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Abstract Easier access to X-ray microtomography (lCT) facilities has provided much new insight from

high-resolution imaging for various problems in porous media research. Pore space analysis with respect to

functional properties usually requires segmentation of the intensity data into different classes. Image seg-

mentation is a nontrivial problem that may have a profound impact on all subsequent image analyses. This

review deals with two issues that are neglected in most of the recent studies on image segmentation: (i)

focus on multiclass segmentation and (ii) detailed descriptions as to why a specific method may fail

together with strategies for preventing the failure by applying suitable image enhancement prior to seg-

mentation. In this way, the presented algorithms become very robust and are less prone to operator bias.

Three different test images are examined: a synthetic image with ground-truth information, a synchrotron

image of precision beads with three different fluids residing in the pore space, and a lCT image of a soil

sample containing macropores, rocks, organic matter, and the soil matrix. Image blur is identified as the

major cause for poor segmentation results. Other impairments of the raw data like noise, ring artifacts, and

intensity variation can be removed with current image enhancement methods. Bayesian Markov random

field segmentation, watershed segmentation, and converging active contours are well suited for multiclass

segmentation, yet with different success to correct for partial volume effects and conserve small image fea-

tures simultaneously.

1. Introduction

The last decade has seen a tremendous progress in X-ray tomography and imaging techniques providing

new means to analyze a multitude of research problems in porous media research. In the scope of water

resources research, applications range from soil-water-root interactions and mechanical and hydraulical

properties of rocks to pore-scale modeling of multiphase flow and continue to appear in related fields of

research (see reviews by Blunt et al. [2013], Cnudde and Boone [2013], Wildenschild and Sheppard [2013], and

Anderson and Hopmans [2013]). Progress in image progressing has kept a comparable pace in terms of new

developments in image enhancement, image analysis, and hardware architectures [e.g., Ketcham and Carl-

son, 2001; Sheppard et al., 2004; Kaestner et al., 2008; Porter and Wildenschild, 2010; Tuller et al., 2013]. Since

X-ray tomography is becoming a standard technique available to an increasing number of research groups

in water resources research, more and more scientists have a need for information on how to process their

data. Not everyone new to the field has the resources to develop their own image processing toolbox, tai-

lored for the research question at hand, or the budget to take advantage of powerful image processing soft-

ware that often has a rather comprehensive scope. A relief in this regard are software toolboxes which are

freely available to the scientific community like IMAGEJ [Ferreira and Rasband, 2012], ITK [Ibanez et al., 2005],

QUANTIM [Vogel et al., 2010], BLOB3D [Ketcham, 2005], or SCIKIT-IMAGE [van der Walt et al., 2014], just to name a

few. Their multiphase segmentation capabilities are somewhat limited and may require substantial operator

input. The software used in this study is described in the Appendix A.

However, comparing the performance of different image processing methods on the same set of test

images often leads to very different results. A notorious example is image segmentation of a gray value

image into objects and background [Sezgin and Sankur, 2004; Iassonov et al., 2009; Baveye et al., 2010]. Yet,

these comparative studies often merely list the performance of several segmentation methods with respect
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to a certain quality measure or highlight the user-dependency of the segmentation result, but lack in useful

information as to why a specific method fails under certain circumstances and how this may be avoided by

suitable preprocessing. Another shortcoming is that many recent review papers on image segmentation

with a focus on soil images deal with binary segmentation only [Baveye et al., 2010; Wang et al., 2011; Hous-

ton et al., 2013a] and do not provide solutions to multiclass segmentation problems.

This review paper has two main objectives. First, we survey various segmentation methods with respect to

multiclass segmentation. We focus on methods that operate on a single image, i.e., coupled images

scanned at different X-ray energy levels [Rogasik et al., 1999; Costanza-Robinson et al., 2008; Armstrong et al.,

2012] or in a wet and dry state [Culligan et al., 2004; Wildenschild et al., 2005] are not discussed here. We

refer the reader to Brown et al. [2014] where we demonstrate that a single-energy method outperforms a

three-energy method and discuss the potential shortcomings of either approach. All of the surveyed meth-

ods are locally adaptive, i.e., in addition to global histogram information they consider some neighborhood

statistic for class assignment. In particular, we will examine hysteresis segmentation [Vogel and Kretzschmar,

1996], indicator kriging [Oh and Lindquist, 1999], converging active contours [Sheppard et al., 2004], water-

shed segmentation [Vincent and Soille, 1991], and Bayesian Markov random field segmentation [Kulkarni

et al., 2012]. As quality measures, we will use misclassification error, volume fraction, specific interfacial area,

and a connectivity measure. Second, we point out that the performance of image segmentation cannot be

examined independently of image enhancement prior to classification. To do so, we compare the impact of

different denoising methods on the segmentation results. We have chosen standard noise removal meth-

ods that were reviewed for application in lCT data of porous media before [Kaestner et al., 2008; Tuller et al.,

2013]. Moreover, we apply efficient algorithms for image artifact removal, such as intensity bias [Iassonov

and Tuller, 2010] and ring artifacts [Sijbers and Postnov, 2004]. Finally, we illustrate the impairment of

proper threshold detection that is due to low contrast and imbalanced histograms, and present methods to

correct it.

The performance of different segmentation methods is evaluated by means of three test images. We start

with a synthetic test image of a partially saturated packing of spheres, where the volume fractions and

interfacial areas of the wetting, nonwetting, and solid phase are known exactly. The true image is superim-

posed with ring artifacts, blur, and noise, and the success of different combinations of denoising and seg-

mentation in recovering the morphological properties of the true image is compared. Subsequently, the

most suitable combinations are applied to two real images of quite different scopes. The first is a synchro-

tron image of a three-fluid medium impaired by intensity variation and noise [Brown et al., 2014]; the sec-

ond is a mCT image of a soil with macropores, organic matter, and rocks impaired by noise and blur

[Houston et al., 2013b].

The paper is organized as follows: in section 2, we provide the details for each image processing method,

while image enhancement and segmentation results are compared in terms of visual appearance and mor-

phology measures in section 3. In section 4, we discuss the results and provide recommendations for best

practices, and our findings are summarized in section 5.

2. Methods

2.1. Artifact Removal

Due to shortcomings in the image acquisition process, the base signal of an X-ray scan is often superim-

posed by different kinds of image artifacts [e.g., Ketcham and Carlson, 2001; Wildenschild et al., 2002]. The

most frequent impairments are image noise due to a low count of incoming radiation at the detector, and

image blur due to movement, hardware constraints, or suboptimal image reconstruction. As discussed

below, there are powerful denoising methods that efficiently remove noise in homogeneous locations and

at the same time conserve edges between objects. Other image artifacts which are less trivial to remove a

posteriori are ring artifacts, due to defective diodes in the detector panel, or beam hardening of polychro-

matic beams, which manifests itself in the reconstructed image as streakings around high-attenuation

objects and intensity variation with distance to the sample center. Note that there are means to avoid some

of these artifacts already during image acquisition or image reconstruction like a slightly altering detector

panel position during scanning and wedge calibration [Ketcham and Carlson, 2001]. Here we focus on meth-

ods that can be directly applied to the reconstructed volume.
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Ring artifacts can be removed separately for each image slice z after transforming the image from Cartesian

coordinates x5 (x, y) into polar coordinates x5ðr;uÞ, where x is the location vector, (x, y) is the horizontal

and vertical coordinate, and ðr;uÞ are radius and angle. In this way, the rings appear as vertical lines that

can be removed with a moving window W of width w� R, where R is the radius of the sample. The window

detects average variations in gray value median~IðrÞ along r and normalizes them subsequently [Sijbers and

Postnov, 2004]. Only homogeneous rows within W contribute to the median~IðrÞ at column r, where the

homogeneity threshold H has to be set by the user. This method has some shortcomings since objects

aligned to a certain radius may also be removed.

To our knowledge, the removal of streaking artifacts due to beam hardening is an unresolved problem.

Intensity bias, on the other hand, can be removed rather easily given that it is not superimposed by chang-

ing attenuation coefficients due to variable fluid saturation or matrix porosity. To do so, requires an iterative

procedure [Iassonov and Tuller, 2010]: (i) the image is segmented into the class with the highest attenuation

and background by simple, histogram-based thresholding. (ii) The mean gray value within the highest den-

sity class is stored as a function of radius. (iii) A smooth function is fitted to the data:

IðrÞ5a1b cos ð2pr=RÞ1c exp ðr=RÞ (1)

where a, b, and c are fitting parameters. (iv) The smooth function is used to normalize the data. Steps (i–iv)

are repeated until convergence is achieved after two to four iterations.

2.2. Denoising

2.2.1. Median Filter

A good noise removal algorithm should exert significant smoothing in homogeneous regions (i.e., zones

with low-intensity gradient rI(x)) and minimal modification of edges (i.e., high rI(x) zones), where r is the

differential operator with respect to three dimensions r5
@
@x1

@
@y1

@
@z

� �

. The simplest method for nonlinear

denoising is a median filter (MD) with a cubic kernel of diameter d:

ÎMD ðxÞ5I0ðxÞ �MdðxÞ (2)

where * denotes convolution, I0 is the raw image, and Î is the denoised result. The gray value that divides

the set of d3 sorted gray values within Md into equal halves is assigned to the current voxel at location x

[Gonzalez and Woods, 2002]. Note that this routine is usually applied in one loop and is rather slow for large

kernel sizes, mainly due to sorting. However, a tremendous increase in speed is achieved by applying

lookup tables and a moving median, i.e., for a kernel shift of one position only a small amount of d2 gray val-

ues has to be replaced in a table [Huang et al., 1979].

2.2.2. Anisotropic Diffusion Filter

Another popular, nonlinear denoising method is the anisotropic diffusion (AD) filter [Perona and Malik,

1990; Catt�e et al., 1992]. The rationale of this method is that the Gaussian distribution is the solution to the

diffusion equation with a constant diffusion coefficient D. In the same way, applying the diffusion equation

with a nonlinear diffusion coefficient amounts to smoothing with a Gaussian kernel of strongly varying

standard deviation. Obviously, D should depend on the local intensity gradientrI(x). Hence, anisotropic dif-

fusion calls for a numerical solution of the following partial differential equation (PDE):

Î
0
5I0 (3)

@ ÎAD
@t

5r½DðjrðGr � ÎAD ÞjÞr̂IAD � (4)

where t is numerical time, ÎAD is short for ÎAD ðx; tÞ, and the gradient of smoothed intensity values, con-

volved by a Gaussian Gr of standard deviation r, serve as an edge detector. The simplest implementation is:
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DðjrðGr � ÎÞjÞ5
1; jrðGr � ÎÞj � j

0; jrðGr � ÎÞj > j

(

(5)

where j is a diffusion stop criterion. The number of iterations is another important parameter that has to be

set manually, because the solution would eventually converge to uniform intensity.

2.2.3. Total Variation Filter

Another PDE-based approach is total variation (TV) denoising [Rudin et al., 1992]. The rationale behind

this method is to minimize the intensity variation in the image by means of the following cost

function:

ÎTV5 argmin
Î

ð

jr̂IðxÞjdx

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

regularization

1 k

ð

jI0ðxÞ2̂IðxÞj2dx

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fidelity

8

>>><

>>>:

9

>>>=

>>>;

(6)

where k is a scale parameter that controls the trade-off between regularization, i.e., smoothing, and fidelity

to the raw data I0. The solution is achieved with the following set of coupled PDE’s:

Î
0
5I0 (7)

@ ÎTV
@t

5r
rÎTV

jrÎTV j

 !

1k I02̂ITV1K
� �

(8)

@K

@t
5aðI02̂ITV Þ (9)

where ÎTV is short for ÎTV ðx; tÞ. The time step control a can be made adaptive to @K/@t. The number of itera-

tions, used as a stopping criterion, is less crucial as compared to ÎAD , because the solution does not con-

verge to uniform intensity due to the fidelity term used in equation (6).

2.2.4. Nonlocal Means Filter

Unlike the previous methods, the nonlocal means filter (NL) is a linear filter, i.e., the gray value at the current

location is the average of gray values at other locations, assigned with some suitable weighting factors, w.

However, in contrast to standard linear filters (Gaussian filter, mean filter, etc.), it does not use a small-sized

kernel, but potentially the entire image as a search window. The rationale is to compare the neighborhoods

of all voxels y� I with the neighbors of the current voxel at location x [Buades et al., 2005]:

ÎNL ðxÞ5
X

y2I

wðx; yÞI0ðyÞ (10)

Thus, the similarity of a whole neighborhood with fixed size determines the weight w(x, y) with which a dis-

tant voxel will influence the new value of the current voxel. More specifically, the weights are significant

only if a Gaussian kernel Gr with standard deviation r around y looks like the corresponding Gaussian ker-

nel around x:

wðx; yÞ5
1

ZðxÞ
exp 2

ð

GrðnÞ � jI
0ðx1nÞ2I0ðy1nÞj2dn

h2

0

B
B
@

1

C
C
A

(11)

where n scans the neighborhood, h acts as a filtering parameter that can be adapted to the level of image

noise and Z(x) is the normalizing factor. Note that the computational cost for the neighborhood search in

the entire image can become excessive, so restricting the search to a certain window size (y� S in equation

(10)) is required [Buades et al., 2008].
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2.3. Edge Enhancement

A notorious problem in image processing is partial volume effects due to image blur. That is, image edges

do not manifest themselves as crisp intensity steps, but rather as gradual intensity changes spanning sev-

eral voxels. A standard method to sharpen the image, i.e., to enhance the intensity gradient locally, is

unsharp masking [Sheppard et al., 2004]:

ÎUM ðxÞ5I0ðxÞ2
wðGr � I

0ðxÞÞ

12w
(12)

where r should roughly match the half width of blurry edges and w defines the degree of edge enhance-

ment, where [0.1, 0.9] is a suitable range. In the context of the last section, this corresponds to the inverse

diffusion equation. Evidently, unsharp masking will also enhance noise, so the image should be denoised

first. Alternative edge enhancement methods like a difference of Gaussians or a Laplacian of Gaussian filter

[Gonzalez and Woods, 2002; Russ, 2006] have a very similar concept and are not further discussed here.

2.4. Image Segmentation

2.4.1. Histogram Bias Correction

The frequency distribution of gray values can have an unfavorable shape for threshold detection. Typical

examples are low contrast, imbalanced class proportions, class skewnesses, or class variances. Here we list

three methods that can partially remove these histogram traits and thus facilitate more reliable threshold

estimates:

1. Gradient mask:

Partial volume effects due to blurred phase edges can cause long tailings in the histogram, which lead to

skewed distributions for the lowest and highest intensity class. Partial volume voxels can be identified

through high-gradient intensities and treated by different strategies [Panda and Rosenfeld, 1978]. One is to

calculate the average gray value of partial volume voxels and use it as an optimal threshold [Schl€uter et al.,

2010], another is to mask them out and only calculate the histogram for low-gradient regions. The mask is

generated by unimodal thresholding [Rosin, 2001] of the histogram of intensity gradients.

2. Histogram equilization:

Image contrast is often enhanced by linear or nonlinear intensity rescaling, sometimes also denoted as his-

togram stretching [Gonzalez and Woods, 2002; Russ, 2006]. An alternative approach to contrast enhance-

ment is contrast-limited adaptive histogram equalization (CLAHE) [Pizer et al., 1987]. Image contrast can be

defined as the slope of the cumulative density function of gray values. Limiting this contrast corresponds to

clipping the histogram at a certain cutoff. The histogram area thus removed is uniformly distributed over

the range of gray values that occur in the image. In principle, this algorithm operates on the histogram of a

certain search window to obtain a locally adaptive contrast enhancement. The method can be generalized

such that any transition between global and local contrast enhancement is achieved [Stark, 2000]. In this

study, histogram clipping is only applied to the global histogram to improve threshold detection and is not

mapped to the corresponding image.

3. ROI dilations:

Some images exhibit unimodal histograms due to very imbalanced class proportions, i.e., a very small vol-

ume fraction of a certain phase and a very large volume fraction of the background. A balanced frequency

distribution can be obtained with a new, semiautomatic algorithm: (i) pick a threshold manually that detects

the class with lowest volume fraction as the region of interest (ROI) and binarize the image. (ii) Dilate the

thus obtained mask. (iii) Multiply the original image with the mask in order to compute the ROI histogram.

(iv) If it is not yet clearly bimodal (multimodal) return to step (ii).

2.4.2. Global Thresholding

Image segmentation is a crucial step in image processing and affects all subsequent image analyses. In this

context, it is common to refer to global thresholding as approaches where classes are assigned to voxels by

histogram evaluation only, without considering how the gray values are spatially arranged in the corre-

sponding image. A multitude of different thresholding methods exist today which have been reviewed by

various authors [Sahoo et al., 1988; Pal and Pal, 1993; Trier and Jain, 1995; Sezgin and Sankur, 2004]. The
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general conclusion, if any, is that none of the reviewed methods excel at all segmentation problems. A com-

prehensive survey by Sezgin and Sankur [2004] compared 40 different thresholding methods, most of them

global, and classified them according to fundamental principles. Five out of those methods were chosen for

implementation in this study as well as an additional one:

1. G1—Maximum Variance:

This is a classic method based on discriminant analysis [Otsu, 1975]. Consider the histogram as an estimator

of the probability of a certain gray value and n – 1 thresholds to divide the histogram into n classes

{C0, C1,. . .,Cn}. The total variance r
2
T of the population of gray values can be divided into the sum of within-

class variances r2W and the between-class variance r2B of class means. The objective is to find the set of n – 1

thresholds ft0; t1; . . . ; tn21g that maximize this between-class variance.

2. G2—Minimum Error:

Minimum Error Thresholding assumes the histogram to be composed of normal distributions for each class

[Kittler and Illingworth, 1986]. The Gaussian modes that are fitted to the histogram usually overlap at certain

gray values. As a consequence, assigning those voxels to only one class will deliberately lead to a certain

misclassification error for the other class. The objective is to set the thresholds ft0; t1; . . . ; tn21g such that

the misclassification error is minimal.

3. G3—Maximum Entropy:

This method exists in various modifications. The classic approach, which is implemented here, relies on

Shannon Entropy as a measure of the information content of a signal [Kapur et al., 1985]. Assume a

threshold to be close to the maximum or minimum gray value. Objects will barely appear in the output

image and will be almost completely surrounded by background. Hence, the information content of the

resulting image is low. A set of thresholds ft0; t1; . . . ; tn21g can be adjusted such that the image has the

richest detail, i.e., the information transfer is optimal. This is achieved by maximizing the sum of class

entropies.

4. G4—Fuzzy C-means:

This method combines the classic k-means algorithm [Ridler and Calvard, 1978] with fuzzy set theory [Jawa-

har et al., 1997]. Membership functions M0, M1, . . . Mn are assigned to each gray value depending on the

distance to each class mean l0, l1, . . . ln and a fuzziness index s. The optimal set of thresholds

ft0; t1; . . . ; tn21g is detected at the intersections of adjacent M.

5. G5—Shape:

This method detects the thresholds ft0; t1; . . . ; tn21g at the local minimum between two adjacent histogram

peaks [Tsai, 1995]. If the number of peaks np exceeds the predefined number of classes n, iterative Gaussian

smoothing is first applied to the histogram, until np5 n. If np<n, the missing thresholds are set at the loca-

tion of maximum histogram curvature instead.

6. G6—Average:

It can be shown that some methods are optimal under certain conditions [Kurita et al., 1992], e.g.,

equal class probabilities, equal class variances, etc. However, these conditions are hardly ever met in a

real image and all methods will be biased to some degree. Assuming that the bias of different meth-

ods may partly cancel out due to the different criteria that they optimize, an averaged threshold over

all methods may lie closer to the true, unknown optimum. Since some methods may fail completely,

outliers have to be removed, i.e., only thresholds within ð�tk2rtk ;�tk1rtk Þ contribute to the final value,

where k5 0,. . ., n – 1.

Note that in the first three methods the computational cost for an exhaustive search over all sets of thresh-

olds in a n-dimensional search space increases exponentially with increasing number of classes n. Therefore,

the methods are implemented in an efficient way by using lookup tables to store each term of a specific

objective function for every possible pair of class boundaries, and employ these tables to calculate the

objective function for an arbitrary number of classes [Liao et al., 2001]. For the fuzzy c-means, the exhaustive

search is replaced by an iterative search [Jawahar et al., 1997]. The search space for the shape method is

one-dimensional irrespective of the number of classes.
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2.4.3. Local Segmentation

In contrast to global, histogram-based thresholding, locally adaptive segmentation methods also account

for some kind of neighborhood statistic for class assignment in order to smooth object boundaries, avoid

noise objects, or compensate for local intensity changes. Due to the added flexibility, local segmentation

methods often result in more satisfying segmentation results [Iassonov et al., 2009; Wang et al., 2011]. Five

different local segmentation methods, which have all been successfully applied to porous media images in

the past, will be used in this study:

1. L1—Hysteresis:

Hysteresis segmentation, which is sometimes also denoted as bilevel segmentation or region growing, was

introduced as a method to improve edge continuity in gradient images [Canny, 1986]. In the same way, it

improves the class assignment of partial volume voxels in soil images [Vogel and Kretzschmar, 1996; Schl€uter

et al., 2010]. Two thresholds have to be set by the user, a lower threshold that identifies voxels, which defi-

nitely belong to a low-intensity class, and an upper threshold for which the uncertainty of class assignment

is highest. A voxel in the intermediate gray value range is only assigned to the low-intensity class, if a neigh-

bor voxel already belongs to the low-intensity class. In other words, low-intensity voxels serve as seed

regions for iterations of conditional dilations. Unassigned voxels which cannot be accessed by this region

growing process are assigned to the high-intensity class. Hysteresis thresholding is not a multiclass segmen-

tation method in its strictest sense as the procedure has to be repeated n – 1 times for n classes.

2. L2—Indicator kriging:

In this geostatistical method, spatial correlation is used as a local assignment criterion [Oh and Lindquist,

1999; Houston et al., 2013b]. Again, two thresholds are specified by the user to define two a priori classes.

The upper threshold of the unclassified range is extended toward gray values that definitely belong to a

high-intensity class. The class assignment at an unclassified location depends on the weighted average of

indicator values in its neighborhood, where the weights are obtained by kriging. Indicator kriging has to be

repeated n – 1 times for n classes as well.

3. L3—Bayesian Markov Random Field:

The rationale of this probabilistic segmentation method is to find a spatial arrangement of class labels Ĉ

with minimum boundary surface that at the same time honors the gray value data in the best possible way

[Berthod et al., 1996; Kulkarni et al., 2012]. This is a combinatorial optimization problem which is solved in

the framework of Markov random fields (MRF), i.e., by only evaluating the interaction between direct

neighbors:

Ĉ5 argmin
Ĉ

ð

X

ffiffiffiffiffiffiffiffiffiffi

2pr2c

q

1
I0x2lc
2r2c

� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

class statistics

1 b

ð

P

cðcx; cyÞ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

class boundaries

8

>>><

>>>:

9

>>>=

>>>;

(13)

with

cðcx; cyÞ5
21; cx5cy

11; cx 6¼ cy

(

(14)

where X is the population of all voxels, P is the population of all pairs of neighboring voxels x and y, cx is

the class label at x, lc and r2c are class mean and variance, and b is a homogeneity parameter that deter-

mines the weight of the penalty term for class boundaries. Class updating is achieved in a deterministic

order denoted with iterative conditional modes (ICM) [Besag, 1986], where sufficient convergence is usually

achieved after three to five loops.

4. L4—Watershed:

The watershed algorithm uses lines of highest gradient to demarcate class borders locally [Beucher and Lan-

tuejoul, 1979; Vincent and Soille, 1991; Roerdink and Meijster, 2000]. The image is preclassified with simple
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thresholding to set markers for the immersion process. High-gradient zones are subsequently set to unclas-

sified again, as they will be assigned by the watershed algorithm. These high-gradient zones are either iden-

tified by edge detection (Sobel, Canny, etc.) or by a small cubic kernel that detects neighborhoods with

nonuniform class assignment. The latter method produced the better results for the images examined in

this study. The unclassified zones are filled from different ends using the intensity gradient as a pseudo-

height until the watershed line is reached. Finally, the voxels located directly on the separation line and on

plateaus are filled with the most representative class in their neighborhood.

5. L5—Converging Active Contours:

This approach is a combination of the watershed method and active contour methods, which uses gradient

and intensity information simultaneously [Sheppard et al., 2004]. The method is initialized by identifying

seed regions for each class; as in the methods above, this means that each voxel is either assigned to one

of the classes or left unassigned, to be classified during the main segmentation step. Like the watershed

method described above, this initial classification is normally done by thresholding in both intensity and

gradient space; each class has an upper and a lower threshold along with an upper gradient threshold. The

main classification algorithm proceeds by simultaneously growing the boundaries of these seed regions

toward each other. The speed at which the boundaries advance varies spatially and temporally, depending

on the local gradient and optionally on the distance of the local gray value to its class mean. The algorithm

ends when all boundaries have converged. The final separation line assignment problem described above

that affects some watershed methods is not an issue because every nonseed voxel is traversed by one class

boundary before any others. The advancement of the boundaries is implemented efficiently using the fast

marching algorithm; despite this, the method is quite computationally intensive and requires parallel imple-

mentations to operate on large 3-D images.

2.5. Postprocessing

Denoising and boundary refinement can also be applied to the class image C as postprocessing instead of

smoothing the raw image I0. Among the most popular postprocessing methods for binary images are mor-

phological operators like erosion and dilation [Serra, 1982]. However, in multiclass images they would corre-

spond to a minimum and maximum filter, which are not suited for this purpose at all. A median filter, on

the other hand, removes segmentation noise and rugged class boundaries rather well. It does however,

have the unwanted feature that the results happen to depend on the order in which the classes are num-

bered. This is avoided by applying a majority filter ĈMA , which assigns the most representative class among

all neighbors in a cubic kernel to the central voxel. It is common to enforce two criteria to prevent

unwanted features where more than two phases meet: (i) the most representative class exceeds a certain

volume fraction and (ii) the volume fraction of the most representative class exceeds the volume fraction of

the old class at the central voxel by a certain percentage.

An alternative postprocessing method is size-dependent object removal. For this method, each object of

each class has to be labeled. Volumes are then determined by voxel counting, and objects smaller than a

user-dependent threshold are filled with the class that completely surrounds the object. Consequently,

rugged surfaces of big objects are conserved. Small deleted objects at the boundary between two materials

are filled by simultaneous dilation of both materials.

2.6. Structural Analysis

The list of tools with which complex structures like porous media can be analyzed is virtually endless. This

study is constrained to only four very simple, but meaningful metrics. If ground-truth information is avail-

able from a true image I, a misclassification error ME can be determined:

ME5
1

Nx

XNx

i51

dðci ; ĉ iÞ; dðci ; ĉ iÞ5
1; ci 6¼ ĉ i

0; ci5ĉ i

(

(15)

where ci and ĉ i are the true and current class at location i and Nx is the number of all voxels. Bulk volumes V

and surface areas a are examined for each individual phase. Specific interfacial areas between two phases

(a and b) are obtained by the following relation:
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aab5
1

2
aa1ab2acð Þ (16)

where c is the union of all other classes. Both V and a are determined with Minkowski functionals [Vogel

et al., 2010]. In this way, surface area estimates are directly obtained from the segmented voxel image and

problems associated with aligning isosurfaces of each individual phase are avoided. Finally, a dimensionless

connectivity indicator for a specific phase is calculated [Renard and Allard, 2013]:

Ca5
1

N2
a

XNl

i51

n2i (17)

where each cluster of phase a has a label li and a size ni, Nl is the number of clusters and Nn is the number

of all phase a voxels. Cluster labeling is typically achieved with a fast method by Hoshen and Kopelman

[1976]. Ca has the edge over the popular Euler number that it is bounded by (0, 1] and less sensitive to

noise.

3. Results

3.1. Synthetic Test Image

3.1.1. Image Generation

Synthetic images provide ground-truth data against which different image enhancement and segmentation

methods can be compared. The test image in this study is generated to resemble a partially saturated sand

packing. To this end, a volume of 5123 512 3 128 voxels is filled by nonoverlapping spheres with a radius

of r5 50 voxels placed at random locations. If a new sphere does not fit at a given location, the radius

decreases in steps until the overlap vanishes. The location is completely abandoned when r5 20 is reached.

The procedure stops after 250 spheres have successfully been placed resulting in a porosity of 0.412. Subse-

quently, an opening transform [Serra, 1982] is applied to the pore space with a spherical structure element

of r5 15. The pore space which has been removed by this opening is considered to be filled with the wet-

ting phase (w) and the remaining, larger pore bodies are assigned to the nonwetting phase (n). This does

not necessarily produce a physically realistic fluid distribution, but evokes fluid configurations that are simi-

lar enough to serve as a test scenario. The resulting volume fractions are Vw5 0.279 and Vn5 0.133. Gray

values of 50, 125, and 205 are assigned to nonwetting, wetting and solid phase, respectively, resulting in

the true image I. An axial image slice of I is depicted in Figure 1a.

Subsequently, the image is superimposed with ring artifacts, blur, and noise in order to obtain a more realis-

tic, raw image I0 (Figure 1b). The ring artifacts are additive with random height and random radius. The rings

manifest themselves as a random gray value offset in the range [2100,100], where the resulting gray value

is limited at [0,255]. Subsequently, blurring is achieved with a cubic mean kernel of five voxels on a side.

Finally, uncorrelated Gaussian noise is added with a signal-to-noise ratio of rb/rn5 2, where rb and rn are

the standard deviations of gray values in the blurred image and the noise model, respectively.

3.1.2. Denoising and Edge Enhancement

Four different denoising methods (Figures 1d–1g) are applied to the raw image I0 in Figure 1b in order to

remove noise followed by an edge enhancement step to mitigate partial volume effects caused by blur.

The median filter was applied one time with a cubic convolution kernel with a side length of d5 7 voxels.

The anisotropic diffusion filter was applied with j5 15, r5 1.0, and t5 1.5 (nine iterations). The total varia-

tion filter was applied with k5 2 stopping after t5 0.12 (30 iterations). For the nonlocal means filter, a cubic

kernel of d5 9 was used for neighborhood search with a Gaussian convolution kernel of r5 2 in a reduced

search window S of d5 23 voxels. The two criteria for the majority filter are set to an absolute majority of

0.33 and a higher occurrence than the class of the central voxel of 0.05.

The settings of each denoising method have been carefully chosen to achieve strong denoising, deliber-

ately accepting some degree of edge smoothing. Subsequently, an unsharp mask filter for edge enhance-

ment with a Gaussian kernel of r5 1.5 and a weighting factor of w5 0.7 was applied to each denoising

result. Finally, the results of the unsharp mask after anisotropic diffusion ÎAD1UM and total variation
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denoising ÎTV1UM had to be cleaned by a median filter with a d5 5 kernel to smooth rough surfaces that

were enhanced during unsharp masking.

The histograms in Figure 1c and visual appearances in Figures 1d–1g indicate different success in noise

removal and edge preservation. The edges in the median image ÎME1UM appear slightly more blurry than in

the images for the other three denoising methods. Moreover, we observe that the nonlocal means filter

ÎNL1UM is superior in removing ring artifacts during the denoising step alone and does not require the addi-

tional cleanup of rough edges by a median filter mentioned above.

3.1.3. Ring Artifact Removal

The ring artifact routine of Sijbers and Postnov [2004] is applied slice wise with a window size of w5 27 pix-

els and a homogeneity threshold H adapted to the noise level in Figures 1d–1g. The outcome is depicted

for the enhanced image ÎTV1UM after TV denoising and unsharp mask edge enhancement (Figure 2c). Obvi-

ously, the ring artifact removal works well for some rings, but is incomplete for others even after carefully

testing different w and H. For instance, the white ring within the green window exhibits a varying magni-

tude after denoising (Figure 2a). Since the high artifact magnitude in the pore space contributes less than

a b c

Figure 2. (a) Test image after a combination of TV denoising and unsharp masking ÎTV1UM (corresponds to Figure 1f). Yellow frame marks

sharp boundaries before ring artifact removal and the green ring corresponds to the window in polar coordinates. (b) Same image in polar

coordinates after line removal. Green rectangle depicts the moving windowW. (c) Same image after ring artifact removal. The yellow frame

highlights blur due to the back transform into Cartesian coordinates.
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Figure 1. (a) True image I with spheres and size-dependent distribution of wetting and nonwetting phase, (b) raw image I0 exhibiting ring artifacts, blur and noise, (c) histograms before

and after image enhancement. (bottom row) Image enhancement results with different denoising methods in combination with unsharp masking: (d) ÎMD1UM , (e) ÎAD1UM , (f) ÎTV1UM , and

(g) ÎNL1UM .
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half to the window height in Figure 2b, it remains undetected by the median~IðrÞ. Stretching the window

over more than one slice as suggested by Ketcham [2006] does not improve the results. In addition, the

back transform from polar into Cartesian coordinates introduces additional blur for high radii (yellow

frame).

3.1.4. Global Thresholding

In Figure 3a, the well-known Otsu method (G1) is applied as an example to the histogram of ÎNL1UM after

ring artifact removal. Results for the other denoising methods are similar (not shown). The exhaustive search

for each pair of thresholds detects the optimum at tmax
5 {95; 166}. Percentiles of this objective criterion

can be used to obtain fuzzy threshold ranges [Oh and Lindquist, 1999], i.e., t1 is held constant and t0
decreases (or increases) until in this case r2b=hr

2
bimax50:992 is reached at tl0 (or t

h
0 ). The procedure is

repeated for t1 where t0 kept is constant. Applying these thresholds and associated ranges to the underlying

histogram (Figure 3b) reveals a bias of Otsu’s method toward the class with highest volume fraction. Note

that the true optimum, which is estimated by the intersection points of the individual gray value frequen-

cies within in each class of the true image, is at ttrue5f91; 162g. Some other thresholding methods are also

afflicted by bias, yet in different directions (Figure 3c). Fuzzy c-means (G3) show the same bias due to imbal-

anced class probabilities. The shape analysis (G5) performs well since the local histogram minima happen to

coincide with the intersection points in Figure 3b. The minimum error method (G2) is biased due to imbal-

anced skewness, i.e., only the wetting phase exhibits two long tailings due to partial volume effects in both

directions, which increases the probability of being assigned to that class. The maximum entropy method

(G4) fails completely in identifying meaningful thresholds. Figure 3c also depicts the arithmetic mean of

thresholds and associated ranges after outlier removal (G6). This average set of thresholds at t5 {88; 165} is

closer to the true optimum. Note that the specific percentiles for each thresholding method have to be set

individually, as each objective criterion exhibits very different ranges, i.e., some are bounded and yet others

are logarithmic. A large part of the bias in Figure 3c can be removed easily. First, the impact of imbalanced
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Figure 3. (a) normalized objective function of Otsu’s method (G1) with the thresholds detected at the maximum between-class variance and the transition regions stopping at the 0.992

percentile. (b) Histogram of ÎNL1UM after ring artifact removal with thresholds tmax
0 and tmax

1 and transition ranges (½tl0; t
h
0 � and ½tl1; t

h
1 �) detected with Otsu’s method (G1). (c) Threshold

pairs for five different methods (G1–G5) and the corresponding averages after outlier removal (G6). The transition regions ½tl½0;1�; t
h½0; 1�� are obtained accordingly. (d) Same averaging

method after edge masking and histogram clipping.
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skewness is mitigated by masking out partial volume voxels at phase edges [Panda and Rosenfeld, 1978].

Second, the impact of imbalanced class probabilities is reduced by histogram clipping [Pizer et al., 1987]. In

this way, the skewness of the nonwetting and solid phase is also efficiently removed. The combination of

both methods leads to a well-balanced histogram for which each of the surveyed thresholding methods

ends up at similar values (Figure 3d). The average after outlier removal at t5 {90; 162} matches the true

optimum almost perfectly.

3.1.5. Local Segmentation

The average set of thresholds (Figure 3d) are determined for each denoising method individually and then

used for global thresholding as an initial step in all local segmentation methods. Note that a priori segmen-

tation with Bayesian Markov random field (L3) and watershed segmentation (L4) requires single thresholds

tmax
k only, hysteresis segmentation (L1) uses the range ½tlk ; t

max
k �, and indicator kriging (L2) and converging

active contours (L5) use ½tlk ; t
h
k �, with k5 {0; 1}. In addition, converging active contours requires a gradient

threshold, which is determined automatically by unimodal thresholding of the gradient histogram.

The results of each local segmentation method on ÎNL1UM are depicted in Figure 4. The segmentation result

for hysteresis segmentation (L1) is left out, because it is indistinguishable from the outcome of global thresh-

olding (G6). All segmentation results are free of ring artifacts and noise and exhibit smooth object boundaries

which can be mainly credited to successful preprocessing. However, some segmentation results perform bet-

ter than others in the way they recover image features impaired by blur. Incorrectly identified, apparent wet-

ting films that are due to partial volume voxels at class boundaries between the nonwetting and solid phases

(yellow frame) can be mainly attributed to image blur. Indicator kriging (L2) and hysteresis segmentation (L1)

cannot cope with this problem, since these are iterative methods, i.e., the segmentation between wetting and

nonwetting phase is independent of the segmentation between wetting and solid phase.

In principle, Bayesian MRF segmentation (L3) has a mechanism to remove these films. To do so, the homo-

geneity factor b has to be set high, thus also removing true features of similar size. A moderate value of

b5 0.5 is used here. Yet, no matter how high b is set only direct neighbors are evaluated in the MRF para-

digm and since the films are thicker than two voxels they cannot be penalized. Another fundamental short-

coming of Bayesian MRF segmentation that has previously gone unnoticed is its tendency toward bias in

the class statistics (equation (13)). The histogram of the wetting phase exhibits long tailing toward both

a b c

d e f

solid

wetting

non-
wetting

Figure 4. Segmentation results for different local segmentation methods applied on the image after nonlocal means denoising and

unsharp masking ÎNL1UM : (a) original image, (b) global thresholding, (c) indicator kriging, (d) Bayesian MRF, (e) watershed, and (f) converg-

ing active contours. Differently colored frames highlight failures of various methods.
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directions in contrast to only one tail for the other classes (Figure 3c). Consequently, rw is much higher than

rn and the probability of a voxel in the intermediate intensity range to be assigned to the wetting phase

increases accordingly, resulting in even thicker apparent wetting films. This bias is mitigated here by a quick

and rather inelegant fix to use rw/2 for the class statistics instead. In this way, the gray values at which the

penalty functions for adjacent classes cross each other coincide much better with the previously detected

thresholds (Figure 5).

The watershed method (L4) successfully removes apparent wetting films in the yellow frame (Figure 4e).

However, true wetting films are also being removed (white frame). Segmentation with converging active

contours (L5—Figure 4f) exhibit excessive wetting film removal as well. Finally, no method is capable of

restoring the small wetting phase bridge (green frame) in Figure 4, because its intensity is highly smoothed

due to image blur.

3.1.6. Structural Analysis

The shortcomings of the different segmentation methods are corroborated by structural properties of the

nonwetting phase listed in Table 1. The misclassification error ME is roughly 3–4% for all methods including

global thresholding. However, the lowest ME does not guarantee the best recovery of morphological prop-

erties. The bulk volume Vn of the nonwetting phase is slightly underestimated by all segmentation methods,

except for watershed segmentation and converging active contours which show a tendency for overestima-

tion, due to the way partial volume voxels are treated. Surprisingly, simple thresholding and hysteresis

thresholding match the true an value best, whereas indicator kriging and Bayesian MRF underestimate it

and watershed segmentation and converging active contours overestimate it as a consequence of partial

volume voxel treatment. More importantly, the specific interface between fluids awn only diverges from the

total nonwetting surface an if false wetting films are successfully suppressed. Simple thresholding, hysteresis

thresholding, indicator kriging, and Bayesian MRF segmentation all fail in this respect. The only exception is

Bayesian MRF segmentation on the raw data if combined with postprocessing ĈMA , simply because the

majority filter removes partial volume voxels. Watershed segmentation and converging active contours

underestimate awn because a lot of true wetting films are removed as well. The connectivity index of the

true image Cn is matched well by most segmentation methods, because the bubbles remain rather isolated

no matter how wetting films are treated. Oversegmentation of the nonwetting phase with watershed seg-

mentation and converging active contours may lead to lower Cn, however, because (i) the denominator Na

in equation (17) increases and (ii) the increase in bubble volume is evenly distributed among all clusters in

the numerator. The differences in structural properties due to different denoising methods are also listed in

Table 1. Obviously, no denoising at all produced the worst results in all respects. Moreover, the structural

properties do not vary much among the different denoising methods. Surprisingly, a simple majority filter

ĈMA , applied on the segmented raw data without any preprocessing results in the best agreement with the
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true bulk properties. This is because any kind of preprocessing, i.e., denoising and edge enhancement,

removes structural information to some degree.

3.1.7. Final Workflow

At this point, some preliminary conclusions about a suitable image processing protocol can already be

drawn in order to set the workflow for the remaining images:

1. The variability in structural properties among the different denoising methods was rather small. Qualita-

tively, all filters reduce noise in homogeneous areas well. In addition, only the nonlocal means filter suffi-

ciently denoises along edges while smoothing across the edges is inhibited. In this way, an additional

treatment of rugged surfaces after edge enhancement is not necessary. Thus, in the remainder of the paper,

only the nonlocal means filter will be used.

2. A combination of methods for histogram bias correction causes a better agreement between different

threshold detection methods. The outlier-corrected average of five different threshold detection methods

reproduced ground-truth information well and will be used for global thresholding.

Table 1. Structural Properties of Segmented Images for Different Combinations of Denoising and Segmentation Methods: Unsharp

Mask (UM), Median (MD), Anisotropic Diffusion (AD), Total Variation (TV), Nonlocal Means (NL), Majority (MA)a

Denoising ME (–) Vn (–) an (pix
21) anw (pix21) Cn (–)

True Image

0.000 0.133 0.0169 0.0140 0.355

G6—Global Thresholding

I0 0.140 0.141 0.1005 0.0954 0.312

ÎMD1UM 0.028 0.128 0.0168 0.0167 0.355

ÎAD1UM 0.029 0.124 0.0165 0.0165 0.355

ÎTV1UM 0.027 0.127 0.0169 0.0169 0.355

ÎNL1UM 0.027 0.130 0.0172 0.0170 0.354

ĈMA 0.024 0.129 0.0169 0.0168 0.355

L1—Hysteresis

I0 0.107 0.131 0.0722 0.0695 0.346

ÎMD1UM 0.027 0.127 0.0167 0.0167 0.355

ÎAD1UM 0.029 0.123 0.0164 0.0164 0.355

ÎTV1UM 0.027 0.127 0.0169 0.0169 0.355

ÎNL1UM 0.027 0.129 0.0171 0.0170 0.354

ĈMA 0.024 0.128 0.0167 0.0167 0.355

L2—Indicator Kriging

I0 0.037 0.131 0.0202 0.0201 0.386

ÎMD1UM 0.033 0.128 0.0166 0.0166 0.351

ÎAD1UM 0.037 0.122 0.0162 0.0162 0.353

ÎTV1UM 0.032 0.125 0.0165 0.0165 0.352

ÎNL1UM 0.033 0.127 0.0166 0.0166 0.352

ĈMA 0.029 0.131 0.0167 0.0167 0.352

L3—Bayesian MRF (b5 0.5)

I0 0.049 0.133 0.0282 0.0272 0.385

ÎMD1UM 0.027 0.124 0.0163 0.0163 0.356

ÎAD1UM 0.033 0.119 0.0160 0.0160 0.357

ÎTV1UM 0.028 0.124 0.0165 0.0165 0.356

ÎNL1UM 0.028 0.127 0.0166 0.0165 0.356

ĈMA 0.038 0.134 0.0170 0.0140 0.356

L4—Watershed

I0 0.041 0.136 0.0184 0.0112 0.358

ÎMD1UM 0.029 0.135 0.0172 0.0110 0.355

ÎAD1UM 0.025 0.134 0.0170 0.0117 0.355

ÎTV1UM 0.029 0.135 0.0174 0.0111 0.355

ÎNL1UM 0.032 0.137 0.0175 0.0102 0.322

ĈMA 0.037 0.136 0.0174 0.0101 0.359

L5—Converging Active Contours

I0 0.046 0.136 0.0241 0.0178 0.390

ÎMD1UM 0.042 0.136 0.0173 0.0108 0.324

ÎAD1UM 0.042 0.137 0.0172 0.0107 0.324

ÎTV1UM 0.042 0.136 0.0174 0.0110 0.324

ÎNL1UM 0.043 0.138 0.0175 0.0108 0.324

ĈMA 0.043 0.136 0.0175 0.0105 0.360

aME is misclassification error, Vn is volume fraction of nonwetting phase, An is surface area density of nonwetting phase, Anw is surface

area density between nonwetting and wetting phase, and Cn is connectivity index of nonwetting phase.
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3. Hysteresis thresholding and indicator kriging are not capable of multiclass segmentation, which leads to

misclassifaction errors where more than two phases meet locally. Therefore, only converging active con-

tours, watershed and Bayesian MRF segmentation will be applied to the remaining images. Simple thresh-

olding will also be applied for sake of comparison.

4. Segmentation of the raw data with a subsequent majority filter performed slightly better in terms of structural

properties than denoising the intensity data in advance. Both approaches will be compared with each other.

These findings translate into the workflow diagram shown in Figure 6. Some steps are optional, e.g., the

need for edge enhancement depends on the sharpness of the raw image, ROI dilations are only necessary,

if the volume fraction of the phase of interest is very low, etc.

3.2. Synchrotron Image of Three-Fluid Phases in a Porous Medium

3.2.1. Image Enhancement

A sample of sintered glass beads with a porosity of roughly 32% has been scanned at a resolution of 9.24

lm. The pore space was partially saturated with air (14%), oil (39%), and water (47%). The cylindrical region

of interest has a diameter of 665 voxels and height of 210 voxels. The image is free of ring artifacts and is

sharp, without noticeable blur (Figure 7a). The reconstruction method caused a slight decrease in mean

intensity for large radii which is evident in the denoised image after nonlocal means denoising (Figure 7b).

This radial intensity variation can be removed almost completely (Figure 7c) with intensity bias correction

[Iassonov and Tuller, 2010]. This has a considerable impact on the histogram (Figure 7d). The frequency dis-

tributions for each class turns from broad and multipeaked into a narrow band. For the same reasons as dis-

cussed for the synthetic test image, edges are masked out and the histogram is clipped into a well-

balanced frequency distribution, so that five different global threshold detection methods (G1–G5) yield

very similar sets of thresholds. Again, the average after outlier removal (G6) is used for final segmentation

using local methods. Note that edge enhancement with unsharp mask filtering has not been applied, as

there are hardly any partial volume voxels in this image.

3.2.2. Image Segmentation

Simple thresholding (G6), Bayesian MRF segmentation (L3), watershed segmentation (L4), and converging

active contours (L5) are applied to the multifluid image, either on the preprocessed ÎNL or on the raw I0 fol-

lowed by a majority filter. A small subset of the segmentation results are depicted in Figure 8. Since the

exact arrangement of interfaces is unknown, it is difficult to judge objectively what combination of methods

performs best. The edge between beads and air is roughly two voxels thick. In the smooth ÎNL image, the

edge is assigned to oil films, water films or both (Figures 8d, 8f, 8h, and 8j), whereas in the noisy image

edge voxels are equally assigned to all four classes but subsequently assigned to air or beads since they

constitute the most representative class in the neighborhood of an edge (Figures 8c, 8e, 8g, and 8i). It is

almost impossible to conclusively determine whether a fluid film thicker than the image resolution really

covers the beads entirely. However, small isolated water voxels between solid voxels and oil film are highly

unlikely, and should be suppressed. Global thresholding without postprocessing has no mechanism to

Figure 6. Workflow diagram for multiclass segmentation of the remaining multifluid image and soil image. Headlines denote image proc-

essing steps and gray boxes the specific methods.
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achieve this. Bayesian MRF segmentation of ÎNL only succeeded in doing so with a relatively high homoge-

neity parameter (b5 10). In turn, watershed segmentation fails to detect an oil film at the left side of the

pendular water ring, either because of a lacking seed voxel for oil or because the underlying gradient image

is not sharp enough to evoke two distinct edges within such a short distance. Converging active contours

result in subjectively plausible results for both I0 and ÎNL .

3.2.3. Image Analysis

The qualitative analysis illustrated in Figure 8 is corroborated by the results with respect to structural analy-

sis in Table 2. The bulk volumes of air and oil, Va and Vo, remain largely unaffected by the choice of
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Water Resources Research 10.1002/2014WR015256

SCHL€UTER ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 3630



segmentation methods. The surface area densities ao, aa, and aao, however, vary considerably among differ-

ent segmentation methods. This is because small image objects like films, meniscii, and ganglia exhibit

large surface-to-volume ratios and at the same time are associated with the highest uncertainty in terms of

class assignment. A majority filter ĈMA leads to a general reduction in surface areas and to very similar

results for all segmentation methods. The surface areas increase with a decreasing boundary penalty factor

b for Bayesian MRF segmentation on ÎNL and are highest for global thresholding on ÎNL , where there is no

penalty term at all. The ao and aa values for b5 10 are very similar to all postprocessed class images ĈMA ,

to the outcome of converging active contours on ÎNL , and to the result after watershed segmentation on

ÎNL . Yet, the specific surface area between air and oil (aao5 0.149) is as much as � 27% higher than the

average of other methods (aao5 [0.107 – 0.130]). Eventually, a decision as to which image is closer to reality

needs to be made. But without an analytical solution or other ground-truth information such a decision will

suffer from a certain level of subjectivity.

3.3. lCT Image of Soil

3.3.1. Image Enhancement

The soil image corresponds to image 2 in Houston et al. [2013b] with a size of 256 3 256 3 256 voxels and

a resolution of 32 lm. The sample consists of macropores (Vp � 12%), organic matter (Vo � 13%), soil matrix

(Vm � 72%), and dense particles like rocks (Vr � 3%). The raw data I0 (Figure 9a) is again denoised with a

nonlocal means filter ÎNL (Figure 9b). Afterward, edges are enhanced by an unsharp mask ÎNL1UM with r5 1

and w5 0.5 so that intensity values of partial volume voxels are forced closer to their respective class means

(Figure 9c). The gradient mask in Figure 9d detects partial volume voxels at phase edges which are

excluded from subsequent threshold detection. Each of these methods has a favorable impact on the inten-

sity histogram (Figure 9e) in that valleys between the class peaks are much more pronounced. The combi-

nation of all methods, i.e., edge masking on ÎNL1UM , together with histogram clipping leads to a modified

histogram for which all five threshold detection methods (G1–G5) lead to similar results (Figure 9e). The

average after outlier removal (G6) is again used for all locally adaptive segmentation methods.

3.3.2. Image Segmentation

Only some of the segmentation methods introduced in this paper are applied to the soil image. Global

thresholding of the raw data I0 in combination with a majority filter ĈMA (Figure 10a) shall serve as a ref-

erence to which the other methods can be compared. Evidently, simple thresholding already leads to

rather satisfying results if it is accompanied by suitable postprocessing. However, the segmented image

clearly suffers from false organic coatings around macropores which can be attributed to incorrect

assignment of partial volume voxels (violet frame). This misclassification of boundary voxels can be

avoided with watershed segmentation (Figure 10b) and converging active contours (Figure 10c) both

applied to denoised and edge-enhanced image ÎNL1UM . In addition, even thin macropores are correctly

detected (green frame). Bayesian MRF segmentation is applied to ÎNL1UM with b5 0.1, b5 1, and b5 10,

Table 2. Volume Fractions V and Surface Area Densities a of Air (a) and Oil (o) for the Segmented Multifluid Imagea

Denoising Va (–) aa (mm21) Vo (–) ao (mm21) aao (mm21)

G6—Global Thresholding

ĈMA 0.047 0.400 0.125 1.621 0.120

ÎNL 0.046 0.545 0.125 2.281 0.384

L3—Bayesian MRF

ĈMA ðb5 0:1Þ 0.047 0.482 0.125 1.840 0.215

ÎNL ðb5 0:1Þ 0.046 0.505 0.124 2.214 0.369

ÎNL ðb51Þ 0.046 0.459 0.125 2.063 0.327

ÎNL ðb510Þ 0.046 0.397 0.125 1.686 0.149

L4—Watershed

ĈMA 0.048 0.403 0.127 1.646 0.107

ÎNL 0.048 0.406 0.127 1.631 0.109

L5—Converging Active Contours

ĈMA 0.047 0.421 0.121 1.642 0.130

ÎNL 0.048 0.407 0.123 1.650 0.119

aDenoising is either applied prior to segmentation with a nonlocal means filter ÎNL
� �

or as postprocessing with a majority filter

ĈMA

� �
.
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respectively (Figures 10d–10f). We observe that the segmented images look very different for different b. If

the penalty term for class boundaries (second term of equation (13)) has a low weight (b5 0.1), the image

looks very similar to (Figure 10a), i.e., all image objects are well preserved, yet all macropores exhibit false

coatings of organic matter. In turn, if the homogeneity parameter is set very high (b5 10), partial volume

effects are suppressed and so are small image objects in general, like the thin macropore in the green

frame. A moderate value (b5 1) leads to an unsatisfactory trade-off between the two problems.

3.3.3. Image Analysis

The qualitative interpretation is again corroborated by structural properties of macropores and organic matter

summarized in Table 3. Bulk volume and surface area vary much more among different segmentation meth-

ods as compared to the multifluid image. For instance, the surface area density aop between organic matter

and macropores decreases by a factor of 2.5 if the homogeneity parameter for Bayesian MRF segmentation is

increased from b5 0.1 (Figure 10d) to b5 10 (Figure 10f), and is even smaller for watershed segmentation

(Figure 10b) and converging active contours (Figure 10c). In addition, the connectivity indicator C is also sensi-

tive to the choice of segmentation method, because small objects close to the image resolution have a high

impact on the continuity of a phase. Therefore, macropore connectivity increases from Cp5 (0.72 – 0.80) to

Cp5 (0.83 – 0.84) if thin macropores that connect larger pore bodies are correctly identified, e.g., the green

frame in Figure 10. At the same time, the connectivity of organic matter decreases drastically from Cp5 (0.94

– 0.96) to Cp5 (0.64 – 0.74) if false organic coatings of macropores (violet frame) are successfully suppressed.

4. Discussion

4.1. Image Enhancement

We have demonstrated how essential a suitable combination of image enhancement methods can be for

subsequent image segmentation. The correction of intensity bias due to beam hardening was adequately
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corrected by the method of Iassonov and Tuller [2010], since the examined sample was cylindrical and fairly

homogeneous. If the intensity bias had a more complex shape, which cannot be readily described as func-

tion of radius, the bias model could have been obtained by interpolation instead. For instance, the

approach of Yanowitz and Bruckstein [1989] to use the Laplace equation to interpolate a threshold surface

between slowly varying gray values along phase boundaries can be adapted to interpolate a bias surface

between objects of the highest intensity class. Even better results can be expected by using the Poisson

equation for this purpose [P�erez et al., 2003]. The ring artifact removal routine [Sijbers and Postnov, 2004]

succeeded in removing most of the rings. However, the ring artifact removal is incomplete if the artifact

magnitude is not constant along rotation angle /. Moreover, the back transform from polar into Cartesian

a b c

d e f

soil matrix
rock

organic
matter

pore

Figure 10. Image segmentation of the soil image: (a) global thresholding on I0 with postprocessing, (b) watershed segmentation on ÎNL1UM , (c) converging active contours on ÎNL1UM ,

(d–f) Bayesian MRF segmentation on ÎNL1UM with b5 {0.1, 1, 10}, respectively.

Table 3. Volume Fractions V, Surface Area Densities a, and Connectivity Indices C of Pores p and Organic Residues o for the Soil Imagea

Denoising Vp (–) Vo (–) ao (mm21) aop (mm21) Cp (–) Co (–)

G6—Global Thresholding

ĈMA 0.082 0.213 2.74 0.91 0.721 0.953

ÎNL 0.096 0.190 3.30 1.29 0.777 0.940

L3—Bayesian MRF

ĈMA ðb5 0:1Þ 0.085 0.208 2.63 0.91 0.734 0.953

ÎNL ðb5 0:1Þ 0.093 0.197 2.97 1.12 0.787 0.950

ÎNL ðb51Þ 0.086 0.193 2.13 0.71 0.795 0.961

ÎNL ðb510Þ 0.087 0.176 1.46 0.44 0.822 0.963

L4—Watershed

ĈMA 0.110 0.137 1.05 0.30 0.802 0.652

ÎNL 0.117 0.127 0.84 0.25 0.834 0.644

L5—Converging Active Contours

ĈMA 0.088 0.135 1.24 0.40 0.730 0.744

ÎNL 0.129 0.116 0.66 0.24 0.825 0.681

aDenoising is either applied prior to segmentation with a nonlocal means filter ÎNL
� �

or as postprocessing with a majority filter

ĈMA

� �
.
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coordinates introduces additional blur that increases with radius r. Thus, the performance is always some-

what worse as compared to line removal directly applied on the sinograms when this is possible [Ketcham,

2006]. Also, some methods operate on rings in Cartesian space directly [Freundlich, 1987]. Finally, Fourier

and wavelet filters generally lead to improved ring removal [Raven, 1998; M€unch et al., 2009].

The surveyed denoising methods were efficient in removing noise while keeping the blurring of edges at a

minimum, given that the associated parameters are set adequately. In fact, image noise today has become

a secondary issue for successful image analysis. Instead, image blur has been identified as more of a pitfall

for the success of the various segmentation methods in this study. Edge enhancement with unsharp masks

partly mitigates image blur, but is not capable of removing partial volume effects completely. Surely, future

advances in X-ray tomography hardware and reconstruction software will lead to steady improvements in

image quality, so that sharper images can be acquired on a routine basis.

One of our significant findings was that even though image enhancement is often indispensable for robust

threshold detection, it does not necessarily imply that the segmentation itself also has to be applied to the

enhanced image. Instead, segmenting the raw data with the thus obtained thresholds may lead to fewer

misclassification errors if suitable postprocessing is applied to the segmented images. This is because any

image enhancement inevitably destroys some structural information in the raw data. For the images exam-

ined in this study, a majority filter on the segmented raw data produced good results, mostly because the

objects had rather smooth, convex boundaries. In turn, a majority filter can be a less desirable option if true

objects are thin, concave, have rough surfaces or acute angles. It is up to the user to always compare and

decide which is the most favorable option.

4.2. Global Thresholding

We have demonstrated that every histogram-based thresholding method relies on certain assumptions

about the histogram shape. This introduces some bias if the class modes have different variance, skewness,

or proportion. Many bias correction techniques for the standard methods used here have been suggested.

For instance, minimum error thresholding can be corrected for imbalanced overlap [Cho et al., 1989] or can

be used with Poisson distributions for each class instead of Gaussian distributions [Pal and Bhandari, 1993].

Shannon entropy can be replaced by Tsallis entropy for maximum entropy thresholding, allowing for an

additional degree of freedom that can be used to tune the results [de Albuquerque et al., 2004]. Fuzzy c-

means can be corrected for imbalanced class proportions [Jawahar et al., 1997]. The list is virtually endless.

However, we found it more useful to (i) put some effort into suitable image enhancement prior to thresh-

olding, (ii) alleviate the impact of bias by histogram clipping, and (iii) use the average after outlier removal

to determine thresholds for subsequent segmentation. Even with this preprocessing methodology there

might be soil images that still exhibit unimodal histograms due to a lot of unresolved porosity or very

imbalanced class proportions [Wang et al., 2011; Baveye et al., 2010]. The second problem can be avoided

with a semiautomatic algorithm based on ROI dilations (Figure 11). For instance, small rocks constitute only

3% to volume in the soil image and are hard to distinguish as an individual class in the histogram. The

threshold for the region of interest (ROI) is set to the class mean (t5ls5 203). Consecutive dilations of the

ROI mask lead to a clearly bimodal histogram for which a threshold between the soil and rock class can be

easily identified. Note that the thus obtained local histogram minimum at 182 is very close to t5 185 in Fig-

ure 9f, but much easier to identify. An alternative to deal with unimodal histograms, which is, however,

restricted to two-class segmentation, is to estimate a threshold from the mean gray value within edge

regions [Panda and Rosenfeld, 1978; Schl€uter et al., 2010]. The problem of too much unresolved porosity or

too gradual intensity changes is more severe and puts the entire concept of segmentation into question. In

this case, some morphology analysis can be deployed to the intensity data directly, including distance trans-

forms [Jang and Hong, 2001], isosurfaces [McClure et al., 2007], skeletonization [Chung and Sapiro, 2000], or

tortuosity [Gommes et al., 2009].

4.3. Local Segmentation

We have corroborated the importance of using locally adaptive methods truly capable of multiclass seg-

mentation instead of applying iterations of binarizations [Tuller et al., 2013]. Methods that fulfill this criterion

are Bayesian MRF segmentation [Berthod et al., 1996; Kulkarni et al., 2012], watershed segmentation [Beucher

and Lantuejoul, 1979; Vincent and Soille, 1991; Roerdink and Meijster, 2000], and converging active contours

[Sheppard et al., 2004]. Bayesian MRF segmentation was originally developed for image classification in the
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presence of additive noise and is based on the assumption that individual class modes follow a Gaussian

distribution. This causes failure of the method for denoised images with pronounced partial volume effects

due to image blur, which leads to either one-sided or two-sided tailings in the histogram. As a consequence,

special care has to be taken to correct for this histogram bias. In addition, the results depend heavily on the

homogeneity parameter b. Erroneous assignment of partial volume voxels could only be suppressed with a

high penalty on class boundaries (b5 10), which at the same time removed true image features of similar

size. A promising improvement of the Bayesian MRF segmentation, especially if applied to fluid images,

would be to replace the unspecified penalty term (equation (14)) with real surface tensions [Knight et al.,

1990; Silverstein and Fort, 2000]. In fact, any noninvasive laboratory technique which provides independent

measurements about a structural property of the same sample can potentially help to condition segmenta-

tion parameters. This has been recently demonstrated for three-phase segmentation of limestone via hys-

teresis thresholding, where the region growing parameters were conditioned by independent porosity

measurements [Mangane et al., 2013].

For the watershed segmentation in its current implementation, a benefit is that it only requires simple

thresholding and a gradient image. However, the lack of additional parameters also hampers flexibility.

Therefore, excessive elimination of wetting films in the synthetic image could not be avoided. In contrast,

the somewhat similar converging active contours method honors local gradient and intensity information

at the same time. A reported drawback of this method is its sensitivity to seed region detection and the

adjustment of parameters for the speed function [Iassonov et al., 2009]. In this paper, we demonstrated

strategies to define the seed regions automatically. In addition, the parameters for the speed function can

be obtained directly by a careful evaluation of the gradient histogram (Figure 12). The frequency of local

gradients is almost always unimodal, and therefore, difficult to threshold with standard methods. Yet, every

unimodal histogram exhibits some characteristic features such as a point of maximum curvature [Tsai,

1995] or the point of maximum distance from an auxiliary line between the histogram mode and the maxi-

mum bin [Rosin, 2001] (Figure 12, inset). In addition, some gradient histograms may exhibit secondary

shoulders if the intensity data comprise fairly constant edge heights. Picking one of these points as a gradi-

ent threshold would result in a fully objective segmentation method. In this study, we always used the gra-

dient cutoff detection with Rosin’s method. In turn, adjusting this cutoff adds some flexibility to the speed

function in the same way as b scales the penalty term in the Bayesian MRF method. For instance, we

achieved a very good reproduction of the true interfacial area between fluids awn in the synthetic test image

by setting the gradient cutoff to a higher value.

As expected, objects that are close in size to the image resolution were associated with the highest uncer-

tainty in all test images. Five voxels in diameter has been suggested as a rough estimate for an object size

limit for which image analysis is reliable [Lehmann et al., 2006; Vogel et al., 2010]. Features like the thin oil
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films and pendular rings at grain contacts in the synchrotron image clearly do not meet this criterion. Brown

et al. [2014] compared surface area densities of smooth fluid interfaces for the same kind of three-fluid sam-

ples when improving the image resolution from 10.6 to 5.3 lm and observed an increase in the range of 5–

16%, depending on the specific fluid pair. An improvement in resolution usually comes at the cost of a

smaller field of view as far as industrial scanners are concerned, as well as increased noise unless the scan

time is increased as well. For heterogeneous media, especially, there is a trade-off between a representative

image size and sufficient resolution to capture important details. However, the scale window can also be

extended toward smaller objects by scanning the same sample at different resolutions, even with different

imaging techniques, and merging the images with image registration [Latham et al., 2008], statistical fusion

of images [Mohebi et al., 2009] or scale fusion applied to structure analysis data only [Vogel et al., 2010;

Schl€uter et al., 2011]. Finally, for this study, we have merely compared the outcome of different local seg-

mentation methods with each other. Of course, several methods can also be combined. For instance, Bayes-

ian MRF segmentation with surface tensions could be used for postprocessing the outcome of converging

active contours. If necessary, postprocessing with a majority filter could also be applied in addition to

denoising prior to segmentation. After all, the choice of a suitable protocol always depends on characteris-

tics of the raw data.

5. Conclusions

We have surveyed recent advances in image enhancement and image segmentation of multiphase X-ray

microtomography data. Image enhancement methods included ring artifact removal, intensity bias correc-

tion, edge enhancement, image denoising, and contrast enhancement. Image segmentation methods com-

prised six global segmentation and five different locally adaptive segmentation methods. Some general

conclusions can be drawn from our findings:

1. Image blur is the major cause of poor segmentation results in this study, since image noise and other

image artifacts could be removed with current image processing methods.

2. A lot of uncertainty in threshold detection can be removed by suitable preprocessing and correction of

histograms for bias in the class statistics prior to thresholding.

3. Bayesian Markov random field segmentation, watershed segmentation and converging active contours

are suited for multiclass segmentation. The converging active contour method has potentially the highest

flexibility to correct for partial volume effects and simultaneously conserve small image features.
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Figure 12. Gradient histogram computed on a Sobel image of ÎNL1UM for the synthetic image. Each unimodal histogram has a unique

point of maximum curvature and maximum distance from the auxiliary line depicted in the inset. In addition, the shoulder in the histo-

gram produces a local minimum, which can be detected as well.

Water Resources Research 10.1002/2014WR015256

SCHL€UTER ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 3636



Appendix A

Most image processing steps presented in this study can be done with freely available software. The only excep-

tions are the nonlocal means filter for denoising and the watershed method for segmentation, which were car-

ried out with AVIZOVR FIRE (http://www.vsg3d.com/avizo/fire). Moreover, the converging active contours method

for segmentation was performed with MANGO (http://physics.anu.edu.au/appmaths/capabilities/mango.php).

The conversion between Cartesian and polar coordinates for ring artifact removal was performed with the

freely available Polar Transformer (http://rsbweb.nih.gov/ij/plugins/polar-transformer.html) plug-in for

IMAGEJ. All other image processing steps are either built on or directly implemented in the QUANTIM (http://

www.quantim.ufz.de) open-source image processing library.
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