randj ≤Cr or j � rnb(i),
xj,i,g, if randj >Cr and j≠ rnb(i),

 (13)

where xpbset,g denotes the best found solution at gth gen-
eration and rand represents a uniform random number
ranging between 0 and 1.

Based on the fitness value of the trial solution and its
corresponding parent, a selection operation is performed to
preserve better solution and cast out the worse. Moreover,
the LSHADE relies on two archives of MF and MCR which
record the mean values of the mutation scale and the
crossover probability. To update these mean values, the two
sets of SF and SCR storing all CR and F values of successful
child solutions are used. Furthermore, at the end of each
generation, the population size gets shrunk by casting out
inferior population members to enhance the algorithm
convergence speed [35, 96].

4. The Proposed Metaheuristic Optimized
Image Processing and Machine-Learning
Method for Automatic Pitting
Corrosion Detection

*is section of the article aims at describing the structure of
the proposed metaheuristic optimized image processing and
machine-learning method for automatic recognition of
pitting corrosion. *e overall structure of the proposed
model is presented in Figure 3 which can be divided into
several steps.

4.1. Image Sample Preparation. In the first step, to construct
the SVMmachine-learning model used for pitting corrosion
recognition, the set of image samples capturing the texture of

metal structures must be prepared. *is image set includes
samples which contain pitting corrosion and samples
without such defect. Based on the collected image samples,
regions of interest are extracted within which areas on
metal surfaces having distorted color are identified. During
field trips in Danang city (Vietnam), 120 image samples
containing pitting corrosion (the positive class) have been
attained and labeled by human inspectors. It is noted that
one image samples may have multiple areas of pitting
corrosion. Accordingly, the number of extracted regions of
interest that belongs to the positive class is 124. To guar-
antee a balanced dataset, the number of the negative
(without pitting corrosion) data samples should also be
124. *erefore, a set of 93 image samples with no pitting
corrosion areas has been included in this study. *ese 93
image samples have been used to extract 124 regions of
interest belonging to the negative class. To train and test the
proposed machine-learning model used for pitting cor-
rosion detection, the collected dataset has been divided into
two subsets of training (90%) and testing (10%) datasets.
*e training set is utilized for model construction and
testing set is reserved for verifying the model predictive
capability.

It is proper to note that ground truth labels of data
samples have been determined by human inspectors. Herein,
the label�−1 means the negative class and the label� 1
denotes a positive class. *e collected images in this study
have been taken by the Cannon EOS M10 (CMOS 18.0 MP)
and Nokia 7.2 (48 MPmain sensor). To enhance the speed of
the texture computation phase and to ensure the consistency
of an image region, the image size has been set to be 64× 64
pixels. *e image samples are illustrated in Figure 4. Ad-
ditionally, to better cope with the diversity of the metal
surface, the negative class of nonpitting corrosion deliber-
ately includes samples of intact surfaces and stains.

4.2. Extraction of Region of Interest (ROI). Since an area
subject to pitting corrosion can have a diverse form of
shape, it is necessary to automatically identify the ROI that
covers this area. Image texture of this ROI can be subse-
quently computed and used for pitting corrosion detection.
*is study proposes a novel integration of metaheuristic
optimized multilevel image thresholding, morphological

LSHADE 
population 

DE/current-to-pbest/1 
Mutation operation

g < MaxG
Crossover 
operation

Population size 
reduction

Selection 
operation

Optimization 
result

No

g = 0
Yes

g = g + 1

Note:
g is the current generation
MaxG denotes the maximum number of 
generations

Figure 2: *e operational flow of the LSHADE algorithm.
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(a)

Figure 4: Continued.
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initialization

g = 0

Training and data classification phases

Model 1 Model 2 Model K

SVM training 

SVM classification 

SVM training 

SVM classification 

SVM training 

SVM classification 

Cost Function 
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Stopping 
condition 
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model
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search
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g = g + 1
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corrosion
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computation

Local binary pattern
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Satisfied

Unsatisfied
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Region of interest 
extraction

Metaheuristic-based 
image thresholding

Connected component 
labeling operation

Properties of color 
channels

Testing images

Figure 3: *e LSHADE optimized image processing and machine learning for pitting corrosion detection.
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operation, and other image processing techniques to de-
termine the ROI from images of the metal surface.

*e whole process of ROI extraction is presented in
Algorithm 1. *e first step is to smooth the image sample by
removing noise; a median filter with window size of 7× 7 is
implemented. *e color image is then converted to its
corresponding gray-scale one. Based on this gray-scale
image, the multilevel image thresholding with the afore-
mentioned Otsu objective function is carried out. Based on
several trial-and-error experiments with the collected im-
ages, the appropriate number of pixel groups has been found
to be three. *e LSHADE metaheuristic is then employed to
determine the most desired thresholds used to separate
image pixels into distinctive groups.*emetaheuristic based
multilevel image thresholding phase is illustrated in Figure 5.
*e population size of the LSHADE and the maximum
number of evolutionary generations are experimentally set
to be 20 and is 100, respectively.

Based on the thresholded image, morphological oper-
ations (filling and removing small objects) are performed. In
addition, the operation of background removal is carried
out. Herein, an object is defined as background if its width or
height is equal to that of the whole image sample. Based on
the binary image representing each pixel group, the CCL is
used to identify separated pitting corrosion areas. Subse-
quently, image convolution and image cropping operations
are used to extract ROI.*is whole process of ROI extraction
is displayed in Figures 6 and 7.

4.3. ImageTextureComputation. Asmentioned earlier, image
texture is used in this study to characterize the feature of the
metal surface. *e statistical measurements of color channels,
GLCM, and LBP descriptors are computed based on each
extracted ROI. For each image sample, one color channel yields
six statistical measurements of mean, standard deviation,
skewness, kurtosis, entropy, and range. *erefore, the number
of statistical measurements of color channels is 6× 3�18. In
addition, the four co-occurrence matrices corresponding to the
directions of 0o, 45o, 90o, and 135o are computed and each of
which yields the four indices of the angular second moment,
contrast, correlation, and entropy are acquired from one co-

occurrencematrix. Hence, the number of GLCM-based texture
descriptors is 4× 4�16. Finally, 59 features which are the
histogram of the LBP after removing nonuniform patterns [73]
are included in the feature set. Accordingly, the total number of
texture descriptors is 18+16+59� 93.

4.4. (e Model Hyperparameter Optimization and the SVM
Classification (SVC) for Pitting Corrosion Detection.
Based on the above stated ROI extraction and image texture
computation, a dataset consisting of 248 data samples and 93
input features can be used for the subsequent model
hyperparameter optimization and the SVM classification
(SVC) for pitting corrosion detection. It is noted that the
created dataset has two class outputs: −1 for nonpitting
corrosion (negative class) and +1 for pitting corrosion
(positive class). Furthermore, for standardizing the data
ranges, this dataset has been preprocessed by the Z-score
data normalization described as the following equation:

XZN �
Xo −mX

sX
, (14)

where Xo and XZN denote an original and a normalized
feature, respectively, and mX and sX represent the mean and
the standard deviation of the original feature, respectively.

After the dataset has been standardized, the principal
component analysis is then applied to for dimensionality
reduction. *e three values of total variance explained of
90%, 95%, and 99% are used to select appropriate number of
input features used for the SVC-based pitting corrosion
recognition. In addition, the LSHADE metaheuristic ap-
proach is utilized to search for the most desired values of the
SVM model hyperparameters including the penalty coeffi-
cient (c) and the kernel function parameter (σ). *e
LSHADE randomly generates an initial population of the
SVM model hyperparameters. In each evolutionary gener-
ation, this metaheuristic method gradually explores and
exploits the search space for better solution candidates ca-
pable of yielding high quality pitting corrosion detection
models. Notably, the feasible domains of the penalty coef-
ficient (c) and the kernel function parameter (σ) are [1, 1000]
and [0.1, 1000], respectively. In addition, the population size

(b)

Figure 4: *e collected image samples: (a) nonpitting corrosion and (b) pitting corrosion.
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and the number of the LSHADE searching generations are
selected to be 20 and 100, respectively.

In order to optimize the SVM performance, a K-fold
crossvalidation (with K� 5) is employed in this study. *e
average predictive performance obtained from this cross-
validation is employed to quantify the model predictive

capability. Accordingly, the following cost function (CF) is
used by the proposed integration of LSHADE and SVM used
for pitting corrosion detection:

CF �
∑Kk�1 FNRk + FPRk( )

K
, (15)

Negative image samples Positive image samples

Original 
iImage

Thresholded 
image

Extracted 
ROI

Original 
image

Thresholded 
image

Extracted 
ROI

Figure 5: Illustration of the ROI extractions.

Specify an input image sample (I) and the number of thresholds (K)
Apply median filter to I to obtain IMF

Convert IMF into a gray-scale image IG
Use LSHADE to identify the set of optimal thresholds (t

Op
1 , t

Op
2 , . . . , t

Op
K )

Perform image multilevel thresholding on IG
For each image segment k

Perform image binarization to obtain IBin,k
Perform morphological operations on IBin,k (filling and removing noise)
Remove background
Perform CCL operation on IBin,k to obtain a list of objects
For each object j within IBin,k

Construct its binary image I
j
BIN

Perform image convolution:
ICV � I∗ I

j
BIN

Identify the enclosing rectangle IREC
Perform image cropping operation to obtain ROI

End For
End For
Return ROIs

ALGORITHM 1: *e process of extracting ROIs.
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Figure 6: Extraction of region of interest (ROI) from image containing pitting corrosion: (a) one defective object and (b) multiple defective
objects.
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Figure 7: Continued.
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where FNRk and FPRk represent the false negative rate (FNR)
and the false positive rate (FPR) obtained from kth run of the
aforementioned K-fold crossvalidation, respectively.

*e FNR and FPR are calculated as follows:

FNR �
FN

FN + TP
,

FPR �
FP

FP + TN
,

(16)

where FN, FP, TP, and TN denote false negative, false
positive, true positive, and true negative data samples,
respectively.

5. Experimental Results and Discussions

*e proposed metaheuristic approach used for pitting
corrosion detection, named as LSHADE-SVC-PCD, has
been developed in Visual C#.NETenvironment (Framework
4.6.2). It is noted that the LSHADE optimization method as
well as the employed image processing techniques have been
constructed by the authors; the SVM classification model is
implemented via built-in functions supported by the Ac-
cord. NET Framework [97]. Experiments with the newly
developed LSHADE-SVC-PCD model are performed on the
ASUS FX705GE - EW165T (Core i7 8750H, 8GB Ram, and
256GB solid-state drive).

To train and test the integrated LSHADE-SVC-PCD
model used for pitting corrosion detection, the collected
dataset has been divided into two subsets of training and
testing datasets. *e training dataset, accounting for 90% of
the original dataset, is used for model construction and the
rest of the dataset is reserved for testing the model gener-
alization. In addition, to alleviate the effect of randomness
caused by data sampling and to evaluate the predictive
capability of the newly developed method reliably, the
training and testing data sampling process has been repeated
20 times. In each time, 10% of the dataset is randomly
chosen to create the testing dataset; the other 90% of the

dataset is employed for model training.*e datasets used for
model training and testing are illustrated in Table 1.

Moreover, to assess the predictive capability of the
proposed LSHADE-SVC-PCD, classification accuracy rate
(CAR), precision, recall, negative predictive value (NPV),
and F1 score are computed from the outcomes of the TP,
TN, FP, and FN.*ese indices are computed in the following
equations [98]:

CAR �
TP + TN

TP + TN + FP + FN
× 100%,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

NPV �
TN

TN + FN
,

F1 Score �
2TP

2TP + FP + FN
.

(17)

*e LSHADE with an initial population size� 20 and a
maximum number of evolutionary generations� 100 has
been employed and utilized to determine the most appro-
priate set of the SVM model’s hyperparameters including the
penalty parameter (c) and the kernel function parameter (σ).
As stated earlier, the original dataset having 93 features has
been inspected by the commonly used principal component
analysis (PCA) to seek for possibility of dimensionality re-
duction. Based on the PCA outcomes with three scenarios of
the values of total variance explained (90%, 95%, and 99%),
the dimensionality of the original dataset can be reduced to 4,
8, and 19. *e evolutionary progresses of the LSHADE
metaheuristic-optimized SVM corresponding to these three
scenarios of dimensionality reduction are graphically de-
scribed in Figure 8. *e LSHADE optimization results are
reported in Table 2. *e prediction performances of the

Image sample
L-SHADE-based

segmentation Extracted ROI

(b)

Figure 7: Extraction of region of interest (ROI) from image containing no pitting corrosion: (a) one object and (b) multiple objects.
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LSHADE-SVC-PCD corresponding to different running
cases are summarized in Table 3. As can be seen from this
table, the dataset from Case 3 has helped to gain the most
desired testing performance with CAR� 91.80%, pre-
cision� 0.91, recall� 0.94, NPV� 0.93, and F1 score� 0.92.

*erefore, this dataset has been selected to be used in the
subsequent part of model result comparison.

In addition, to demonstrate the superiority of the pro-
posed LSHADE-SVC-PCD, the Backpropagation Neural
Network (BPNN) [99, 100] and the Random Forest models

Table 1: *e training and testing datasets.

Datasets Samples
Features

Class Label
F1 F2 F3 . . . F91 F92 F93

Training

1 0.2188 0.0547 0.0117 1999.1644 0.0002 7.1721 −1
2 0.2857 0.0769 0.0220 1287.5000 0.0004 6.6308 −1
. . . . . . . . . . . . . . . . . . . . . . . . . . .

222 0.2500 0.1167 0.0167 929.3030 0.0005 6.0505 1
222 0.2143 0.0857 0.0143 1839.1722 0.0002 7.2027 1

Testing

1 0.1517 0.0227 0.0049 536.7429 0.0005 5.9750 −1
2 0.1909 0.0636 0.0182 1091.6222 0.0005 6.1862 −1
. . . . . . . . . . . . . . . . . . . . . . . . . . .

24 0.0909 0.0364 0.0136 608.5503 0.0008 7.2868 1
26 0.0859 0.0286 0.0052 638.9420 0.0007 7.4187 1
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Figure 8: *e LSHADE optimization process for datasets: (a) Case 1 (dimensionality� 4), (b) Case 2 (dimensionality� 8), and (c) Case 3
(dimensionality� 19).

Table 2: Optimization results of the LSHADE-SVC-PCD.

Case Total variance explained (%) Data dimensionality *e penalty coefficient *e kernel function parameter

1 90 4 498.32 33.15
2 95 8 443.43 9.89
3 99 19 422.80 56.66
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are used as benchmark methods. *e BPNN- and RF-based
classifiers have been developed in Visual C#.NET by the
authors and trained with themini-batchmode [100, 101]; the
batch size is selected to be 32 and the number of neuron in
the hidden layer is selected to be (2/3)DX + CN according to
the recommendation of Heaton [102]; herein,DX and CN are
the numbers of features and class outputs, respectively. *e
BPNN model is then constructed with the sigmoidal acti-
vation function with themaximumnumber of epochs� 1000
epochs and the learning rate� 0.01. Moreover, the RF model
is established with the number of individual classification
tree� 50.

*e prediction performances of the proposed LSHADE-
SVC-PCD model and the two benchmark models are
summarized in Table 4 and box plots are provided in
Figure 9. As can be observed, the performance of the
LSHADE-SVC-PCD (CAR� 91.80%, precision� 0.91,
recall� 0.94, NPV� 0.93, and F1 score� 0.92) is better than
those of the BPANN (CAR� 86.15%, precision� 0.90,
recall� 0.84, NPV� 0.82, and F1 score� 0.87) and RF
(CAR� 77.31%, precision� 0.87, recall� 0.75, NPV� 0.68,

and F1 score� 0.80). Furthermore, the two-sample t-test
[103] with a focus on the CAR index is also employed in this
study to better confirm the statistical significance of the
model predictive performances. *is statistical test is often
employed to inspect the null hypothesis that prediction
performances may be drawn from normal distributions with
equal means. In this experiment, the significant level (p-
value) of the test is set to be 0.05 and results of the hypothesis
testing are provided in Table 5. As can be seen from the
testing results, the p-values < 0.05 reliably reject the null
hypothesis.

Moreover, the coefficients of variation of the proposed
model as well as the two benchmark models are provided in
Figure 10. *e coefficient of variation (COV) [104], also
regarded as the relative standard deviation, is an index for
measuring dispersion of a probability distribution.*e COV
is computed as the ratio of the standard deviation to the
mean and can express the reliability of a prediction model’s
performance [105]. Generally, a small COV value associates
with a small variation on prediction outcome and is an
indicator of a reliable machine-learning model. As can be

Table 3: Prediction performance of the LSHADE-SVC-PCD.

Case Phases Indices CAR (%) TP TN FP FN Precision Recall NPV F1 score

1
Training

Mean 86.61 97.55 95.60 16.15 13.70 0.86 0.88 0.87 0.87
Std. 0.99 2.96 1.96 1.39 1.84 0.01 0.02 0.01 0.01

Testing
Mean 85.20 10.90 10.40 1.85 1.85 0.85 0.86 0.85 0.85
Std. 6.50 1.97 1.82 1.18 1.35 0.10 0.10 0.10 0.07

2
Training

Mean 92.83 104.35 102.65 9.05 6.95 0.92 0.94 0.94 0.93
Std. 0.60 2.83 2.30 0.94 1.10 0.01 0.01 0.01 0.01

Testing
Mean 87.20 11.35 10.45 1.85 1.35 0.86 0.89 0.89 0.87
Std. 6.03 2.64 1.79 1.35 0.99 0.11 0.08 0.08 0.07

3
Training

Mean 93.05 105.55 101.95 9.90 5.60 0.91 0.95 0.95 0.93
Std. 0.69 2.46 2.27 1.14 1.56 0.01 0.01 0.01 0.01

Testing
Mean 91.80 12.00 10.95 1.20 0.85 0.91 0.94 0.93 0.92
Std. 4.64 1.70 2.04 0.93 1.01 0.07 0.07 0.08 0.04

Table 4: Prediction result comparison.

Phase Indices
LSHADE-SVC-PCD BPANN RF

Mean Std Mean Std Mean Std

Training

CAR (%) 93.11 0.73 94.05 2.03 92.61 7.80
TP 105.75 1.13 106.75 2.70 108.05 4.35
TN 100.95 1.24 102.05 3.19 97.55 17.44
FP 10.05 1.24 4.25 2.70 2.95 4.35
FN 5.25 1.13 8.95 3.19 13.45 17.44

Precision 0.91 0.01 0.96 0.02 0.97 0.04
Recall 0.95 0.01 0.92 0.03 0.90 0.10
NPV 0.95 0.01 0.92 0.03 0.88 0.16

F1 score 0.93 0.01 0.94 0.02 0.93 0.06

Testing

CAR (%) 91.54 5.91 86.15 5.63 77.31 10.94
TP 12.00 0.89 11.75 0.94 11.25 1.44
TN 11.80 1.21 10.65 1.42 8.85 2.74
FP 1.20 1.21 1.25 0.94 1.75 1.44
FN 1.00 0.89 2.35 1.42 4.15 2.74

Precision 0.91 0.07 0.90 0.07 0.87 0.11
Recall 0.92 0.07 0.84 0.08 0.75 0.12
NPV 0.93 0.06 0.82 0.11 0.68 0.21

F1 score 0.92 0.06 0.87 0.05 0.80 0.09
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Figure 9: Box plots of model performances: (a) CAR, (b) precision, (c) recall, (d) NPV, and (e) F1 Score.

Table 5: *e t-test outcomes of pairwise model comparisons.

Model comparison Test outcome p-value

LSHADE-SVM-PCD vs. BPANN Significant 0.00656
LSHADE-SVM-PCD vs. RF Significant 0.00001
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seen from Figure 10, the COV values computed for the CAR
index (for the training and testing phases) points out that the
LSHADE-SVC-PCD (with COV� 0.78% for the training
phase and COV� 6.46% for the testing phase) is superior to
the BPANN (with COV� 2.16% for the training phase and
COV� 6.53% for the testing phase) and the RF (with
COV� 8.43% for the training phase and COV� 14.15% for
the testing phase). *us, it is able to confirm that the
proposed LSHADE-SVC-PCD is best suited for the task of
pitting corrosion detection.

Based on the experimental results, the proposed frame-
work which integrates the LSHADE metaheuristic, multilevel
image thresholding, image processing, and SVM-based pat-
tern recognition can deliver satisfactory performance on the
task of pitting corrosion detection. Nevertheless, since the role
of the LSHADE metaheuristic in this study is two-fold, op-
timizing the multilevel image thresholding and fine-tuning
the SVM-based pattern recognition model, a future direction
of the current work may consider to apply multiobjective
metaheuristic optimization methods [23, 26, 106]. In addi-
tion, since the background of metal surfaces may contain
noisy objects, sophisticated image quality enhancement
methods including image dehazing [107–110], image filtering
[111–114], gradient profile prior [115–118], and deep-
learning-based image fusion [119–121] can be useful for
meliorating the accuracy rate of pitting corrosion detection.

6. Conclusions

Pitting corrosion is a severe damage that can bring about
critical failure of infrastructure elements. *is study has put
forward an intelligent method for automatic detection of this
damage via the employment of the LSHADE metaheuristic,
SVM machine-learning, and image-processing techniques.
*e application of metaheuristic in this study is multifold.
*e LSHADE metaheuristic is first utilized in the task of
multilevel image thresholding to extract ROI which is
subsequently used by the texture descriptors (the statistical

measurements of color channels, the GLCM, and the LBP).
*e LSHADE optimizer is then applied to search for the
most appropriate SVM model’s hyperparameters including
the penalty coefficient and the kernel function parameter.
*e SVM is then employed to generalize a classification
boundary that separates input data into two distinctive
categories of pitting corrosion and nonpitting corrosion.
Experimental results with a repeated data sampling with 20
runs confirms that the newly developed LSHADE-SVC-PCD
is highly suitable for the computer vision task of interest with
CAR� 91.80%, precision� 0.91, recall� 0.94, NPV� 0.93,
and F1 score� 0.92. Hence, the newly developed model can
be a useful tool to assist infrastructure management agencies
in the task of periodic structural health survey.

Although the LSHADE-SVC-PCD is capable of delivering
good predictive outcome, one shortcoming of the study is that
the number of the collected image samples is still limited.
*erefore, more effort on data collected should be focused to
enhance the size of the image dataset; this may help to im-
prove the generalization of the pitting corrosion detection
method. Another limitation of the current study is that the
LSHADE-SVC has not been integrated with feature selection
methods. Future directions of the current study may include
the utilization of more sophisticated component-labeling
algorithms, texture description, and feature selectionmethods
to enhance the feature extraction phases. In addition, when
the size of the collected dataset is enlarged, the employment of
advanced deep-learning model can be worth-attempting to
obtain higher detection accuracy. Although the LSHADE
metaheuristic has resulted in good optimization outcomes,
this method has a drawback of requiring a considerable
amount of computational expense. *erefore, other sophis-
ticated hyperparameters tuning (e.g., Bayesian optimization
[122]) can be used as alternative approaches for optimizing
the SVC-based pitting corrosion detection model.
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