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Abstract The aim of this article is to recall the applications

of the topological asymptotic expansion to major image

processing problems. We briefly review the topological as-

ymptotic analysis, and then present its historical application

to the crack localization problem from boundary measure-

ments. A very natural application of this technique in image

processing is the inpainting problem, which can be solved

by identifying the optimal localization of the missing edges.

A second natural application is then the image restoration

or enhancement. The identification of the main edges of the

image allows us to preserve them, and smooth the image

outside the edges. If the conductivity outside edges goes to

infinity, the regularized image is piecewise constant and pro-

vides a natural solution to the segmentation problem. The

numerical results presented for each application are very

promising. Finally, we must mention that all these problems

are solved with a O(n. log(n)) complexity.

Keywords Topological asymptotic expansion ·
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1 Introduction

The goal of topological optimization and most image

processing problems is to create a partition of a given do-

main (or set) � of R
2:
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• In topological optimization, we look for the optimal de-

sign ω ⊂ � and its complementary;

• In image processing problems like edge detection, classi-

fication, and segmentation, the goal is to split the image

in several parts.

For this reason, topological shape optimization and image

processing problems have common mathematical methods

like level set approaches, material properties optimization,

variational methods, . . . . In this paper, we will only consider

the topological gradient approach that has been introduced

for topological optimization purpose [7, 8, 36–38, 44, 50,

54, 57].

To find the optimal domain ω is equivalent to identify its

characteristic function Xω. At first sight this problem is not

differentiable. The classical ways to make it differentiable

are [3–6, 20, 21, 56, 59]:

• The relaxation technique, which allows Xω to take all pos-

sible values in the interval [0,1];

• The level set approach where the characteristic function is

replaced by a regular level set function which is positive

inside ω and negative in its complementary.

The topological asymptotic expansion gives the variation

of a cost function when we switch Xω from one to zero or

from zero to one in a small area.

In this paper we focus our interest on the application of

the topological asymptotic expansion approach to edge de-

tection, which is the basis of our image processing algo-

rithms. We will consider the classical thermal diffusion tech-

nique [28, 49, 52, 60, 61] and improve it by modelling the

edges by cracks. These cracks are supposed to be highly in-

solating and allow to the temperature to jump across edges.

More precisely, let � be an open bounded domain of

R
2. In our context edges are modeled by cracks. A crack
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σ(x,n,ρ) is a straight line of length 2ρ, centered at the

point x of �, and normal to the unit vector n. For a small

ρ ≥ 0, let �ρ = �\σ(x,n,ρ) be the perturbed domain by

the insertion of a small crack.

Let j (�) := J (u�) be a cost function to be minimized,

where u� is the solution to a second order Partial Differen-

tial Equations (PDE) problem defined in �. The topologi-

cal sensitivity theory provides an asymptotic expansion of j

when ρ tends to zero. It takes the general form

j (�ρ) − j (�) = f (ρ)g(x,n) + ◦(f (ρ)), (1)

where f (ρ) is an explicit positive function going to zero

with ρ, g(x,n) is called the topological gradient at point

x, and ◦(f (ρ)) is a small rest. Then to minimize the crite-

rion j , we have to insert small cracks at points where g is

negative. Using this gradient type information, it is possible

to build fast algorithms. In most applications, a satisfying

approximation of the optimal solution is reached at the first

iteration of the optimization process. A topological sensi-

tivity framework allowing to obtain such an expansion for

general cost functions has been proposed in [36–38, 44].

The starting point of this work is the inverse conductivity

problem, known as the Calderon problem [27]. It consists in

identifying the thermal conductivity in a domain from ex-

ternal boundary measurements of temperature when known

fluxes are applied. This problem has been widely studied in

literature [34, 35, 41, 42]. In the particular case of cracks

identification, the problem seems to be more convenient to

solve thanks to the singularities of the solution. Only two

measurements are needed to recover several simple cracks

[1, 2, 8, 17]. From the numerical point of view, several meth-

ods [9, 18, 19, 25, 26, 34, 46, 53] have been proposed, but

the topological gradient approach seems to be the most effi-

cient method for crack localization [8].

The basic idea of this paper is to adapt this crack local-

ization method to image processing problems: an image can

be viewed as a piecewise smooth function and edges can be

seen as a set of singularities or cracks. The idea of relaxing

continuity constraints through the choice of a non-constant

diffusion coefficient is very classical [58], but the topologi-

cal gradient approach provides an accurate identification of

the discontinuities.

As a first and natural application in the image processing

field, we consider the inpainting problem. The goal of in-

painting is to fill a hidden part of an image. In other words,

if we denote by � the original image and ω the hidden part

of the image, our goal is to recover the hidden part from the

known part of the image in �\ω. Here the interior of ω is

not empty: it is not a random set nor a narrow line.

This problem has been widely studied and many methods

have been considered:

• Learning approaches (neural networks, radial basis func-

tions, support vector machine, . . . ); the learning data is

taken in �\ω, then the approximate function is evaluated

in ω [63, 64];

• Minimization of an energy cost function in ω based on a

total variation norm [29, 30];

• Morphological component analysis methods separating

texture and cartoon [33].

Crack detection allows to identify the edges of the hidden

part of the image, and the inpainting problem is then solved

easily.

As a second application of this crack identification tech-

nique, we consider the image restoration problem. We recall

that a classical way to restore an image u from its noisy ver-

sion v defined in a domain � ⊂ R
2 is to solve the following

PDE problem

{

−div (c∇u) + u = v in �,

∂nu = 0 on ∂�,
(2)

where c is a small positive constant, ∂n denotes the nor-

mal derivative and n is the outward unit normal to ∂�, the

boundary of �. This method is well known to give poor re-

sults: it blurs important structures like edges. In order to im-

prove this method, nonlinear isotropic and anisotropic meth-

ods were introduced, we can cite here the work of Perona

and Malik [49], Catté et al. [28] and more recently Weickert

[60, 61] and Aubert [11, 12]. Partial Differential Equations

is not the only way to solve the restoration problem, as a

representative to statistical methods, we can cite [32].

In topological gradient approach, c takes only two val-

ues: c0 in the smooth part of the image and a small value ε

on edges or cracks. For this reason, classical nonlinear diffu-

sive approaches, where c takes all the values of the interval

[ε, c0], could be seen as a relaxation of our method. By en-

larging the set of admissible solutions, relaxation increases

the instability of the restoration process and this could ex-

plain why our method is so efficient: only one iteration is

needed.

This paper is concerned also with the problem of seg-

mentation which it consists in splitting an image into its con-

stituent parts. We first apply the restoration algorithm to find

edges. Then, we take a large background conductivity out-

side edges (c = c0/ε). If ε goes to infinity, the limit solution

u is piecewise constant outside edges and provides a natural

segmentation of the image. This approach has been partly

studied in the case of medical images [43].

Many approaches have been proposed in literature. We

can cite here some variational approaches such as the use

of the Mumford-Shah functional [45], or active contours

and snakes [23, 55]. We can cite here some commonly used

models like the structural approach by regions growth [48],

the stochastic approaches [22, 24] and the variational ap-

proaches which are based on various strategies like level set

formulations, the Mumford-Shah functional, active contours
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and geodesic active contours methods or wavelet transforms

[10, 11, 13, 45, 47, 51, 52, 62].

This article is organized as follows. In Sect. 2, we recall

our method for crack localization using the topological gra-

dient. In Sect. 3, we present the adaptation of this technique

to inpainting. Section 4 is devoted to the image restoration

problem. In Sect. 5, we couple our restoration algorithm

with a segmentation method. We present in Sect. 6 a very

efficient way to speed up all the algorithms introduced in

this paper. We end the paper with some concluding remarks

in Sect. 7.

2 Crack Localization Problem

2.1 Problem Setting

We recall in this section the crack detection technique pre-

sented in [8]. Let � be a bounded open set of R
2. We as-

sume that there is a perfectly insulating crack σ ∗ inside the

domain. We impose a flux φ ∈ H−1/2(Ŵ) on the boundary

Ŵ of �, and for a given crack σ ⊂ �, we consider the tem-

perature u ∈ H 1(�\σ), solution to

⎧

⎨

⎩


u = 0 in �\σ,

∂nu = φ on Ŵ,

∂nu = 0 on σ.

(3)

In order to have a well-posed direct problem (3), we assume

that
∫

Ŵ

φds = 0, (4)

and
∫

�\σ

udx = 0. (5)

Moreover, the solution u to (3) has to satisfy u|Ŵ = T where

T is a given function of H 1/2(Ŵ). This additional boundary

condition could be satisfied by finding optimal distributions

of cracks inside the domain �.

As we have an over-determination in the boundary con-

ditions, we can define a Dirichlet and a Neumann problem:

Find uD ∈ H 1(�\σ) such that

⎧

⎨

⎩


uD = 0 in �\σ,

uD = T on Ŵ,

∂nuD = 0 on σ,

(6)
and

find uN ∈ H 1(�\σ) such that

⎧

⎨

⎩


uN = 0 in �\σ,

∂nuN = φ on Ŵ,

∂nuN = 0 on σ.

(7)

The normal derivative of the solution is equal to zero on

both sides of σ . The gradient of the solution is tangent to the

crack if we consider the domain �\σ , but in the domain �

the gradient is defined in the distribution sense and is normal

to the crack. We are on the edge of the image.

It is clear that for the actual crack σ ∗, the two solutions

uD and uN are equal. The idea is then to consider the fol-

lowing cost function:

J (σ ) =
1

2
‖uD − uN‖2

L2(�)
, (8)

where uD and uN are solutions to problems (6) and (7) re-

spectively for the given crack σ .

2.2 Localization of Cracks by Topological Asymptotic

Analysis

We consider in this section the two corresponding adjoint

states, respectively solutions in H 1(�) to

{

−
pD = −(uD − uN ) in �,

pD = 0 on Ŵ,
(9)

and

{

−
pN = +(uD − uN ) in �,

∂npN = 0 on Ŵ.
(10)

The variation of the cost function j (ρ) := J (uσ(x,n,ρ))

induced by the insertion of this small crack is given by the

topological gradient theory [8]:

j (ρ) − j (0) = f (ρ)g(x,n) + o(f (ρ)), (11)

where f (ρ) = πρ2 and g is given by

g(x,n) = −[(∇uD(x).n)(∇pD(x).n)

+ (∇uN (x).n)(∇pN (x).n)]. (12)

The solutions uD, uN ,pD , and pN are calculated in the ini-

tial domain � without any crack. The topological gradient

can then be rewritten in the following way

g(x,n) = nT M(x)n, (13)

where M(x) is the 2 × 2 symmetric matrix defined by

M(x) = − sym
(

∇uD(x).∇pD(x)T + ∇uN (x).∇pN (x)T
)

.

(14)

We can deduce that g(x,n) is minimal when the normal n

is the eigenvector associated to the smallest (i.e. most neg-

ative) eigenvalue of the matrix M(x). In the following, this

eigenvalue will be considered as the topological gradient.

We can then define a simple and very fast numerical al-

gorithm. First, we solve the two direct problems (Dirichlet
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Fig. 1 Left: actual cracks;

right: superposition of the actual

cracks and a topological

gradient isovalue. Figure

extracted from [8]

and Neumann), and the two corresponding adjoint problems.

Then, at each point x of the domain, we compute the matrix

M(x) and its two eigenvalues. The crack likely lies in the

most negative gradient regions.

Applying the procedure described above, an example

of localization of the unknown cracks using the topolog-

ical gradient is shown in Fig. 1 (extracted from [8]). The

most negative values of the topological gradient are located

around the actual cracks, and these results are obtained in

only one iteration.

3 Application to Inpainting Problems

Our image inpainting approach is based on the hypothesis

that the image is regular outside edges. We suppose even

that it is harmonic (
u = 0). Of course, this assumption is

not valid in real applications, but it gives a theoretical jus-

tification of our algorithm, which still works if the image is

not harmonic outside edges. The basic idea is then to create

a harmonic extension of the image from boundary estima-

tion of u and ∂nu. This analytic extension is unique when it

exists. The cracks identification process gives the boundary

of the domain of validity of the extension.

3.1 Algorithm

We denote by � the image and Ŵ its boundary, ω the miss-

ing part of the image and γ its boundary. In the following

v represents the image we want to restore, T will represent

here the value of the image on the boundary of the missing

zone, and φ will be the corresponding flux. We have then

T = v and φ = ∂nv in the corresponding domains. Theoreti-

cally, we have to assume v to be enough regular, for example

in H 2(�), but it will be possible to work with v in L2(�).

We now consider the problem of finding uα ∈ H 1(�),

solution to the following equation:

{

−α
uα + uα.χ�\ω = v.χ�\ω in �,

∂nuα = 0 on Ŵ,
(15)

where α is a small positive number. This equation can be

rewritten as

find uα ∈ H 1(�)

such that

⎧

⎨

⎩

−α
uα + uα = v in �\ω,


uα = 0 in ω,

∂nuα = 0 on Ŵ.

(16)

When α → 0, it is in some sense equivalent when v is

regular to find the solution uN ∈ H 1(�\γ ) to

⎧

⎨

⎩

uN = v in �\ω,


uN = 0 in ω,

∂nuN = ∂nv on γ,

(17)

which can be seen as a Neumann problem in ω.

From a numerical point of view, we will solve (16) with

a very small positive α and we will consider that it is our

Neumann problem. The Dirichlet problem does not require

any special care.

The inpainting algorithm is then the following:

Inpainting algorithm

• Calculation of uD and uN , respectively solutions to

⎧

⎨

⎩

uD = v in �\ω,


uD = 0 in ω,

uD = v on γ,

(18)

where uD ∈ H 1(�), and

⎧

⎨

⎩

−α
uN + uN = v in �\ω,


uN = 0 in ω,

∂nuN = 0 on Ŵ,

(19)

where uN is in H 1(�) (the normal derivative is the same

on the two sides of γ ).

• Calculation of pD and pN the two corresponding adjoint

states, respectively solutions to

⎧

⎨

⎩

pD = 0 in �\ω,

−
pD = −(uD − uN ) in ω,

pD = 0 on γ,

(20)
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Fig. 2 Inpainting of a color image: occluded image (a); identified missing edges by the topological gradient (b); corresponding inpainted images

using our algorithm (c) and a TV inpainting algorithm (d)

and

⎧

⎨

⎩

pN = 0 in �\ω,

−
pN = +(uD − uN ) in ω,

∂npN = 0 on γ.

(21)

• Computation of the 2 × 2 matrix M(x) (see (14)) and its

lowest eigenvalue λmin at each point of the missing do-

main ω.

• Definition of cracks localization: {x ∈ ω;λmin(x) < δ <

0}, where δ is a negative threshold.

• Calculation of u solution to the Neumann problem (7) tak-

ing into account the cracks location.

It is not so easy to take into account cracks, but from

a numerical point of view, cracks are modeled by a small

conductivity (see Sect. 4).

This algorithm has a complexity of O(n. log(n)), where

n is the size of the image (i.e. number of pixels). See Sect. 6

for more details.

3.2 Numerical Results

We have applied our algorithm to the inpainting of a real

color image.

Figure 2 shows respectively the occluded part by a black

word (a), the identified missing edges (b) and the corre-

sponding inpainted image by our algorithm (c). One can see

that the reconstruction of the missing part of the image is

very satisfactory, and all the occluded part has been treated

at the same time. We also applied a TV inpainting algorithm

(see e.g. [31] for details about this method) to the same im-

age, and the result is shown in Fig. 2(d). For the TV inpaint-



J Math Imaging Vis (2009) 33: 122–134 127

Fig. 3 Inpainting of a color image: zoom of original image (a); topological gradient inpainted image (b); TV inpainted image (c)

ing method we have used, the regularization coefficient is

equal to 10−3, and the lifting parameter is equal to 10−6.

Figure 3 allows to compare more in details the original

image (a) and the inpainted images using topological gra-

dient (b) and total variation (c) algorithms. One can notice

the remarkable sharp edges produced by our algorithm, as

contrast to TV inpainting that slightly blurs edges.

There is no need to split the image into several parts,

and the occluded part can have any geometry. It can even

be a part of the image boundary, as our algorithm also

works when the intersection of the inpainting domain and

the boundary of the image is not empty. This comes from the

fact that the crack localization algorithm can be very easily

adapted to incomplete data on the boundary [14]. Moreover,

the reconstruction is done in only one iteration of the topo-

logical gradient algorithm, which consists in 5 resolutions

of a PDE (the two direct and two adjoint problems, and then

one direct problem) in the domain � representing the im-

age. Using a discrete cosine transform and a preconditioned

conjugate gradient approach, it is possible to speed up these

resolutions, and we obtain finally a O(n. log(n)) complexity

(see Sect. 6 for more details).

4 Application to Image Restoration

In this section, we use the topological gradient as a tool for

detecting edges for image restoration.

4.1 Variational Formulation and Topological Gradient

Let � be an open bounded domain of R
2. For v a given

function in L2(�), the initial problem is defined in the safe

domain and reads as follows: find u ∈ H 1(�) such that

{

−div (c∇u) + u = v in �,

∂nu = 0 on ∂�,
(22)

where n denotes the outward unit normal to ∂� and c is a

constant function.

At a given point x ∈ �, we insert a small crack σ =

σ(x,n,ρ), the new solution uρ ∈ H 1(�ρ) satisfies

{

−div
(

c∇uρ

)

+ uρ = v in �ρ,

∂nuρ = 0 on ∂�ρ .
(23)

Edge detection is equivalent to look for a subdomain of �

where the energy is small. So our goal is to minimize the

energy norm outside edges

j (ρ) = Jρ(uρ) =

∫

�ρ

‖∇uρ‖2. (24)

By the mean of the topological asymptotic expansion the-

ory, the variation of j (ρ) = Jρ(uρ) when ρ tends to zero is

given by [15, 39, 40]:

j (ρ) − j (0) = f (ρ)g(x,n) + o(ρ2), (25)

with f (ρ) = πρ2,

g(x,n) = −c(∇u0(x).n)(∇p0(x).n) − |∇u0(x).n|2, (26)

and where p0 is the solution to the adjoint problem

{

−div(c∇p0) + p0 = −∂uJ (u) in �,

∂np0 = 0 on ∂�.
(27)

The subscript 0 means that the solutions u0 and p0 are cal-

culated in the initial domain without cracks; the crack size

is equal to zero.

The topological gradient could be written as

g(x,n) = nT M(x)n, (28)

where M(x) is the 2 × 2 symmetric matrix defined by

M(x) = −c
∇u0(x)∇p0(x)T + ∇p0(x)∇u0(x)T

2

− ∇u0(x)∇u0(x)T . (29)
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For a given x, g(x,n) takes its minimal value when n

is the eigenvector associated to the lowest eigenvalue λmin

of M . This value will be considered as the topological

gradient associated to the optimal orientation of the crack

σ(x,n,ρ).

4.2 Algorithm

Our algorithm consists in inserting small heterogeneities

in regions where the topological gradient is smaller than a

given threshold δ < 0. These regions are the edges of the

image. The algorithm is as follows

Restoration algorithm

• Initialization : c = c0.

• Calculation of u0 and p0 : solutions of the direct (23) and

adjoint (27) problems.

• Computation of the 2 × 2 matrix M and its lowest eigen-

value λmin at each point of the domain.

• Set

c1 =

{

ε if x ∈ � such that λmin < δ < 0, ε > 0

c0 elsewhere.

(30)

• Calculation of u1 solution to problem (23) with c = c1.

From the numerical point of view, it is more convenient to

simulate the cracks by a small value of c. The solution u1 is

the restored image.

As in the previous section (inpainting problems), our al-

gorithm requires only 3 resolutions of a partial differential

equation in the domain �: the direct and adjoint original

problems, and then the direct perturbed problem. And the

complexity of this algorithm is still O(n. log(n)), where n is

the number of pixels of the image, because we can use, as

in the previous section, a DCT (discrete cosine transform)

for the resolution of the first two problems, and then the

DCT solver is used as a preconditioner to the PCG (precon-

ditioned conjugate gradient) algorithm. See Sect. 6 for more

details.

The restoration algorithm for color images is almost the

same. For simplicity reasons, one can simply decompose the

color image v in its channels: v = (v1, v2, v3) where vi rep-

resents the intensity of the channel i. For instance, if we

decompose the color image in the RGB (red, green, blue)

space, v1 will represent the intensity of red. Then, it is easy

to solve equations (23) and (27) separately. But one can also

solve directly this equation with vectorial images u and p.

The topological gradient is still given by equalities (28) and

(29), where all the involved functions are vectorial (it is sim-

ply the sum of these expressions for the three channels). One

can finally solve separately the three perturbed direct prob-

lems, and recompose the restored image u1, or solve directly

the perturbed problem in a vectorial approach.

4.3 Numerical Results

The goal of the following numerical results is to prove that

the topological gradient method is able to denoise an image

and preserve features such as edges.

Figure 4 shows the restoration algorithm applied to a

556 × 360 color image. The noisy image (a) is obtained

with an additive Gaussian noise, with a signal to noise ratio

(SNR) equal to 10.74. The identified edges (b) correspond

to the pixels where the most negative eigenvalue of the ma-

trix M is smaller than a given threshold. The third image (c)

corresponds to the restored image by our topological gradi-

ent algorithm. The SNR of the restored image is 21.09, and

the edges are very well preserved, even if the original level

of noise was quite high. Finally, the last image (d) shows

the restored image via a Perona-Malik nonlinear diffusion

model (see e.g. [11, 31]), using the following parameters:

time T = 2, Gaussian filtering σ = 10 and threshold value

equal to 15.

In order to see more clearly the noise reduction in this

process, Fig. 5 shows the difference between the original and

noisy images (i.e. the additive noise we added to the origi-

nal image), and the error distribution after the restoration

process (i.e. the difference between the original and restored

images) for both the topological gradient and nonlinear dif-

fusion schemes, using the same scale for the three images.

One can see that the error is strongly reduced for both al-

gorithms, with a slight advantage for our scheme. One can

also notice that part of the topological gradient restoration

error is still located on the contours, even if they are very

well preserved by the process.

5 Application to Image Segmentation

This section is concerned with image segmentation, which

aim is to find a partition of an image into its constituent

parts.

Several variational approaches have been studied, for ex-

ample the Mumford-Shah functional [45] and the active con-

tours [23, 55].

5.1 Problem Setting

Let v be the original image defined on an open set � of R
2.

We want to split the image v in n classes {Ci}1≤i≤n, and

we choose the color intensity as a classifier. The number of

classes n is given.

More precisely, our goal is to find n colors Ci , i = 1,

. . . , n and a partition of � in subsets {�i}i=1,...,n, such that

v is close to Ci in �i . The classified image u will then be

defined by

u(x) = Ci ∀x ∈ �i, (31)
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Fig. 4 Restoration of a color image: noisy image (SNR = 10.74, 556 × 360 pixels) (a); identified edges by the topological gradient (b); restored

image using our restoration algorithm (SNR = 21.09) (c); restored image using Perona-Malik nonlinear diffusion (SNR = 19.87) (d)

Fig. 5 Restoration of a color image: difference between the original and noisy images (a); difference between the original and restored images by

topological gradient (b) and Perona-Malik nonlinear diffusion (c)
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where {�i}i=1,...,n are defined by

�i = {x ∈ �;x belongs to the ith class} . (32)

The variational approach consists in defining a cost func-

tion measuring the mean square difference between the orig-

inal image and the segmented image

J
(

(Ci,�i)i=1,...,n

)

=

n
∑

i=1

∫

�i

(v(x) − Ci)
2 dx. (33)

The minimization of J with respect to (Ci,�i)i=1,...,n could

be done using the k-mean clustering algorithm. In order to

obtain a segmented image with smoother contours (regular-

ized segmentation), we may add a regularization term to the

cost function

J
(

(Ci,�i)i=1,...,n

)

=

n
∑

i=1

∫

�i

(v(x) − Ci)
2 dx +

∑

i �=j

|Ŵij |, (34)

where |Ŵij |, i �= j represents the one-dimensional Hausdorff

measure of Ŵij [11], and Ŵij = �i ∩ �j is the interface be-

tween two subsets.

The main difficulty of this approach is that the unknowns

are sets, and not variables. This is why the topological as-

ymptotic analysis may be appropriate to solve this problem.

5.2 Restoration and Segmentation Coupling

Inspired by the work of Aubert et al. [11, 52] in which

the authors propose a classification model coupled with a

restoration process, we propose in this section to use the

topological gradient approach applied to image segmenta-

tion problem [39].

We still consider the following partial differential equa-

tion

{

−div(c∇u) + u = v in �,

∂nu = 0 on ∂�.
(35)

Instead of setting c = 0 (or c = ε from a numerical point of

view) on the edge set and c = c0 elsewhere, we set

c =

{

c = 0 (or ε) on the edge set,

c ∼ +∞ (e.g. c =
c0

ε
) elsewhere.

(36)

In comparison with the previous section, the topologi-

cal gradient g(x,n) and the general algorithm remains un-

changed. In particular, the edge set is given by thresholding

λmin.

Segmentation algorithm

• Initialization: c = c0.

• Calculation of u0 and p0 : solutions of the direct (23) and

adjoint (27) problems.

• Computation of the 2 × 2 matrix M and its lowest eigen-

value λmin at each point of the domain.

• Set

c1 =

{

ε if x ∈ � such that λmin < δ < 0, ε > 0

c0/ε elsewhere.

(37)

• Calculation of u1 solution to problem (23) with c = c1.

• Application of the k-mean classification algorithm to u1.

From a numerical point of view, as ε is small on a con-

tour, it allows u1 to jump across edges with a normal deriva-

tive close to zero. Outside edges, c =
c0

ε
and then the PDE is

nearly equivalent to 
u = 0 with Neumann boundary con-

dition (normal derivative) equal to zero. The solution u1 is

then piecewise constant outside edges, providing a natural

segmentation way of the image.

As in the restoration process, the segmentation algorithm

is applied to color images. We simply decompose the image

in a color space (RGB, or HSV), and deal separately with

the three component images. Then we say the topological

gradient of the sum is equal to the sum of topological gradi-

ents.

One can control the smoothing process in choosing the

value of c outside the edges:

• if c = c0, we find the previous restoration algorithm,

which simply tries to remove noise;

• if c =
c0

ε
, the smoothing is more powerful, and the final

image is much smoother;

• if c =
c0

ε2 , it is much more powerful, and so on.

We can also mention that this is still the same type of

algorithm, in comparison with the previous applications, and

the complexity is still in O(n. log(n)), which allows us to

classify quite large images in a short time.

In [16], the authors proposed an unsupervised classifica-

tion method.

5.3 Numerical Results

We apply in this section our segmentation algorithm to syn-

thetic monocolor grey images and to a real color one.

We first consider two different synthetic images, the first

one consisting of 4 small squares of different grey levels, the

second one consisting of 4 black different objects on a white

background. We added a Gaussian noise to these images be-

fore trying to segment them, with a SNR equal to 18.2 and

17.1 respectively. Figure 6 shows the original images and the

segmented images. In this case, we simply applied our seg-

mentation algorithm. We can see on the first synthetic image

that the four different components have been very well iden-

tified at the first iteration. It is also the same in the case of the
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Fig. 6 Segmentation of synthetic images: noisy original images (SNR = 18.2 and 17.1 respectively) (a–c); segmented images (b–d)

Fig. 7 Segmented images using respectively four (a) and five (b) colors

second synthetic image, the edges of all objects have been

very well identified.

Figure 7 shows the application of our segmentation algo-

rithm to a 556 × 360 color image (see previous figures, e.g.

Fig. 2(c) for the original image). Figures 7(a) and 7(b) show

respectively a 4 and 5 classes segmented image. One can

see that there is a very good identification of the different

components of the image (sky, forest, ground, . . . ).

6 Complexity and Speeding Up

In all the algorithms we presented, the first resolution of the

PDE is done with a constant value of the coefficient. It is

then possible to largely speed up the computation time by

using the discrete cosine transform (DCT) method. Let us

consider the following cosine basis (on R
2, but it is easily

adaptable to R
n)

φm,n = δm,n cos(mπx) cos(nπy), (38)

where we denote by x and y the two real variables, and δm,n

are appropriate normalization coefficients. Then, the follow-

ing PDE

{

−div (c∇u) + u = v in �,

∂nu = 0 on ∂�,
(39)

is equivalent to

∑

m,n

(

1 + c(mπ)2 + c(nπ)2
)

um,nφm,n =
∑

m,n

vm,nφm,n,

(40)

where (vm,n) represent the DCT coefficients of the original

image v. It is then straightforward to identify (um,n), the

DCT coefficients of u in (40), and then to compute u us-

ing an inverse DCT. The complexity of such a resolution

is O(N log(N)), where N is the size of the image (i.e. the

number of pixels).

This technique can be used for the resolution of both di-

rect and adjoint equations. Then, for the last resolution of the
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Fig. 8 Variation of the

computation time according to

the size of the image, using a

log-log scale: linear and

quadratic complexity in dashed

lines, result of our experiments

in plain line

direct problem with a non constant coefficient c, we have to

solve the following system

A(c)u = B, (41)

where u is the unknown image. We can precondition (41)

with the DCT solver used in the first resolution. Equa-

tion (41) is equivalent to

A(c0)
−1A(c)u = A(c0)

−1B. (42)

We use then a preconditioned conjugate gradient (PCG)

method to solve this problem, and this works very well be-

cause in all our algorithms, the coefficient c is equal to c0

except on a quite small part of the domain. For instance, in

the restoration algorithm, c = c0 except on the edges of the

image.

Figure 8 shows the computation time versus the size of

the image, using for both scales a logarithmic scale. The two

dashed lines correspond to a linear and a square complexity.

The middle curve corresponds to our various experiments.

These experiments have been performed with the restora-

tion algorithm, but all the other algorithms have the same

behavior. This figure clearly confirms the theoretical com-

plexity, O(N. log(N)), of our algorithms. For example, we

have been able to restore without any trouble a few seconds

of a large resolution movie on a laptop. The total number of

pixels was greater than 16 millions.

7 Conclusion

We presented in this paper many applications in image

processing of the crack detection technique, based on the

topological gradient. It provides an excellent frame for solv-

ing all these image processing problems. It has been applied

to image inpainting, image restoration, and image segmen-

tation.

In all these cases, we obtained excellent results and the

computing time is very short. Only O(n. log(n)) operations

are needed to solve the image processing problem, where n

is the size of the image.

We have also seen that this technique can be applied to

color images as well as grey-level images, but also three-

dimensional images, or movies, without any trouble.

One of our main goals is now to optimize our code in

order to have a real time processing tool.
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