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ABSTRACT

This technical report summarizes the image processing research

activities performed by the University of Southern California during

the period of 1 March 1975 to 31 August 1975 under Contract No.

FCe6C6-72-C-OCCe with the Advanced Research Projects Agency,

Information Ptocessimg Techniques Office.

The research program, entitled, "Image Processing Research,!, has

as its primary purpose the analysis and development of techniques and

systems for efficiently generating, processing, transmitting, and

iisplaying visual images and two dimensional data arrays. Research is

oriented toward digital prccessing and transmissicn systems. Five

task areas are reported on: (1) Image Coding Projects: the

investigation of digital bandwidth reductton coding methods; (2) Image

Restoration and Enhancement Projects: the improvement of image

fidelity and presentation format; (3) Image Data Extraction Projects:

the recognition of objects within pictures and quantitative

measurement of image features; (4) Image Analysis Projectsz the

development of quantitative measures of image quality and analytic

representation; (5) Image Processing Systems Projects: the development

of image processing hardware and software support systems.
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1. Research Project Overview

This report describes the progress and results of the University

of Southern California image processing research study for the 9eriod

of 1 March 1975 to 31 August 1975. The image processing research

study has been subdivided into five projects:

luaSe Coding Projects

Image Restoration and Enhancement Projects

Image Data Extraction Projects

Image Analysis Projects

Image Processing Systems Projects

In image coding the orlentation of the research is toward the

development of digital image coding systems that represent monochrome

and color images with a minimal number of code bits. Image

restoration is the task of improving the fidelity of an image An the

sense of compensating for image degradation. In image enhancement,

picture manipulaticn processes are performed to provide a more

subjectively pleasing image, or to convert the image to a form more

amenable to human or machine analysis. The objectives of the image

data extraction prcjects are the registration of images, detection of

objects within pictures and measurements of image features. The image

analysis projects comprise the background research effort into the

basic structure of images in order to develop meaningful quantitative

characterizations of an image. Finally, the image processing systems

projects include research on image processing computer languages and

the development of experimental equipment far the sensing, processing,

and display of images.



The next section of this ra~crt summarizes some of the research

project activities during the past six months. Section 2 is a ltst of

puklications by pLcject members. sections 3 to 6 describe the

research effort on the projects listed above during the reporting

period.
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2. Publications

The following is a list of papers, articles, and reports of

research staff members of the USC Image Processing Institute which

have been published or accepted for publication during the past six

months, and which have resulted from ARPA sponsored researck.

H.C. Andrews, "Numericdl Analysis Techniques in Digital Imge

Restoration," Proceedings 1975 Symposium on Circuits and Systems,

April, 1975.

H.C. Andrews, "MTF Restoration by Pseudoinversion," Proceedings of

the International Optical Computing Conference, April, 1975,

Washington, D.C.

H.C. Andrews, Chapter 4, "Two Dimensional Transforms," Picture

Processing and Digital Filtering, F.S. Huang, ed., Springer Verlag,

May, 1975.

H. C. Andrews and C. L. Patterson "Outer Product Expansions and

Their Uses in Digital Image Processing," IEEE Transactions on

Computers, (accepted for publication).

H. C. Andrews and C. L. Patterson, "Digital Interpolation of

Discrete Images," IEEE Transactions on Computers (accepted for

publication).

H. C. Andrews and C. L. Patterson, "Sinjular Value Decompositions

and Digital Image Processing," IEEE Transactions on Audio, Speech, and
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Signal Processingl (accepted for publicationo)

H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice

Hall (accepted for publicaton).

S. B. Dashiell and A. A. Sawchuk, "Optical Synthesis of Nonlinear

Nonmonotonic Functions," accepted for publication in Optics

Ccmmunicatons.

W. Frei, "The Need for a Iinimum Picture Data Basis," presented at

1975 IEEE Computer Society Workshop on Machine Pattern Analysis, March

3-5, 1975.

W. Frei, "Accuracy Considerations for Digitized Images and Hazdcopy

Output," presented at 1975 IEEE Computer Society Uorkshop on Machine

Pattern Analysis, March 3-5, 1975.

E. L. Hall, W. 0. Crawford, And F. E° Roberts, "Moment

Measurements for Ccmputer Texture Discrimination in Chest X-Rays,"

IEEE Transactions Bignedical Engineering, November, 1975.

E. L. Hall, Z. H. Cho, J. K. Chan, 0. P. Kruger and D. G.

McCaughey, "A Comparative Study of 3-D Image Recqnstruction

Algorithms," IEEE Trans. on Naclear Science, March, 1975.

E. L. Hall, R. P. Kruger and A. F. Turner, "Automated

Feasurements frcm Chest X-Rays for Lunj Disease Class4fication,"

USA-Japan Computer Ccnference, August, 1975.

E. L. Hall, R. P. Kru3er and A. F. Turner, "Automated
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Measurements from Chest X-Rays," Proceelings of the Computer

Applicatons in Radiclogy Ccnference, March, 1975.

E. L. Hall, 5. B. Thcupson, G. Varsi and R. Gaulden, "Computer

Measurement of farticle Sizes in Electron Microscope Images,." IEEE

Trans on Systems, Man and Cybernetics, to be published, 1975.

G. C. Huth and E. L. Hall, "Computer Tomography and its

Application to Nuclear Medical Imainj," Computers *n Nuclear

medicine, to be published.

K. D. A. Mascaxenhas and V. K. Pratt, "Digital Image Restoration

Under a Regression Model," IEEE Transactions on Circuits and Systems,

March, 1975.

N. E. Nahi and H. Naraghi, "A General Image Estimation Algorithm

AFilicable to Multiplicative and Non-Gaussian Noise," Proceedings of

18th nidvest Symposium on Circuits and Systems, August 11-12, 1975,

Concorshia Univ., Montreal P.O., Canada.

N. E. Nahi and A. Habibi, "Nonlinear Recursive Image Enhancement,"

IEEE Transactions on Circuits and Systems, narch, 1975.

R. Nevatia, T. 0. Binford, "Recognition and Description of Complex

Curved Objects," Fifth Annual Symposium on Imagery Pattern

Recognition, University of Maryland, April 17-18, 1975.

1. Navatia and 1. 0. Binford, "Recognition and Description of

Complex Curvei Objects", Fifth Annual Symposium on Automatic Imagery

Pattern Recognition, Univ. of Maryland, April 1975.
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R. Nevatia, "Object Boundary Determination in a le;tured

Environment#" (T9 be presented) Annual ACM Conference, MHnneaFolis,

October 1975.

B. Nevatia, "tepth Measurement by Motion Stereo," Accepted for

publication in Ccmputer Graphics and Image Processing.

R. Nevatia, "Struct-red Descriptions cf Complex Curved Objects for

Recognition and Visual Memory," Accepted for publication as a bpok by

Birkhauser-Verlag, Basle, Switzerland.

V. K. Pratt and M. Huhns, "DPCH Quantization Error Reduction for

Image Coding," Society of Photo-Optical Instrumentation Engineers,

19th Annual Technical SymFosium, San Diego, August, 1975.

V. K. Pratt and C. E. Mancill, "Spectral Estimation Techniques for

the Spectral Calibration of a Color Image Scanner," Applied Cptics,

November, 1975.

V. K. Pratt, "Vector Space Formulation of Two Dimensional Signal

Processing Operations, Journal Computer Graphics and Image Processing,

Academic Press, March, 1575.

J. A. Roese, V. K. Pratt, G. S. Robinson, A. Habibi,

"Interframe Transform Codinj and Prelictive Coing ,etods," IEEE

Internatonal Comnunicatons conference, San .rancisco, June, 1975.

J. A. Boese, G. S. Robinson, "Combined Spatihl and Temporal Coding

of Image Sequences", 19th Annual SPEI Symposium on Efficient

Transmission of Pictorial Information, San Diego, Calif., August
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A. A. Sawchuk and M1. J. Peyrovian, "Restoration of Astigxatism and

Curvature of Field", Journal of the Optical society of America, vol.

65, 1975.

A. A. Sdvchuk and S. R. Dashiello "Nonmonotonic Nonlinearities in

OFtical Processing", Proc. IEEE International Optical Computing

Conference, Washington, D.C., April 23-25, 1975.

V. B. ThomFson, A. F. Turner, and H. P. Kruger, "Automated Chest

Radographic Diagnosis." accepted for publication, Investigative

Radiology.

V. E. Thompson, A. L.. Zobrist, "Building a Distance Function for4

Gestalt Grouping," acceptei for publication IEEE Transactions on

Ccaputers.
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3. Image Coding Prcjects

The effort in image coding is directed toward the research and

development of image coding systems providing a transmission bit rate

reduction and tolerance to channel errors. Coding systems are under

investigation for: monochroma and color imagery; slow scan and real

time television; and information preserving and controlled fidelity

operation. Results of this research study during the past six months

are summarized here and presented in detail in subsequent sections.

3.1 Singular Value Decomposition Image Coding

Harry C. Andrews

The singular value decomposition algorithm (also referrei to as

SVD) is a computational algorithm develoFed for a variety of

applications including matrix diagonalization, regression, and

pseudoinversion [1,2]. The algorithm has also been suggested for

image coding L3,4]. By approaching the image coding task from a

vievFoint of numerical analysis, it is possible to formulate a

solution in terms of least squares methods which results in

deterministically best truncation errors over all other unitary

transforms [6]. A discrete image may be considered to be an array of

nonnegative scalar entries formed into a matrix. Let such an image

matrix be designated as G. Uithout loss of generality, let G be

square with a quadratic form given by

LIJ I II -8-



BTG =A a (

where the A and B matrices are assumed unitary. Solving for a it is

observel that

a= ATG B (2)

The matrix is seen to be the "transform" of the image matrix where

A transforms the columns of the image and J1 transforms the rows of

the image. A list of traditional transform techniques is presented in

Table 1 indicating some of the properties of the individual transform

methods. The entries are listed in terms of general decreasing

usefulness as decorrelation devices as well as decreasing c9mplewity.

The first entry in the table is the one of interest here and has

decidedly different transform properties from the remaining. The

singular value deccupositicn (SVD) method has the unique property that

the coefficient matrix A , is diagonal with at most only N nonzero

entries. The defimition of this transform is given by

Tr
a=A2= UTGV (3)

where

-9-
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G GT U A UT (Ia)

and

G G=VAVT  (4ib)

The A matrix is diagonal and comprises the singular values og the

picture matrix G, while U, and V are the respective singular vector

matrices of and GG, and are orthogonal as a result of the

TT
nonnegative definiteness cf GG and GTG. Because of these properties

of U and V it is possible to solve for the image matrix such that

AaV (5a)

or equivalently

R T
G = u.v. (5b)

i= I

Where R 4 and represents the rank or number of nonzero singular

values hi • The coiiny implications are that one must transmit the 2N

singular vectors as well as N singular values for image reconstruction

at the receiver. Figure 1 presents a pictorial representation of the

sinjular value decomposition. Traditional image transform methods

-11-



Man

4-

-r

+' 

0H

4--

+Hi

00



-TT

usually break am image up into subblocks for ease 4a hardware

iuFlementatioas. This technique is dev9loped here because the

computdtional expenses for large image singular value decompositions

is great. Specifically, if an M x M image is broken into N x N

3
sutblocks, then each subblock takes on the order of N computations to

get to the SVD domain. Since there are (M/N) such subblocks, a total
2 3"

of 42 N computaticns are required as ccmpared to M3 computations Af the

entire image were decomposed. A similar comparison exists for fast

computational tsansforms which require M log N total subblock

operations for the M x M image. Thus the number of computations for
2 2

SVD ccmpared to fast transforms is M N vs M log N. The ratio of N/log

N increase to isulement the SVD transform on 16 x 16 subblock sizes is

only a factor of 4 for SVD versus Fourier, cosine, walsh, or the like.

Figure 2 contains a block diagram of the SVD coding scheme. The

major components at the transmitter consist of the SVD domain

transformer, a possible truncator, and parallel singular value and

singular vector coders. The SVD transformer, as discussed above,

wouli require on the order of four times the number of real

computations ccmpared to a real N Zlog N transform algorithm. The

truncator is included in th.3 diagram to emphasize the tremendously

large energy compaction ptoperty of the SVD technique. From eq. (6)

the truncated image GK  may contain an extremely large amount of

original image energy in a very few nusbir of singular values.

The two remaining blocks in the coder concern themselves with the

singular value codinj and singular vector coding. In the former the

-13-
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large dynamic range of the singular values indicates a certain amount

of care needed for coding, but because there are so few large dynamic
2

ranged coefficients, (N vs.N ) the total bit requirement still remains

low. The singular vector coding algorithm is broken into two

components, that associated with the first singular plane (or

eigenimage) and that associated with the remaining eigenimage planes.

Because each of these planes (actually two vectors which when, outer

Froducted, produce a plane) is orthonormal, the scalar entries in the

singular vectors are quite well behaved, and lend themselves to easy

requantization.

Using the basic configuration of figure 2, the number of bits

necassary for transmission of a subblock then becomes a function of

the truncation, if any, the bit distribution over the singular values,

and the bit distribution over the singular vectors. lypical

distributions on the singular values track the variance of these

values, and, in fact, tend to be proportional to the value itself.

For the singular vectors, two more hits are provided for scalar

entries of the first eigenimage than for subsequent eigenizages. In

addition, because the singular vectors are orthonormal, one need not

transmit N scalar values per vector but only N-i-i such values for the

i-th vector. (Orthcnormality reduces the degrees of freedom cn the

vectors such that the vectors can be ccmplete4 at the receiver.)

In order to develop efficient guantizers and coders for the SVD

dcmain, a test image (512 x 512) was broken into 16 x 16 subblocks and

data was gathered over each subblock of the entire frame. Statistics

-15-



,escribing the singular value.; and vectors were then gathered and are

described here. For 16 x 16 subblocks, one obtains 16 singular values

and monotonic decreasingly ordered means and variances of each

singular value can be cimputed. The exceedingly large dynamic range

of between 4 and 5 orders cf magnitude indicates the need fpr variable

bit coding as a functicn of the singular value index. The

distribution of the singular values naturally is one sided (no

negative entries) and appears as a curve intermediate between a broad

Gaussian and uniform density.

The statistics describing the singular vectors are much better

behaved. Figure 3 presents two specific singular vectors from a

particular suthlock as an illustration of the shape of these

parameters. The singular vectors tend to be well behaved in their

range and tend tc have an increasing number of zero crossings as a

function of increasing index. In fact it is known that the first

singular vector never exhitits zero crossings when the subblock is

ncnnegative (as it always is for imagery) [7). Thus the lower indexed

vectors tend to have a great deal of adjacent sample correlaticn.

Since the first vector for both ILand _T are guaranteed to have no

zero crossings (similar to the dc vectors of Fourier, Walsh, cosine,

etc. transforms), these vectors form a separate set of statistical

parameters from the remaining set. The mean vector over all subblocks

in the test image becomes a constant value of 0.25 with a very tight

-3
variation provided by a variance of 10 . Naturally a given first

singular vector will not, in fact, be a constant of value 0.25 (the

-16
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a) 51h Singular Vector
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b) 1th Singular Vector

Figure 3.1-3. Typical singular vectors.



appropriate normalized value to guarantee orthonormality), but will

have variations which when weighted by the corresponding large

singular value will appear 4uite different from a constant. In fact

the distribution of the scalar values defining the entries in the

first singular vector are very close to Gaussian with parameters

-3
NJO.25,10 ).

The remaining eigenvectors are also quite well behaved with the

average or mean of each cf these vectors being the zero vector. The
-1

variance of these singular vectors is on the order of 10 and the

scalar entries which comprise these vectors are also close to acrually

distributei with '((0,10 - ). Because of the difference in the

statistics of the first sinjular vector with those of the remaining

singular vectors, they are coded separately as indicated in the block

diagram of figure 2.

One image is used fcr experimental purposes here. Its SYD

structure is revealed in figure 4. In figure 4 the image is broken

into 16 x 16 sutblocks and each subblock is decomposed into its 16

singular values and associated 32 singular vectors. The first,

second, third, and fourth eigeninages cbtained frcm the corresponding

singular vectors are displayed in the figure. The first plane has no

zero crossings and consequently the display of negative data iS not

necessary. In the three remaining p~aaes, a linear dislay is

presented with negative values being dark and positive values being

light. Notice that considerable recognition of the original scene is

available in the first eigenimaje and subsequent eiyenimages tend to

-18-
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a) .8 Eigenimage b) 2 nd Eigenimage

c) 3 r Eigenimage d) 4 t Eigeninmge

Figure 3.1-4. "Baboon!, image with SVD on 16x16 aubblocks
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provide more and more zero crossing information which can be likened

to higher frequency iuformation.

A complete SVD coding system has been simulated according to the

block diagram cf figure 2. The ccding strategy used a linear PCM

quantizer with variable bit assignment on the singular values and a

Max quantizer [51 with variable bit assignment on the PCX values of

the entries in the singular vectors. A variety of bit assignsents

were investigated, and an optimization routine in terms of mean square

error measured the test Lit assignment. Figure 5 provides some

performance curves developed during the optimizaticn process. The two

lower curves indicate the truncation effects as the nurber of

equivalent bits per pixel are increased. The uppermost curve

illustrates the mean sjuare error using a linear quantizer on the

singular values. The Max quantizer curve indicates about a 0.0% mean

square error impiovement over the linear curve and is only about 3.20%

worse (or introduces 0.201 more mean square error) than the truncated

but uncoded curves. Pictorial results, from which the upper two

curves are derived, are presented in figure 6. Here the percentage

mean square errors ani bit rates per pix-l are listed under the

respective coded images for both linear ind Max guantization on the

singular vectors.

In concluding this section it is important to emphasize a few

points. First, the work is incompleti, and it is premature to base

any conclusions cn the viability of SVD coling in competition with

cther existing techniques. It is fair to say that if as much effort

-20-
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is put into investigatiun the potential for SVD coding as has been put

into traditional transform methods, then considerable improvement over

the results presented here can be expected. However, algorithmic

implementation might beccme quite complex. On the other hand five

years ago realtime (video bandwidth rate) FFT transform cgders were

thought to be too complex, and yet they exist today. Cpnsequently

only time and future study will tell whether SVD coding becomes a

practical reality.
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3.2 Restoration for Binary Symmetric Channel Errors

Michael N. Huhns

A previous report (1] has presetted and analyzed a technique for

restoring the output of a quantizer so that the result more accurately

matches the quantizes's input with respect to a mean-square error

criterion. The restoration is obtained by the use of

Rx p(x)dx

E P (X-) = X__

whare B is a region in N-space to which an N x 1 vector x is assigne4

during quantization, and p(q is the multidimensional protability

density function of x. The restoraticn is based essentially upon

exact knowledge of the quantizer output. A sjmilar, but more

difficult problem results then the quantizer output is not known

exdctly. This could occur, for example, when the quantizer output is

transmitted over a npisy channel. The first section in this report

exploras the effect of channel errors on the restorations obtained

using eq.(1). The next section examines a technique that
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statistically comuensates for the effect of chinnel errors.

Effects of Channel Errors on Quantized Signals: In this analysis,

channel errors are assumed to be modelled by a binary symmetric

channel (BSC) [2]. The characteristics of this type of channel are

shown in figure 1. The channel is discrete and memoryless and can be

specified by a tzansition probability assignment F(jlk), for j,k=0,1,

as

p 1-p =[ P x] (2)

Since the chancel is memoryless, the probability of an output sequence

z--(ZZe.o.,zN), given an input sequence x=(x 1 ,xo...,xj, is given

by

N
p(zlx) ='rf p(z ix ) (3)

ji= 1

Based on this definition, a BSC was computer simulated with the

channel error probability, p, chosen to be 0.01. The simulated

channel was then applied tc transform coded images. Three images were

zonal transfcrm coded in 16 x 16 blocks ani their quantized transform

domain components were encoded by assigning each a binary code word.

The resulting sequence cf binary digits was operated on by the
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Figure 3. 2-1. Transition probabilities for a binary symmetric channel.
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simulated channel. The erior-corrupted bit stream was then either

decoded directly, as shown in figures 2a, 2c, and 2e, or restored by

the use of eq. (I) to reduce the effects of the quantization process.

Figure 3 contains a schematic of this procedure. The decgded images

with the quantization effects reduced are shown in figures 2b, 2d, and

2fo

Bit errors in transform coding that arise due to a binary

symmetric channel are seen to result in an emphasis of the block

structure and a subjective error that extends over the entire block.

This latter effect occurs because inverse transforming a block

containing an erzor distributes this error over all the resultant

image domain conjonents. The reconstruction technique implied by eq.

(1) is thus insensitive to channel errors. Since it provides visual

and mean-square ersor improvements in noise-free cases, it can be

utilized equally mell in noisy environments.

Reconstruction of Quantized and Transmitted Signals: The previous

section demonstrated that channel errors do not adversely affect the

performance of the restoration technique derived previously. However,

this technique does nothing to ameliorate the effects of the channel

errors. This is because the fundamental restoration formula presented

in eq.(1) was derived without any consideration of channel structure.

By including the chasnel structure in the derivation, the resultant

restoration technique can simultaneously reduce the effects of the

quantization process and mitigate the effects of channel errors.
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(a) Quantized 0. 5 bit/pixel (b) Restored 0. 5 bit/pixel
P =0.01 P =0.01

e e

(c) Quantized 0. 5 bit/pixel (d) Restored 0. 5 bit/pixel
P =0.01 P =0.01

e e

(e) Quantized 0. 5 bit/pixel (f) Restored 0. 5 bit/pixel

p =0.01 P =0.01
e e

Figure 3.2-2. Minimum mean square error restoration of Hadamard

transformed zonal quantized images.
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DECODER UNIT
R K 

IK

Figure 3. 2-3. Data system used to model the effects of channel

errors on the quantization restoration process.
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Let the output cf a datd source (this output could consist of

DPCN samples, PCH samples, or transform domain samples) be denoted by

1 =(x1x2#...,x N) and described by a probability density function pix).

The reconstructicn of x, after x has been quantized to one of H

regions and channel-error corrupted, is denoted by z=(zl,z#..,zN)

for kf1,2,..., (refer to figure 3). The mean-square error that

results from this process is

M M
P(mIk)f. Lx- k ) (-Xk )T p Cd _ (4)

k=l m=1 Rn

This error can be minimized by proper choice of the restoration

points, zk. Setting the partial derivatives of this error with

respect to zk equal to zero yields

M

F p(mfk)fR--p(x)dx

m= 1 (5)

p~ m~ k) p~x)dx

Z =1 M

for k=1,2,...,M. This expression is the noisy channel version of

eq. (1) and provides a minimum mean-square error estimate of the input

to a quantizer Lased on the output of a noisy channel, the

characteristics of the quantizer, and the a priori statistics 9f the

input. This equation is also a multidimensional version of a sesult

first derived in [3]. For a noiseless channel, the channel matrix P

becomes the identity matrix and eq. (5) reduces to eq.(1). When the

-30-
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probability vclune integrals in the denominator of eq..(S) are all

equal, which is aipioxiuately true for Max quantizationa, the

restoration equation simplifies to

( p~x)dx
M _

ZkE p(ml k' m (6)
m=l f p~x)dx

MM

Zk p(mlk)y M(7)
M=lm

where yMis given by eq.(1). This result holds for maximum output

entropy quantizers and two-level symmetrical quantizers, and is

approximately correct for many other types.

A signal that has been quantized and then transmitted over a

noisy channel can thus be cptimally restored by utilizing eg.(5). The

restoration scluticzis found earlier for Gaussian and Laplacian

probability density functions (see [4] ani [5], respectively) can be

substituted directly into ej. (5) once the transition matrig for theI

c h~annel has been determined. The resultant estimator can then be used

to restore the cutputs of transform and DPCI coders that have been

degradel by channel errors.

Re ferences
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3.3 Interframe Image Coding

Guner S. Robinsca and John A. Roese

Interframe coding of digital image sequences encompasses those

technijues which make use of the high correlation that exists between

pixel amplitudes in successive frames. Intraframe coding techniques

that exploit spatial correlations can, in principle, be extended to

*This research is partially supported by the Naval Undersea Center,

San Ciejo, Califcrnia.
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include correlations in the temporal domain. Previous research in the

area of three-dimensional Fourier and Hadamard transformations has

indicated that bit rates can be reduced by a factor of five by

incorporatiny ccrrelations in the temporal direction [1]. Hoever,

three-dimensional transform systems are unattractive since they

require large amounts of data storage and excessive computation.

To alleviate the problems associated with three-dimensional

transform systems, new hybrid (two-dimensional transform)/DPCe image

coding systems have been developed [2]. These systems utilize both

spatial and temForal correlations while greatly reducing memory

storage and computational requirements. A block diagram for a hybrid

(two-dimensional transform)/DPCM system is shown as figure 1. In

present implementations of this system, either a two-dimensional

cosine or Fourier transformation is performed on 16 x 16 subblocks.

DFCM linear predictive coling in the temporal domain is then applied

to the transfcxm coefficients of each subblock. For notational

convenience, the hybrid interframe coders employing two-dimensional

Fourier transforms will be denoted as FFD and those usinU

two-dimqnsicnal cosine transforms as CCD. The FFD and CCD coders are

adaptive in the sense that statistics of the transform coefficient

differences of each subblcck are ccmputed prior to encoding the

transform coefLicients in the temForal direction by parallel LPCM

coders. At the receiver, the transmitted transform coefficients are

decoled and a replica of each frame is reconstructed by the

appropriate inverse two-dimensional transformation. These systems

require only a single frame of storage and involve significantly less
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memory and fewer ccmputations than three-dimensional transform coding

techniques.

Operational Modes: At least three operational modes have been

identified for the hybrid interframe coding systems. These

operational modes depend on the initial conditions assumed for the

previous coder. The initial conditions are:

a. No apriori information available at the receiver;

b. Limited infprmaticn (such as mean, variance and temporal

correlations based on a statistical model)

available at the receiver; and

c. First frame available at the receiver.

In the no a[riori information available case, several Crames are

required for the hybrid coder to settle. 9owever, it has been

experimentally verified that in the remaining two cases, nearly stable

coder performance is achieved within the first 4 to 6 frames. Prom

operational considerations, the third set of initial conditions is the

most raalistic as periodic full frame updating will be required to

eliminate the cuiulative effects of channel noise.

14athematica.l Formulation: Let f ix,y) denote a two-dimensional

array of intersity values on an N x N subblock of a digital television

image of size M x M. Typical values for N and N are 256 and 16,

respectively. Let F(u,v) be the two-dimensional array obtained by

taking the two-limensional transform of f (x,y). In the case of the

two-dimensional discrete Fourier transform, the expressions relating

f (x,y) and P (u,v) are

a-34-



N-i N-i

F (u, V) E f (xy) exp[r-2' (ux +v] (1)

N x=O y 0

an d

N-1 N-i

f~~)F(u, v) exp [+ ri UX + vy] 12)
u= 0 v= 0

for u,vxy=O,1,...,N-1. For image processing applications, f(xwy) is

a positive real function represntinJ brijhtness of the spatial

sample. The two-dimensicnal Fourier trinsform of a real-walued

function has the conjugate symmetry property. Also, the ?purier

2
transform consists of 23 coaponents, i.e., the real and imaginary or

magnitude and phase componenta of each spatial frequency. However, as
2

a result of the ccnjugate symmetry properties 
mentioned above, only N

components are required to completely define the Fourier transform

(3].

In the case cf the Fourier transform, a shift in the

spatial-domain variables results in a multiplication of the Fourier

transform of the an-shifted image by a phase factor. If the input

ine f(x,y,t 1 ) is shifted by the amount x0 in the x-direction and y0

in the y-direction between times t and t., then the Fourier transform

of the shifted image is given by

F(u, v,t) = F(u, v, t) exp L--N- + (u3

-35-



This 3hifting property is expected to be useful in detecting and

compensating for effects cf motion between frames since many types of

motion, such as Fanned moticn, produce significant changes in phase

components but small crindaes in amplitude components. Thus,

compensation for camera EIatform moticn could be implemented 
directly

in the array of phase cogponents by application of appropriate 
phase

correction factors.

The two-dimensicnal Fouriar transform '(u,v) 
of a spatial signal

function f(x,y) is separable, i.e., it can be computed as two

sequential one-dimensional transforms since 
the Fourier kernel, is

seiarable and symmetric. Thus, the basic one-dimensional discrete

Fourier kernel transform that must be performed is

N-1 \

F(u) = 1 f(x) exp - TA ix (4)

x= 0

for u=O,1,...,N-1.

In the case of the discrete Cosine transform, the one-dimensional

transform is

N-i

F(u) - f(x) coo (?x ,)u ) '(
x= 0

for u=0,1,...,N-1. The cosine transform is also separable and a

two-dimensional discrete cosine transform of 
an N x N subblcck results

2
in N real coefficients.
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Experimental evidence derived from transmission of a typical

"head and shoulders" picture telephone scene has shown that the frame

difference signal has a protability density closely approximated by a

double siled e £onential function [4]. The optimum minimum mean

square error quantizer for this distribution has been found tc be a

uniform qudntizer combined with a ccmpanding of the frame difference

signal £5].

Since the variances of the transform domain coefficient

differences are different, it is necessary to use different quamtizer

parameters foE each coefficient.. Each coefficient difference signal

is allocated a number of bits proportional to the estimated variance

in accordance with an optimum bit assignment algorithm.

Fidelity Criteria: In figure 1, differences between the input

signal f(x,y,t) and output signal f(x,y,t) are due to tuo sources:

quantization errors and channel noise errors. To evaluate dod.ng

efficiency of the hybrid encoders, tuo objective criteria were used.

The first criterion, NKSE, is a measure of the mean square error

between f(x,y,t) and f(x,y,t) averaged over an entire frame of size N

x F. Normalization is achieved by dividing the mean square error by

the mean signal energy within the frame to give

M-1 M-1 2

2 1 E E [f (X, Y.0 - f(X, Y.0]
MS X=O V=O(6

NM1 M-1lM-1 2(6

M2  E E [f(x ,t)]
x=0 x=0

-37-4
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The second criterion, SNR, measures the rdtio of peak-to-peak signal

to RMS noise as defindd by

M-1 M-1 2

SNR = -10 logo 2552 (7)

Figures 2a and 2b are graphs i1ltstrating the coding efficiency

of the hybrid FJD and CCD coders at various bit rates in the interval

0.1 to 1.0 bits/pixel/frame. To perform this series of experiments, a

256 x 256 resoluticon data base consisting of 16 consecutive frames of

a 24 frames per second (fps) motion picture was digitized. Anitial

conditions assumed were that the first frame was available at the

receiver.

Photographs pf frame number 16 after coding by the FFD and CCD

coders at average Eixtal bit rates of 1.0, 0.5, 0.25, and 0.1 are shown

as figures 3 and 4. The results shown in figure 3 for the FFD coder

were obtained by coding the real and imaginary components pf the

Fourier coefficients by assigning half of the available bits to each

component.

Noise Immunity: PerfoKmance of the FFD and CCD hybrid interframe

coders was investigated in the presence of channel noise. In order to

study the effect of channel noise, a binary symmetric channel was

simulated. The channel is assumed to operate on each binary digit

independently, changing each digit frcm 0 to 1 or from 1 to 0 with
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Figure 3.3-2. Error performance of hybrid coders
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(a) 1. 0 bits/pixel/frame (b) 0. 5 bits/pixel/frame

(c) 0. 25 bits/pixel/frame (d) 0. 1 bits/pixel/frame

Figure 3. 3-3. FFD coder for frame 16.

LI
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(a) 1. 0 bits/pixel/frame (b) 0. 5 bits/pixel/ftame

(c) 0. 25 bits/pixel/frame (d) 0. 1 bits/pixel/frame

Figure 3.3-4 . CCD coder for frame 16.

-42-



protability p and leaving the digit unchanged with probability 1-p.

At the receiver, the encode4 picture is reconstructed from the string

of binary digits, including errors, transmitted across the channel.

-3
Degradations due to channel noise probabilities, 

p of zero, 10

and 10"  for the FFD and CCD coders at average bit rates of 1,0 and

0.25 bits/pixel/frame are shown in figures 5 and 6. The generally

monotonically increasing character cf these curves illustrates the

fact that once an error has occurred, it tends to propagate in the

temporal direction until corrected by a frame refresh.

Fesulting fictures shcw that, fcr both coder implementations

studied, minimal image degradaticn occurred for channel error
-3

probability cf 10 cr less.

Photographs corresponding to average bit rates of 1.0 and 0.25

bits/pixel/frame for the FFD and CCD coders with channel error

-3 -2
probabilities of 10 and 1C are shown in figures 7 and 9.

Bit Transfer Bate: In keeping with the previously mentioned

objective of sinimizing the number of bits transmitted while retaining

image fidelity, a series of experiments was performed in which certain

bit transfer rates (BTR) across the channel were fixed. The ETH is

defined as the pccduct of average pixel bit rate per frame and frame

rate and has units of bits/Fixl/sac.

The availatle 16 frame test data base was extracted frcm a 24 ips

motion picture sejluence. dy emplcying frame skipping techniques,
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(a) 1. 0 bitsa/pixel /frame (b) 1. 0 bitsa/pixel /frame

p = 10-~ 3P= 1O-2

(c) 0. 25 bits /pixel /frame (d) 0. 2 5 bitsa/pixel /frame

p = 0-3p 1 0-2

Figure 3. 3-7. FFD coder with channel noise.

.4 
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(a) 1. 0 bits /pixel/ frame (b) 1. 0 bits /pixel/f rame

P=10-3  P= 02

(c) 0. 2 5 bit a/pixel /frame (d) 0. 2 5 bits/ pixel /fr ame

p = 10~ -3p= 10-2

Figure 3. 3-8. CCD coder with channel noise.
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temporal subsampling was used to simulate short 12, 8 and 6 fps

sequences from the 16 frame test data base.

Average bit rates in the interval 0.083 to 1.333 bits/pixel/frame

were used in ccajunction bith the four frame rates mentioned above to

perfcrm simulaticns with BDR values of 8, 6, 4 and 2 bits/pixel/sec.

Results of these experiments for 4 bita/pisel/sec are shown in figure

9. For all cases examined, the graphs show that reduced frame rates

produce smaller NMSE values for the individual frames coded. This

indicates that reductions experienced in frame-to-frame correlaticns

due to temporal subsampling are completely compensated for by the

increased number of bits available for coding. However, subjectively,

reduced frame rates tend to result in jerky subject motion. This is

most apparent for ra~idly mcving objects in the field of view and is

of lesser consequence for slovly changing scenes.

Conclusions: Based cn theoretical and experimental results

obtainei to date, two main conclusions have been reached. The first

is that exploitation of temporal correlations in addition to spatial

correlations has been demonstrated to be a viable technique for coding

sequences of digital images. This fact is demonstrated by a

ccmparison cf the average bit rates required for the interframe

cosine/cosine/CCi and the existing intraframe cosine/DPCM coders to

achieve the same level of NMSE performance. The sixteenth frame of

the test data base was chosen for comparison and was coded at an

averaje 0.25 tits/jixel by the interframe cosine/cosine/DPCM coder.

When using thR intraframe cosine/DPCM coder, it was necessary to code
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this frame at a bit rate of more than 2 bits/pixel to achieve the same

DES'.

The second conclusion is that the perfcrmance of the hytrid

interframe codexs investigated are heavily dependent upon the type of

notion. In the case of the 16 frame head ani shoulders test data

base, good coding performance was achieved since subject movement was

restricted tc a relatively small portion of the image. However,

coding performance with a different aerial lata base was degraded from

the previous case due principally to camera platform motion which

caused frame-to-frame pixel amplitude variations across the entire

image. Since the Ferformance of the hybrid interframe coders is

dependent on temporal correlation, a reduced level of performance is

to be anticipated for image sequences distorted by motion.
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4. Image Restoration anJ Enhdikcement Projects

Imaje restoration ani image enhancement are two classifications

ot image imfrovement methods. Image restoration techniques seek to

reccnstruct or recreate an image to the form it would have had 4f it

had not been degraded by some physical imaging system. Image

enhancement technjues have two major purposes: improvement in the

visual quality of a picture to a human viewer: and manipulation of a

picture for more efficient processing and data extraction by a

machine. Research in both areas during the past sil months is

described below.

4.1 Eigenvectors of Space-Variant Foint Spread Function Systems

Harry C. Andrews

In image restoration systems a linear model results in an object

f being mappad into an image _ by a point spread function matrix H.

Thus with noise

j +Hf +n (1)

The simplest linear models for imaging systems are given by space

invariant point spread functions (SIPSF) in which case H is block

circulant. If the linear model is not space invariant, H then

represents a space variant point spread function (SYPSF). In the case

of separable systems e4. (1) becomes

A
, -51-



G=AFB+N (2)

where A represents the column blur and B represents row blur on thi

object . In the SIPSF case A and B are circulants, but for the SVPSF

case A and E may have very general structure. It is interesting to

investigate tke eigenvectors of such systems to get a better teel for

the underlying eigenspace of the distortions representing such

systems. In the case of SIPSF systems, the eigenvectors are sine and

ccsine waveforms and the eigenspace of such distortions are given by

the Fourier transform. In the SVPSF situation, the eigenvectors often

turn out to be variations on sines and cosines depending on how

variant the blur actually is.

To illustrate this point a separable (SVPSF) system has been

simulated for two degrees of blur (moderate and severe). Figure I

illustrates this situation in which 16 point sources experience

spatially variant degradations. The imaging systems are separable and

are in better focus in the center and jet more blurred toward the

edges. Figures 2 and 3 present selected eigenvectors for both the

moderate and severe distortion cases. As the eigenveator index

increases, the eigenvectors experience an increasing number of zero

crossings similar to sine and cosine functions. Also note that the

first eigenvectcr has no zero crossings ani is not a constant. These

SVPSF eigenvectcrs appear to ba FM modulatei trigonometric waveforms.

It is interesting to conjecture that as a function of the decreasing

variant nature of the blur involved, these eigenvectors will converge

to unmodulated trigonomettic functions. In examining figures 2 and 3,
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it is interesting to nota the effort each eigenvector goes to in order

to resolve finer detail at certain points along the axis ccmjared to

other positions. Also note the eijenvectors effectively go to zerc at

higher indices in the center oi the axis indicating they have no

effect on the restoration bere.

4.2 Least Squdres Restoration for the Continuous-Discrete Model

Steve Hou

For image restoration purposes, a realistic model is that given

by the continuous-discrete model defined by

g J ( ,'n)f(:,In)dedTI [1

where a discrete tmage g is obtained from a possibly space variant

imaging system, described by h(efl), observing a continuous object

f(E ,f). in digitally restcring such a model only a finite number of

samples ara available for description of the estimate f(c,Tl) of the

object. Using cubic spline interpolation

f~fl TO S s(TO(f (2)

i j

where Si C) is the i th cubic spline centered at e. * An objective

function for restoration with i smoothness constraint is given by
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W~f) = -~lyC"(E: ~ 2 e7 (3)

where

ifjh( E:,1)? fe P T) d cd 7 (Li)

By lifferentiati~cf and subsejuent manipulation, the systemi1zationl

equation result is

fpTp+ YB IC = pTR(5)

Here

f fh (c71) ST (E:,1) dE:d M (6a)

ST T (0..T(6b

=g.(2) c. (6c)

B=J " (e, T) S, 1)d ed 1) (6 d)

Equation 4~~s known as the normal equation.

The method of ccnjugate gradients has been used to 4teratively
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search for the sclution in e4.(5). Because of computer limitations, a

separable pcint spread function has been assumed, for totn space

variant and invariant s~stems. For the separable formulation, th:

normal equation teccmes

FATA+y B B (CATg (7)

where

Af jfw(E:, )s kE:) sl(O) d E:d ()

and

T
-B (8Rb)

- - sS' ( B) ()] (C)

f railaticn, the generalized extrapolatei Jacobi iterative

i. ! jiven by

were b is defined as B except that no derivatives are taken of the
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spline functions in eqs. (8b) and (8c). The advantage of the

formulation in eq. (9) is that no large matrix inverses need be taken.

A conjugate gradient algorithm has been isplemented for both

space variant and invariant cases. The blur impulse response is given

by

1). E:, 7)-- h.(e)hj( ) (10a)

where

h.() = kexp [ - ] (10b)
I oI

and a, =Ikxl such that k ycverns the amount of blur or spread as a

function of pcsition (xi) in the imaging plane. A similar equation

results for h. (T). For the space invariant case c. was set equal to k

without x. contributing to the spread of a.1 1

The simulated results by using the conjugate gradient algorithm

are shown in figiures 1 through 6. For both restorations frcm moderate

SIPSF blur (figure 1) and frcm moderate SVPSF blur (figure 2), the

results are strikingly good for Y =0. The justification for such

results is that the PSF is fairly localized (i.e. narrow), and thus,

the matrix A is well conditioned. In other words, the eigenvalues of

A are clusterel together sc that A is far from singularity.

On tha other hani, as the PSF spreads out and the image becomes

more tlurred, the restored objects for both SIPSF and SVPSF are far

from perfect. For x=O ringing in separable form shows up in the SVPSP
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-- - -~--i-i"Ake~

(a) Original

(b) Restored C for 8=10-8 (c) Restored F for 6=10 8

Figure 4. 2-1. Restoration from moderate SIPSF blur (k =1).
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(a) Blurred image
G (k 1)

-4 4(b) Restored C for 8 =10- (c) Restored F for 6 10-

(d) Restored C for 8 0 (e) Restored Ffor 6 0

Figure 4. 2-2. Restoration from moderate SIPSF blur (k =1).



(a) Blurred image

G (k =4)

(b) Restored C for 6 = 10 - 4  (c) Restored F for 6 = 10 4

A AW

(d) Restored C for 6 = 0 (e) Restored F for 6 = 0

Figure 4. 2-3 • Restoration from severe SIPSF blur (k = 4).
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(a) Blurred image
G (k =0. 1)

(b RsordC for 6=10- (c) Restored F for 10

(d) Restored 8for 8 =0 (e) Restored Ffor 6 =0

Figure 4. 2-4. Restoration from moderate SVPSF blur (k =0. 1).
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(a) Blurred image

G (k = 0.5)

-40-

(b) Restored C for 6 - 10-4  (c) Restored F for 8 =10 -4

(d) Restored 8 for 8=0 (e) Restored for 8 = 0

Figure 4. 2-5. Restoration from severe SVPSF blur (k = 0. 5).
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(a) Blurred image
G (k =1)

(b) Restored C for 5 0 (c) Restored F for 6=0

Figure 4. 2-6 .Restoration from very severe SVPSF blur (k=1)
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case; ini the norm of the error matrix in the gradient algoritha

oscillates. This is because the matrix A now is badly conditioned and

approaches singularity. Theoretically, as Y=0, the conjugate giadient

algorithm is the same as the pseudoinverse of A. Under this

condition, the ellipsoidal contour surface in the direction

corresponding to zero eigenvalues shrinks, thus residual errors can no

lcnjer maintain orthojonality, and the computing time to convergence

grcws enormously.

As shown in figures 1 and 2, the tradeoff between the p*cture

smoothxess and sharpness which may be accompanied by oscillations

-4
becomes evident frcm the xesults for Y =10 and Y =0 in both SIESF and

SVPSF cases. The price paid for sharp pictures is a long iteration

time. Notice that in the SIPSF case, the restored object for Y=10-8 is

almost identical with that for Y=O. Hence, it is suspected that in
-6

the SVPSF case, the oscillation could be supressed by using Y =10 or
-7

10 without much impairment of the picture sharpness, but with the

additional advantage of faster ccnvergence.

TI' white sfcts appearing in all the C pictures are the negative

coefficients in the C matrix. Because of the positive nature of the

spline basis functior the coefficients must have negative values in

order to reconstruct f(e,l) properly. As expected, the white spots

appear at the high c cntrast areas of the GIRL picture, such as along

the edges of her scarf, or the flowers and in her eyes. As Y

iecreases, the number of white spots increases because the restored

picturE beccmes sharper. For severely blurred images, the white spots
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are scarce and hence, the cbject is no loqyer sharply reconstructed.

4.3 A General Image Estimation Algorithm Applicable to Multiplicative

and Non-Gaussian Noise

Nasser E. Nahi and lohammed Naraghi

In statistical Image enhancement, an image is described by a

two-dimensional random process (field). These processes are often

characterized by their mean and autocorrelation [3]. Denoting the

image brightess function by b(i,j), with i and j as the horizontal and

vertical variables, the twc moments are defined as

M(i,j) = E[b(i,j)3 (1)

R(i, j, k, A) = Ef Eb(i, j))-M(i, j)][b(k, I) -M(k, A )3] (2)

where E is the mathematical expectaticn operator. The degraded image

(ccmmonly referre4 to as the observaticn) is denoted by y(i,j) and

specifies the functional relationship between signal. b(i,j), and

noise (ij) given ty

y(i, j)- [b (!,j), y(i, j)j (3)

where f may be nocnlinear ancIY (i,j) may be vector valued.

Optimum filtering of images under the general condition of eq. (3)

has receivei little attention. However, a variety of procedures have

been developed for the special linear case, where
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y(i, j) b(i, j)+ Y(i, j) (4)

whtre Y (i, j) is white and Gaussian [11 to 17]. Although, eq. (4)

describes many natural forms of degradations [12 to 16], there are

conceivably as many situations where this model does not apply.

Examples are images with film grain noise and pictures cbserved

through non-hcmo~enepus cicud layers, where the noise is a random

attenuation factor. In these examples, the observations take the form

y(i, j) = y (i, j)b (i,j) (5)

The majority of the existing linear estimation procedures requirq

the correlaticn function R(i,j,k,X) to be specified as an analytic

function of a particular form [12 to 17]. This limits the generality

of these methods since they cannot be applied to practical cases

where, the function R(i,j,k,f) is often specified numerically at only

a small number of argument indices.

The purpose of this wcrk is to develop a general estimation

method which requires numerical values of the autocorrelaticn function

R(i,j,k,e) only, and is applicable to nonlinear (as well as linear)

observation systems. Furthermore, the estimation technique will be of

recursive nature, and hence, computationally efficient.

Notation: An image is viewed as an n x n matrix with elements

b(i,j), where b(i.j) is the intensity cf the image at pixel (i,j). To

reduce notaticnal complexity the pixels are indexed by l,2,...,n

consecutively ficm left to right and top to bottom. This ccnvention
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enables r --ferencf to the doubly indexed image b(i,j) as b(k),

symbolically. Hence egs. (1) to (3) can be written as

M (k) = E [ b (k) ~}(6)

Let the process ;r.(k) be defined as

x(k) = b(k) -M(k) (9)

for k=1,2,...,n .Thus, the problem of estimating b(k) reduces to

estimating x(k).

Estimation Method: The minimum mean square (MM1S) estimate CT (k),

of a process x(i) at time (pixel) k and for a given set of Vbservation

y(l),..,yjk) is given by [23)

x C k=E fx(k) I y(l), . ,y(k)} (10)

Lettinig

2
then it can be shown [23,25) that x C (k) and its error variance cT0a (k)

are functionally related to Y(k) and y(k) by
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x k x(k)p(y(k) l x(k))p(x(k) IY (k))dx(k) (2
x (k) ({1 2)

p(y(k) I x(k))p(x(k) 
I Y(k))dx(k)

o k f[x(k)-x' (k)] p(y(k) I x(k))p(x(k,) I Y (k)) dx(k )  (3
aJ (k)=- ( 13)

Jp(y(k) Ix(k))p(x(k) I Y(k))dx(k)

where p designates appropriate Jensity functions. EquationE (12) and

(13), in turn suggest that the optimal estimation at k is achieved by

first finding p(x(k) IY(k)) and then using it along with y(ky to arriveo2
at x a(k) and a (k). 1he mean of p(x(k)IY(k)) is the MMS one step

prediction of the random variable x(k) and its variance is the error

variance of the pxelicted value. Thus, the optimal estimation at time

k can be thought of as a two step procelure depicted in figure la,

where blocks P and F may be identified as the prediction and filtering

steps, respectively. In this system structure, y(k) is isolated from

other ranlom variables and, assuming p(x(k)IY(k)) is kncwn,

conceptually one can deal bith its ncnlinearities in block F, i.e. if
2

p x(k) Y(k)) is given,then derivation of x (k) and a (k) is

accomplished by carrying out the integrations in eqs. (12) and (13).

However, for the general observation of el. (3), derivation of this

protability density does not lend itself to analytic methods and

available numerical approaches are computationally unfeasible [2J,

Chapter 7 ).

In this report an alternate procedure is considered, whereby an

approximaticn to the protatility density p(x(k) IY(k)) is derived. The

r
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method is ccmpatible with the logic of the estimator in figure la.

This logic consists cf representing past information (i.e.

information due to a pricri statistic and observations y(1),...,,(k-i)

in the form og a protability density to be combined with y(k) in block

F. Based on this premise and the goal of algor4thmic

implementability, the estimator is constructed accordiny to the

following restrictions.

a). Only the first two moments of any random variable are

computed.

b). The prediction piocess is chosen to be linear.

c). The prediction is to be based on a selected small number of

past estimates. This will impose a desired limited memory

requirement for the estimator.

Letting x i) and o z (i) represent the estimate and its error

variance, respectively, at time i, then the block diagram in figure lb

represents the structure of the proposed estimator. In this figure

blocks LP, F and D signify linear prediction, filtering aDd cne unit

time delay, respectively. The subscript M is an indication of the

size of memory and x"(k) and a :-, (k) are the one-step predicted value

and its error variance. The set [ k-Ij,...,k-IM1 is a set of two

dimensional indices each distinct and prior to k.

Modeling Procedare: To derive the linear predictor (block LP of

figure Ib), the a priori correlation information is first incorporated

into a linear finite order model of the process x(k) in the form of
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y(k)

y(k-1) (k)

(a) Optimal

.2 
ly(k)

(k-I),co (k-I1 )

LP X k ~k

(b) Sub-Optim-al

Figure 4. 3-1. Estimator Configurations
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x(k) =D~ix(k-I) + B u(k) (14)

where ,..., mare constants and (u(k),?i(k-1) is a set of

independent ilentically distributed random variates with

Etu(k)l = 0 0 ifmi n

Efu(m)u(n)j = (15)
1 if mt=rn

Consequently, eg..(14) is an autoregressive model (12], (18 to 20].

The problem of modeling consists of determining the order M# the

coefficients 0I ,'" "P the set of two dimensional indices

k-Il,...,k-IM and the variance of the white noise term B u(k) in eq.

(14). In this work, first a procedure is developed to derive an

autoregre.ssive model tor a given n followed by a discussion cn the

best choice of F. The modeling criterion is chosen to be minisization

of EjB u (k)1 . The procedure uses the numerical values of the

correlation function and does not require analytic representation of

R(m,n). The results are illustrated by the following example.

Consider the stationary two-dimensional correlation function

R(i,j,k,Y) = R(i-ki, Ij-2 1)= E(x(i, j) x(k,l)] = exp [- /(i-k)2+ (-Y)2]

Aplication cf above procedure provides the following:

a). Best 2nd order model is

x(i,j) = 0.3 x(i,j-1)+ 0.3 x(i-l, j) + 0.883 u(1, j)

b). Best 3rd order mclel is

-L x(i,j) 0.29 x(i, j-1) + 0. 25 x(i-l,j) + 0.1Z x(i-l,j+l) +0.877 u(i, j)
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c). Best 4th crder model is

x(i, j) = 0. 28 x (i,j-1) + 0.24 x(i-1, j) +0.12 x(i-1, j+1)

+0.03 x(i-1,j-1) + 0.8769 u(i,j)

d) . Pest cth order model is

x(i, j) = 0. 28 x(i, j-1) + 0. Z4 x(i-1, j) +0. 11 x(i-1,j+1)

+ 0.03 x(i-1,j-1) + 0.02 x(i=1,j+2) + 0. 8768 u(i, j)

Hence, for example, to a third decimal place accuracy, the 3rd order

model is a sufficient apiroximaticn. Note that, for examile, the

derivAtion of the 3rd order model requires the numerical values of

R(C,C), R(0,1), B(1,0) and R(1, 1).

Linear Prediction: Let the model of the random process x(k)

(ottained in the previous sEction) be

M

x(k) = i x(k-Ii) + Bu(k) (16)

j 1

Given the estimate x(i), i=1,2,....,k-1 the linear preiiction x (k), in

general, is given ty

k-i

x (k) = a x(k-j) (17)

j=l

wherei ,...,oK-lare to be chosen such that

E x(k) - 2 (18)
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is minimized. This minimization is to be cirried out subjedt to the

system structure of figure lb and is based on available infprmation to

the predictor. This information consists of the values of x(i) andAZ

(i), i<k-1. Since each x(i) anda (i) is the mean and variance,

respectively, of a ppsterior density on xli) at time i (having used

otservations thipough y(i)) , then the expectation in eq. (13) is well

defined and ojerates on each random variable xii) such that
A

E x(i) = x(i)

(19)

E{[x(i) -*(" = 02(i)

Theorem 1: Vhen the ran4cm process s(k) satisfies eq.116), then the

(optimal) choice of C ,.. ,K in. eq. (171 which minimizes eq. (13)

is given by IR if k-j = k-1.

0 otherwise

The proof is given in [263.

This thecrem states that the best linear predictor is given as

M

x W x(k-I i ) (20)
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The implementation of eq. (20) is very simple. This simFlicity,

alonq with the effectiveness of the result ds illustrated in the next

sections, are the justification behind the necessary ajproximaticns.

Filtering Step: Referring to figure 1b, the computaticnal logic

of block F is now devEloped. The Fredicted value x (k) and its

varianceca 2 (k), obtained frca the linear predictor, represent the meanP

and variance of tI~e a Fosteriori density on x(k). This density

represents the available kncwledge on the random variable x(k) prior

to reception of y(k). Since, for a given mean and variance the normal

distribution LeFtesints the maximum uncertainty (entropy) [24., p.

132], this density function is assumed to be normal. Further

uncertainty is associated bith x(k) if a (k) is used in place of

2
a (k). Consequently, an approximate and a rather conservative choice
P

of the probability density for x(k) is

pfx(k) = (k :' (k) Z-2]'I exp)"[Xc:"i(k) ] (21)

Cbservaticn y(k) and p(x(k)) in eq.(21) are combined to derive

the Bayes estimate, x(k)

x(k) Elx(k)Iy(k)l= Sx(k) p(x(k)Iy(k)) dx(k)

(22)
- p(y(k)) x(k) p(y(k)j x(k))p(x(k)) dx(k)
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But

p(y(k)) fp(x(k),y(k)) dx(k) = p(y(k) x(k)) p(x(k)) dx(k)

Hence, [251

x(k) p(y(k) x(k)) p(x(k)) dx(k)

x:(k) =(2 3)Jp(y(k) jx(k)) p(x(k)) dx(k)

Similarly,

A ? (x(k)-x(k)) p(y(k)lIx(k))p(x(k))dx(k)

ay (k) = EJ[x(k) -x(k)]1 ly(k)4= J  Jp(y(k)Ix(k))p(x(k)) dx(k) (24)

where p(x(k)) in egs. (23) and (24) are given by eq. (21) and

p(y(k)Ix(k)) is obtained from the observation system structure.

^2
In general, evaluation of x (.) and G (.) in eqs. (23) and (24)

will te perfcmed numerically. 7his in turn, allows the procedure to

be ipplicable to a broad class of observation systems including

nonlinear forms cf the observation y(k). The feasibility of this

estimator is due to the structure of figure lb which leads to eqs.

(23) and (24).

lultiplicative Noise Term in Observation: Consider otservations

containin'j uniform multiplicative noise. In this case the observation

is given by

y(k) = y(k) fx(k) + M(k)] (25)

with
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(k) Y(k) 12(6
p(y(k)) = 1

0 otherwise

With x(k) + M(k) as the iudge intensity at pixal k, Peqs. (23) and

(24) become [25]

A b x(k) (x(k) - x; (k)) 2
j f[ xe (k

x(k) x(k)+M(k) exp dx(k) (27)

a L J

^2 1 b rx(k) - x(k)]Z [ (x(k) - x 2k))
Y (k) =' x(k) + M(k) exp - Idx(k) (28)

a~ L y Z'(k) Ja

where

b 1 F x(k) -x" (k))

G+M expI C "z 1k dx(k) (29)
a x(k) +M(k) 2 a (k)

and

a - My(k)
YZ(k)

(30)

b y(k) - M(k)

Yl(k)

Since eqs. (27)tc (29) are definite integrals, they can be evaluated

numerically. All noisy images contain uniform multiplicative noise

with noise bounds as inlicated in these figures. The estimated images

of figure 2 to 4 provide 5.48, 7.58 and 7.7 db. improvement,

respectively. Asile ftcm this quantitative improvement, the
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(a) Original

(b) Noisy, noise=O. 7-i (c) Estimate

Figure 4. 3-2. Uniform multiplicative noise
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(a) Original

(b) Noisy. noise=O.7-l (c) Estimate

Figure 4. 3 -3. Uniform multiplicative noise

ib
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(a) Original

(b) Noisy, noise=O. 7-1 (c) Estimate

Figure 4. 3-4. Uniform multiplicative noise



preservation of ed93s in the estimated images should be noted. The

responsiveness of the estimator to abrupt pixel tc pixel intensity

changes is due to the estimator structure of figure lb.

The estimaticn procedure can also be applied to more general

observation systems. As an example consider the case where

y(k) = y (k) fx(k) + M(k)] + v(k) (31)

where Y (k) and v (k) are both uniform. Letting the density of y(k) be

given by e-. (25) and that ct v(k) be

I if Vl(k) 5 v(k) <  vz(k)

p(v(k)) J v2 (k)'Vl(k) (32)

0 otherwise

then p(y(k)lxtk)) can be obtained in terms of the conv 9 lutirn of

ply(k)) and p(v(k)) [22). This density, then, can be substituted in

e'js. (23) and (24) to obtain pertinent filtering equations [25].
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4.4 Image Restoration by Smoothing Spline FUnctions

Mohammad J. Peyrovian and Alexander A. Sawchuk

In a linear space-invariant imaging system with ppint-spread

function h(x), the image 9(x) is given by

g(x) = fh(x-u) f(u)du+ n(x) (1)

where n(x) represents measurement Noise. In order to estimate the

object function f(u) from image g(x) by a 3igital computer, the above

continuous model must be discratized. A common method is to sample

the functions h and g at a finite number of points. Spline functions,

because of their highly desirably interpolating and approximating

characteristics, are an interesting alternative to the above method.

For uniformly slaced knots, a class of spline functions, called

B-splines, has the following properties

(i) shift invariance

(ii) strictly Fositive

(iii) convolutional Floperty

(iv) local basis property

Using B-splines for interpolation or approximation, the functions

f ani h can be [epresented by B-splines of degrees a and n,

respectively
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V) fin x-) 12)

h(x) h. B n(x-x.)(3
321 (3

Substituting eqs. (2) and (3) in the conholution integral of eq. (1)

gives

M 0O

g~x) f i 1 x-x. n (xx+nx 4

i=-W j=-C0

From the convcluticnail pioperty of B-Eplines

B M(x-x)* B n(X-x.)B M(x-xi-X) (51

and representing 9(x) by B-spline,s of 4egree m + n and assuming

X7'='+±r'i gives

0O 0 W

9 B ( Ax C1 h. B (x-(i+j)t6x)+i(x) (6)
k m ~ 2 jm+n

k=o j=.o j=.00

Equations (4), '(5) and (6) show that the B-spline, which is

interpolating the deterministic part of the degraded image, must be of

higher degree than the B-silines interpolating object and point-spread

function. In cther words, since the blurred image is always smoother
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than the object, a higher degree spline can follow the image function

better than the one approximating the object function. This can be

explained in the Fourier domain by observing that the Fourier

transform of an u-th degree B-spline is a Sinc function tp the power

0. As m increases the amplitude of high3r frequencies decreases.

Since a blurred image has less higher frequency content than the

otject, a higher B-sEline can represent the image better than the one

representing the object.

In a noiseless imaging system, eg. (6) may be written in the

matrix form

g=Hf (7)

If the point spread function is of finite width, the matrix H is

banded. Figure la is a rectangular object which is blurred

analytically by a 4t. order ;olynovial

h(x) - - -3.5 <x<3.5
(8)

0 , elsewhere

The object is a stop function, therefore it is interpolated by a zero

order B-spline. The second derivative of h at points x=-3.5 and x=3.5

is a step function and it is interpolated by a second order B-spline.

Since the convclution of a zero and second order B-spline is a cubic

B-spline, the image is interpolated by a cubic B-spline. Figure Ib,

the restored image with and without splines, shows that the spline
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restores the edges such sharper than the common pulse apgroxiuation

method. Figure 2 is another example of spline restoration applied to

a two dimensional blur with point spread function

H(x, y) = h(x) h(y) (9)

where h is defined in eq.(8).

For a noisy image, the image data is first smoothed by minimizing

J g"(x) 1 2 dx

2
anoqg all functions gec such that

2

Here yi is the noisy image measured at point xj...s>O and Oi>0 are

given numbers. Setting S=0 leads to an interpolation problem. The

factor a. control the smoothing window at point x. and S controls the
1 1

extent of smoothing. If the standard deviation of y. is available, it

may be used as a. In this case, natural values of S lie within the

confidence interval of the left hand side of eq. (10) as given by

1 1

N - (ZN) 2 < S N + (ZN) 2

where N is the number of data points. Reinsch [3] has shown that the

solution to eqs. (9) and (IC) is a cubic spline, and more generally, is
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(a) Original image

(b) Blurred image (c) Restored image using

spline functions

Figure 4.4-2. Examples of spline restoration
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a spline function of degree 2K-I for least square minimization of the

K-th derivative instead of the second derivative. In smoothing (S>O),

the shape of the function is much, more influenced by the m*nimum

princille of eq. (9) than in interpolation (S=0).

The above smoothing criterion will be subject of furtheK research

on noisy blurred images, Farticularly the case K=2 because it leads to

cubic splines which read simpler algorithms and less computation.
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4.5 Detection and Estimation of Image Degradedby Film-Grain Noise

Firouz Naderi and Alexander A. Savchuk

The goal cf this research has been to analyze the problem of

film-grain noise in the context of detection and estimation theory.

The first step is the development of a mathematical mcdel that

reflects some of the complexities of image formation process, and yet

is tractable in the subsequent restoration of the image.
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Denoting by y(ij) the observed optical density of photographic

film as measured by a uicrc densitometer let

y(i, j) = S(i, j) + n(i, j) (1)

where S(i,j) denotes the density that would have been registered in

the absence of grain noise and n(i,j) is the noise. Experiments by

researchers in the field of Photographic Science have indicated that

n(ij) is approximately Gaussian distributed with zero mean and a

variance that is dependent on the type of the films used, the sise of

the scanner apertore and the value of S(i.j). Clearly the g-servation

model described in eq. (1) is additive with signal-dependent noise.

Equivalently, the additivity of this modell may be sadrificed to

obtain a signal-independent noise model. The result of doing so is

the nonlinear observation model

y(i, j) = S(i, j) + grS(i, j)] n(i, j) (2)

where the noise n.(i,j) is zero mean and unit variance Gaussian. The

form of the functi.an g(.) has been subject cf some discussion. The

ezperimental form

gf S(i, j) I kfS(i, j)lb 3)
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has been found to be in agreeent with many different theoretical and

experimental results. Simplified photographic emulsion models such as

Nottings, result in a value of 1/2 for the exponent b in the above

equation. Data taken by Higgens and Stultz [1) suggest values o b in

the range 0.3 to 0.4 if the scanning aperture is allowed to vary

within a reasonatle range.

with this model the restoration problem is considered in two

different contexts: detection and estimation. In many image

processing probleas, it is necessary to use a high magnification to

extract image information out of a phctographic recording. A digital

image of size 256 x 256 can be obtained by scanning a square region of

side approximately 1.25 mm using a 5 micron aperture. Measuring

optical density in such a small region of a photographic film results

in such a high level of grain noise that distinguishing between

adjacent areas of small contrast with the naked eye becomes

impossible. Recently Zueng and Barrett considered image detection by

a method called the "Noise cheating algorithm." References (2,3] show

that this equivalent to method is sub optimal maximum likltlhood

detection.

To set up the problem in the framework of detection theory

suppose that the portion of the photographic film which is to be

scanned can be segmented into M spatially uniform or near uniform

density rejions Rl,...,R". Let a square aperture of size a x a be

used to measure the optical density of the film. It is then possible

to formulate an M + 1 hypothesis problem. The first M hypotheses, H i

-94-



are the hypotheses that a given densitometer reading was obtained when

the aperture was entirely in one of the M regions Ri. The last

hypothesis HM+j Corresponds to a reading taken when the aperture

overlapped on two or more regions simultaneously as shown in figure 1.

Conventional maximum likelihood or Bayesian detectors can nov be

utilized for optimal detection of the M + I hypotheses.

k simple suboFtimal method to accomplish this procedure is to

perform the M + I hypothesis detection in two different steps. In

step one the hyFc-theses HM+liS ignored and the other K hypothesis are

optimally detected. Therefore, in the first step the possibility that

some readings might have been taken when the aperture overlapped more

than one region is ignorel. In the second step, in regions when

hypothesis HM+l apFears to be highly probable (i.e. the edges), the

image is re-examined with a finer aperture to recover details.

Figures 2c to 2e contain simulation results of this restoration

prccedure for the three detection strategies described below.

Maximum l iklihcod detection for signal-independent noise:

Referring to figure I assume that the mean density in region R

called the background, is ab and the variance of the readings taken

2
with an aperture of size a x a in this region is Gb The scanned

image is of size 256 x 256. A two by two spatial averaging is first

performed on the scanned image (Note that in effect the averaged image

is what we would have obtained had we scanned the film with a 2a x 2a

apreture to begin with.) In the averaged image, pixels in the region

R will now have mean mb and variance' = 3 b/4. Each pixel in the
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Photographic negative

Scanning

aperture on film

R R maperture position
corresponding to
hypothesis HM+l

Aperture position
corresponding to
hypothesis H3

Figure 4. 5-1. rmage regions and aperture positions.
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(a) Ideal image

(b) Image with film-grain (c) Maximum likelihood detected image

noise added assuming signal independent noise

(d) Maximum likelihood detected (e) Bayesian detected image

image as suming signal

dependent noise

Figure 4. 5-2. Image detection in the presence of film-grain noise.
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averagel image is ncw quactized to one ot I levels. These levels are

chosen such that one of them will coincide with the mean of the

background, mb, and the others will be 4 Gb apart from each pther.

Since the distribution of the noise is Gaussian, if th* decision

levels for the quantization are set exactly at the mid-point between

each quantization level then it is easy to demonstrate that the

quantization is in fact maximum liklihood detection.

Since the levels are taken to be four standard deviations apart,

all the image regicns which happen to have a mean density equal to one

of the quantization levels will almost always be restored to their

correct mean density following the quantizaton. Begions having mean

Jensities that fall tetween two quantization levels will te "coded"

into a percentage of these two levels.

The second step in the maximum liklihood detection process is to

rework the edges *n the quantized image by comparing the quantized

image with the original scanned image which was scanned with the finer

a x a aperture. Figure 2c is the detected image using this procedure.

Maximum liklihood detection for sijnal-dependent noise: The

performance of the previous detector is lependent upon the distance

between the quintization levels. If the levels are four standard

ieviations apart, it is certain that regions whose mean densities

coincile with cne of the quantization level will be clear of the

noise. As seen in eq. 3, the standard deviation of the noise is a

function of the signal. Therefore for an image with high dynamic

range it is necessary to increase the listance between the higher

-98-

t



quantization level so as to keep the listance always four G

Furthermore, since the standard deviation varies, the decision level

of the quantization which corresponds to the maximum likelihood

detection, will no Ipuger te at the mid-point between the quantization

levels. Figure 2 shows the improvement ov-3r the previous detector

when the signal dependence of the noise is taken into account with the

proper quantization.

Bayesian Detection: As previously mentioned, guantizat*cn is, in

effect, maximum likelihocd detecticn. To take advantage of any a

priori knowledge that might be available about the image, it is

advantageous to perform Bayesian detecticn. Corresponding to the M

hypothesis detection in the first step of the above two detectors, the

mean densities of the n region may assume a distribution over a small

range. Using the distribution as apriori statistics, the result of

bayesian detectilon is shown in figure 2e.

Summary- Estimation algorithms are presently being applied to

film-grain qoise. Both Wiener filter and a nonlinear filtering

reported in USC image processing institute report 580 [4), vill be

apilied, and their performances will be compared and reportei.
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4.6 Vignetting and Density Correction for CRT Film Recording

Werner Frei

The acquisition of digitized image data and the restitution of

prccessed pictures are generally costly, time-consuming, and yet

essential steps of digital image processing. Errors and

non-linearities introduced by the scanning and display equiiment or

the photographic process can add a surprising 3mount of unwanted and

uncontrolled "image processing." These parasitic effects are by no

means always readily visible in the finished product, but they may

well invalidate the results of ccmputer image manipulations. A

careful conttcl of the electro-optical machinery, the phctcgraphic

process, as well as an understanding of human visual factors is

therefore essential to instre the success and credibility of digital

image processing.

S0
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Visual Factors: Optimum reflection prints, transparencies and

television images practically never replicate the brightness

distribution of original scenes, in the sense that color images do not

reproduce the spectral energy distribution of colored lights.

Although comprehensive fidelity criteria for images are yet to be

discovered, a few simple rules have been found useful in the

optimization cf image acluisition and reproluction techniques.

Consiler fcr example a black and white reflection print, which

consists of a reflective backing coated with an emulsipn of

microscopic grains of silver. The image is formed by controlling the

amount of silver in the emulsion and thus varying the relative light

absorption of the print, within a typical dynamic range of 50 to

ICO: 1. Such a photograph conveys its pictorial information to an

observer irrespective of illumination variations over perhaps four to

five orders of magnitude. This rather surprising phenomenon is daused

by the ability of the visual system to "adapt" to ambient levels of

lighting ani thus to extract the reflection properties of objects

[1,2]. Studies cf the reproduction characteristics of optimal images

[3] indicate indeed that although absolute brightness influences

perceived quality, the quality criterion within the physical

limitations of any given reproduction situation is greatly dependent

upon its ability to reproduce relative brightness ratios. This fact

is intuitively satisfying noting that pixel brightness ratics are a

property of the scene reflectances that is invariant to the absolute

intensity cf a uniform illumination.
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The implicaticns of the above visual phenomenon are that the

digital representation of light intensities sensed by a scanning

device should ideally be a measure of image brightness rattos rather

than arbitrary absolute intensity values. Th.s is easily isplemented

in practice by recording the logarithm of the measured iuage

intensities. Many commercially available scanners provide for such an

option, usually called density (as opposed to transm ttande or

reflectance) scannir. On the reproduction side, care has then to be

taken to preserve the recorded brightness ratios, a process that is

facilitated by the inherent characteristics cf the photographic

process to be discussed in the next section.

The Photographic Process: Exposure of a black and white emulsion

to light and subsequent development produces a light absorbing layer

characterized by its optical density D which is defined as the

logarithm of the ratio of transmitted to incident light. With all

other parameters fixel, the optical density is ideally related to the

intensity of the expcsing light I by the function [4]

D = y log [I tI (1)

where t is the durat*on of the exposure. This function, well knpwn in

Fhctcgraphy, is the Hurter-Driffield or D-log E curve, actual

photographic materials depart from this idealized law at both ends of

their useful dyramic range. The factor describes the "contrast" of

the emulsion and is jositive for an ordinary negative material# and

negativq for a reversal Fxocess. Because the unexposed emulsign and
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its substrate are not perfectly transparent, an additional "fog" level

D is incorporated into the above equation yielding

D + y log tit] (2)

The light reflectel from a print or transmitted through a slide is

reldted to the incident light I by [4]

I = I 0 10 "D  (3)

The reproduced light intensity I* is given by

I= 10 1oD[It3  (4)

Note that if Y = -1, the conditions for an optimum reproduction as

discussed in the previous section are met.

It is not easy to meet the relationship cf eq. (4) with actual

image processing equipment. Film is typically exposed by a CB2, LED

or laser as a series of discrete dots which partly overlap; the

exposure may not be uniform over the area of the image, etc. It is

possible though to correct for such defects with a numerical

pre-distortion of the digital image data. & simple model, approgriate

for the correctipn of a CR1 scanner, is discussed next.

Calibraticn of I/O Devices: Actual image acluisiticn and

reproduction devices have a number of inherent imperfectious which

distort the final jzcduct. For example, the measurement of pixel

intensity in scanners is usually not perfectly logarithmic (often

linear); the pixel intensitiej displayed on television monitors are a
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power functicn of tha image signals; the light sensitive or light

emitting surfaces of electron bean devices are not pertectly

homogeneous; optical systems may introduce significant vignetting,

etc. A number cf procedures have been devised to cope with such

imperfections E5,6]. For example, table look-up or polynomial

approximations may be used to correct for the average deviatics of

the electro-optical transfer function from the desired behaviour. A

more refin3d (and exFensive) soluticn is to vary the coefficients of

the correction as a functio4 of the geometric image coordinates.

A true assessment of I/0 device Ferformane and the gatherinj of

physical data for the design cf correction schemes is best done by

producing test patterns such as step tablets and measuring the ogtical

density functions obtained on hardcopy or transparency.

To illustrate the above, a new software correction technijue for

CRT scanners is presented. It is of medium complexity, but

ccmputationally very fast and has given excellent results with a CRT

scanner. The major sources of distortions in this case are

schematized in figure 1. The CRT light emission I as a functicn of

the drive and bias voltages U and U0 respectively [7], as agproximated

by

I = U + U 0+ U1JYCRT

where UI represents the cut-off voltage of the CRT. Optical

vignetting produces a darkening towards the image corners (tigure 2),
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Optical

y-CRT Vignetting Film

tU ID

a) Distortions in CRT film recording

(D IoE)- I (Vignetting)- (y-CRT)"I

lo ERI
t t

line and
column
indices

b) Numerical pre-distortion for recording correction

Figure 4.6-1. Distortions in CRT film recording and numerical

pre-distortion for correction.
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(a) Constant brightness values photographed with a
polaroid camera. The darkening of the corners

is evidenced by the small cut-off pasted in the
middle of the photograph.

(b) The effect of vignetting on a mosaique

Figure 4.6-2. Demonstration of the vignetting effect.
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(particularly annoying if one attempts to produce a mosaigue, see

figure 2b. Assuhing that the vignetting is the only space-variant

distortion, a fast table lcok-up algorithm has been implemented, such

that each source of distortion mentioned above is corrected for An the
-1apcopriate order. TheYcRT and D-log E correction of figure lb are

straight foward look-up tables based upon measured data. perhaps the

most interesting pre-distortion step is the vignetting correction.

Assuming circular symmetry, a second order polynomial of the form

r' =Z[+ B(x + 7y) (7l

has been used to boost the light intenities towards the image corners

where x and y are the image coordinates referenced to the screen

center. The values A/24Bx are stored in a one dimeusional array C and

the correction is made by looking up this array twice given the pixel

line and column Wjicies xi  dnd yi. The results from this fast

correction technique are shown in figure 5. The variations in density

across a unifcrm surface are less than 0.1 iensity units, whereas the

uncorrected image had corners darkened by as much as 0.35 density

units.
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4.7 Spectral Sensitivity Estimation of a Color Image Scanner

Clanton E. Mancill and William K. Pratt

The spectral sensitivity of a color scanner must be determined in

order to calibrate its response. Direct spectral measurementt cver

the continuum cf the spectral band are often difficult to obtain.

However, responsivity measurements can be made through spectrally

selective filtere to estimate the continuous spectral sensitivity of

the color scanner.

Spectral Radiance Estimation: Many tasks in color and

multispectral image restoration involve the estimation of the spectral

radiance function c(X) from a series of observations of the form
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x i f c(X) si(X)d X+n. (1)

where s. CX) is the spectral sensitivity of the spectral measurement

filter for i=1,2,...,p observations. The term ni represents additive

noise or uncertainty in the measurement. Discrete estimation

techniques can be applied to this problem solution <1>. The first

step is to discretize the continuous intejral to form the vector

equation

T
x. = a. c+n. (2)

11 -- 1

where si and c are Q x 1 vectors of quadrature samples of si IX) ani

cIX), respactively. Then, the set of P observations may be arranged

into the P x 1 vector

x = S c + n (3)

T
where the vector sq occupies the i th row of the matri; S. The

system of equaticns represented by ej. (3) is normally highly

underdetermined if sufficient juadrature mash pcints are taken to

reduce the quadrature error to reasonable bounis.

An estimate c of the true spectral energy distribution c can be

obtained by the genecalized inverse estimate <2>

- T T -1
c=S x= (s ) x (4)

Although the generalize4 inverse provides a minimum mean square error,

minimum norm estimate ot c ill-ccnditioning of S coupled with
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otservational ericra can lead to oscillatory estimates. Since c is

generally quite smooth, it is reasonable to impose some suopthing

constraints on the sclution. A ccmmon type of smoothing estimate is

given by <3>

-1 T -1iT-1C=M ST(S M Is) x (5)

where M is a smoothing matrix of the typical form

1 -2 1 0 0 0 0 ...... 0

-2 5 -4 1 0 0 0

1 -4 6 -4 1 0 0

0 1 -4 6 -4 1 0

M= 0 0 1 -4 6 -4 1 .

* (6)

1-4 6 -4 1 0

0 1 -4 6 -4 1

0 0 1 -4 5 -z

0 . . . . 0 0 0 1 -2 1

A third alternative is to apply Wiener estimation methods <4>. with

Wiener estisaticn, the vector c to be estimated is assumed to be a

sauple ot a vector randcm process with known mean and covariance

matrix Kc . The Wiener estimate is given by

c= KcSST__c sT+_n-1(7

T(SK ST +K) x (7)

where K is the c.ovariance matrix of the ad4itive observational noise
--n

assumed independent of c. As a convenient approximation the

covariance matrix can be modell.d as a first order Markov process
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-j 7

covariance matrix of the fcrm

2 Q-1
1 o . • o

K (9)
cQ

Qc l .* 1

whtre 0 < < 1 is the aijacent element correlation fdctor and

represents the energy of c. Observaticn noise is commonly modelled as

a white noise process with covariance equal to
2

a
_ n  (9K =--i_ (9)

-sn =0-

2.
where o is the noise energy ani I is an identity matrix.

n

Color Imaje Scanner Calibration: A common problem in the

evaluation and calibration of color image scanners is to determine the

total spectral respcnse cf the scanner takiug into account the

spectral radiance of the illumination source, spectral absorpticn and

scattering of the optics, and s~ectril sensitivity of the

photodetector. Direct measurements are often not feasible. Referring

to eq.(1), let c(X) be redefined to represent the spectral sensitivity

respons- of the scanner and si (X) be one of P spectral test functions.

The measurement procedure then proceeds as follows. An optical Cilter

of known spectral characteristics, such as an absorption filter or

narrowband interference filter is introducel into the scanner and an

output reading is pbtainel. The process is repeated for a number of

-11I- .1



filters whose Feak transmissivities span the spectral region of

interest. Ihe aeAsurements form the vector of observaticns, and an

estimation operation is then invoked to obtain azn estimate of the

scanner spectral response.

In order to evaluate the estimation procedure, a computer

simulation experiment wat performed in which simulated measurements

were taken of a Gaussian shaped spectral function through simulated

absorption filters. Figure 1 contains a plot of the spectral shapes

of the filters. The simulated measurements were then utilized as

spectral observaticns for estimation of c(X). Figure 2 illustrates

the performance of the three estimation methods for simulated

measurements through the filters. In these experiments the mean

square fit between the actual spectral function and its estimate was

least for the simulated interference filter measurements using a

wiener estimate with P = 0.9 and a signal-to-noise ratio of 1000.

The spectral estimaticon procedures have also been applied to the

estimation of the spectral response of an Optronics SoJel S 2000 fliat

bed scanning microdensitometer. Figure 3 shows the estimate obtained

with absorption and interference filters for the three estimation

methods. No direct measurements are available for the scanner so that

no "ground truth" can be established. But, on the basis of the

simulation exterinents, it is concluded that the Wiener estimate

obtained with the set of interference filters is a reasonable estimate

of the actual spectral response.
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Figure 4. 7-2. Comparison of actual and estimated spectral response

for absorption filters obtained by computer simulation.
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4.8 Pedian Filtering

William K. Pzatt

The median f~lter is a nonlinear signal processing technique

developed by Tukey <1> which is useful for noise suppressicn in

images. In one dimessional form, the median filter consists of a

sliding window encompassing an odd number of pixels. The center pixel

median of a discrete sequence a ,a ,...,a , for N odd is that member

of the sequence for which (N-1)/2 elements are smaller or equal in

value, and 14-1)/2 elements are larger or equal in value. For

example, if the values of the pixels within a window are

80,90,200,110,120, the center pixel wculd be replaced by the value 110

which is the median value cf the sorted sequence 80,qO,110,120,200.
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In this example, if the value 200 was a noise spike in a .onotcnically

increasing sequence, the median filter woulJ result in cgnsiderable

improvement. On the other hand, the value 200 might represent a valid

signal pulse for a wide bandwidth sensor, and the resultant image

would suffer scme lcss of resolution. Thus, in some cases the median

filter will provide noise suppression, and in other cases it will

cause signal supfression.

Figure 1 illestrates scme examples of the operation of a median

filter and a mean (smocthing) filter for a discrete step function,

ramp function, pulse functicn, and triangle fuqction with a window of

five pixels. It is seen from these examples that the median filter

has the usually desirable Froperty of not affecting step functions or

ramp functions. Pulse functions whose periods are less than one-half

the window width are suppressed. Also, the peak of the triangle

function is flattened.

Operation of the median filtered can be analyzed to a limited

extent. It can be shown that the median of the Frcduct of a constant

K and a sequence f(j) is

med Kf(j)l = K med (f(j)] (1)

Furthermore,

med [K + f(j)1 = K + med ( f(j)3 (2)

However, for two arbitrary sequences f(J) and g(j) it does not follow

that the median of the sum of the sequences is equal to the sum of
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their midians. That is, ir jenaral

med ( f(j) + g(j)l J med (f (j)l + med~g(j)] (3)

Tha sequences 80,90,100,11C,120 and 80,90,100,90, 0 are examples for

which the additive ]inedrity property does not hold.

There are various strategies for application of the median filter

for noise sujFression. Cne method wouli be to try a median filter

with a winlow of length 3. If there is no significant signal loss,

the window length could te increased to five for median filter~ng of

the original. The pxocess would be terminated when the median filter

begins to do more harm than good. It is also possible to perform

cascaded median filtering cn a signal using fixed or variable length

window.

The concept of the median filter can be easily extended to two

dimensions by utilizing a two dimensicnal window cf some desirei shape

such as a rectarjle or a discrete approximation to a circle. It is

obvious that a two dimensional L x L median filter will prcwide a

greater degree of rcise suppression than sequential horizontal and

vertical processing with L x 1 median filters. But, two dimensional

ptccessing also results in greater signal suppression. Figure 2

illustrates the effect cf two dimensional median filtering of a

spatial pulse signal with a 3 x 3 square filter and a 5 x 5 plus sign

shapel filter. In this example, the square median has deleted the

ccrners, while the plus median filter has not affected the signal
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Figure 4.8-2. Example of two-dimensional median filtering
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function.

Figures 3 and 4 contain examples of the application o median

filtering for image noise suppression. In figure 3 impulse ncise was

added to an iuage. One digensicnal madian filtering of length L=5

removed most of the noise impulses with only a small loss in

resolution. Almost all errors were removed for a median filter with

L=5, but edge distortion is noticeable. In figura 4 continuous

Gaussian noise was added to an image. Median filtering resmltinq in a

slight visual improvement.

For image enhancement applications, the median filter should

simply be considere4 as an ad hoc tool for noise or interference

suppression. It should not be used blindly, but rather its

performance should be mcnitored to determine if its application is

beneficial.
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(a) Image with impulse noise (b) Median filtering of (a)

15 errors/line with L= 3

(c) Median filtering of (a) (d) Median filtering of (a)
with L = 5 with L= 7

F Figure 4. 8-3. Example. of "one dimensional median filtering for
images corrupted by impulse noise.

-122-

OI



(a) Image with Gaussian noise (b) Median filtering of (a)

a =25 with L 3n

(c) Median filtering of (a) (d) Median filtering of (a)

with L = 5 with L = 7

Figure 4.8-4. Examples of one dimensional median filtering for

images corrupted by Gaussian noise
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S. Image Data Extraction Projects

Image data extraction activities include the extracticn and

measurement of image features, the detection cf objects vithin

pictures, the spatial registration of images, and the generaticn of

images from one dimensional projecticns. Another facet of the effort

covers image pre-processing operations which enable more efficient

machine data extraction.

!.1 lextural Boundary Analysis

William B. Thcmison

Previous reforts have describel the development of a textural

distance function which 4ccurately estimates the perceived

lissimilarity between two textural regions. The textural distance

function model allohs the incorporation of textural cues into many of

the existing aFFroaches to scene segmentation. Texture may then be

usei, along with brightness, colcr, and any desired semantic

processing in determining cbject boundaries. The utility of textural

boundary detectipr will be demonstrated in an edge criented system.

Many duthors have developed edge finding systems which search for

mdjor discontinuities in the brightness function of the image [ 1).

This is normally dcne by ccmputing an estimite of the derivative or

gradient of the imaga and then finding the Feaks in derivative

function. Many functions tave been suggested for this Fuzpose. A

ccmumcn and often successful function is called the modified Roberts

_
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cross operator [2-] and is defined as

R(i, j) =Ip(i, j) - p(i+1, j+1) I + I p(i+l, j) -pai, j+1)I(1

The Roberts "gradient" is found by sumving brightness differenes in

twC orthogcnal directions. Many more sophisticated operators are

possible. In particular, an operator which returns edge crientation

may be quite useful.

A procedure has been developed to search for edges defined by

textural properties in a manner similar to the Roberts operator. At

specified inte~rvals in the scene tc be processed, four image regions

arranged in a square were considered (see figure 1).- The sum of the

estimatt~i perceived textural differances between regions a and d and

between regicns b and c was found. As vith conventional gradient

operations, it was postulated that larger values of this sum

correspond.3d tc textural adges running approximately thrcugh the

intersection of the four regions. In addition, an edge direction was

calculated. Let d(i,j) be the ccmputed dissimilarity measure between

two regions i and j (1I(i,j)>O for any two image regions). Then a

textural boundary op~erator at the point in the scene shown in tigure 1

may te defined as

T = d (a, d) + d(b, c) (2)

To determine the orientation of the edge, observe that

ang + arctan d (a d (3)
_ Ld(b, c)j
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:'igure 5.1-1. Template for textural edge oper~ior
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where ang = 0 imilies an edge with negative slope at 45 degrees to the

x-axis. Two angles are possible since dla,J)=d(b,c) may correspcnd to

either a vertical or horizcntal edge. This ambiguity is straight

forwardly resolved by considering d(a,c), 4(b,d), d(a,b), and d(c,d).

In the current system, an edge map is first produced by applying

the textural boundary operator at selected points in an image. A

second edge map is produced by smearing each point in the first map

along the directior of edge orientation. This is done to emphasize

collinear edges. Finally, actual edge points are isolated by locating

"ridge points" in the edge map. A ridge point is defined as an image

point sufficiently greater than its neighbors alcng some direction.

Much of the code to piocess the edge maps was adapted with little

modification frcm a system originally designed to operate cnly on

intensity informaticn ( 4 .

While most analysis systems designed to operate cn natural

imagery will use texture as only one of a set of multiple cues to

determine image organizaticq, some way is needed to evaluate the

utility of the textural boundary operator on its own. As a result,

this operator %as apbli3d to pictures in which the edges could be

described as "pirely textural." These test images were created as

mosaics of textural Fatterns taken frcr pictures of natural scenes.

Each ccmpcnent Cf the mosaic was normalized in the same manner as the

patterns used in the resolution experiments. Thus, it was imiossible

to distinguish patterns based cn average brightness or contrast

criteria.
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Figure 2 shows a representative mosaic pattern. Note that to a

human observer, there are several quite prominent edges. Thus, it is

clear that human perception can identify boundaries on criteria other

than differences in average brightness. Figure 2a is another mosaic

pattern. Figure 3b indicates the different textural regions present

in figure 3a. In figure 3d, a very prominent boundary exists between

patterns a and b. The toundary between b and d is relatively

noticeable while the edge batween a and d is hardly detectable.

Region c may be viewed at cne level as a faniform textural region. On

another level, however, the region may be thought of as being compose

of many smaller regicns corresponding to the predominantly light and

prelcminantly dark areas in the pattern.

The textural edge operator was applied to these and several other

mosaic patterns using several different sizes for the basic bloeks in

the operator (i.e. the blccks in figure 1). The original mpsaics

were 256 by 2!6 picture elements in size. Figure 4 is an edge map for

figure 3a using a tasic block size of 16 by 16 picture elements. No

post-processing other than the oriented smearing (e.g. edge linking,

noise cleaning, etc.) was applied. An effective job has been dome at

ilentifying the visually prominent boundaries in the masaic.b The

textural rescluticn experiments would indicate, however, that it

should be possible to achieve higher resclution. Thus, it is possible

to use block sizes as small as 6 or 8 pixels on a side. Figure Zb is

an edge map for figura 2 using an 8 by 8 basic block size, all pf the

perceived boundaries have teen well Iccated. Figure4a is an edge map

for the mosaic in figure 3a using the same 8 by 8 basic block size.
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(a) Textural mosaic #1

(b) Edge map for (a) using 8 x 8 regions

*[1

Figure 5.1-2. Examples of textural mosaics with
edge map.
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(a) Textural mosaic #2

A B A B

B A B A

(b) Identification of regions in (a)

Figure S. 1-3. Textural mosaic with region identification
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(a) dge ap fr fgure3a uing8 x regons

(b) Edge map for figure -3a using 86 x81 regions.[

Figure 5. 1-4. Edge map differentiation using 8 and 16
block regions



Again, the boundaries are well identified. The operator completely

legenerates in region c, however. A lcok at the original icttre will

show that many of the elementary lijht and dark areas are of

ccmiarable size to the 8 Ly 8 basic block. Thus, at this rescluticn,

the micro- -dges are a dominant effect. This is another example cf the

importance of realizinj that perceived edges have a "size" associated

with them that is a function of the size of the objects being searched

for. Comparable results were obtained on the other gosaic test

patterns.

A lifficulty with many of the problems in automated image

description is that it is often almost impossible to quantity the

success of any given afiroach. For example, the utility of a

particular object isclatica procedure is really cnly meaningful in the

context of the Fcccessing to follow. Unfortunately, the nature of the

problems are so complex as to make development of completed systems

most difficult. As much of automated scene analysis involves the

simulation of perceptual effects, the levelopment of lower level

operators described in this report has used human visual perceptjcn as

a performance gcal.

The existence of readily perceived textural edges should he

apparent. In many cases, existing automated systems which depend on

identifying brightness discontinuities will fail to fini these edges.

This report has demonstrated a way in which measures cf textural

dissimilarity may be incorporated into scene segmentation systems. A

textural edge opexator is developed which is able to accurately locate
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boundaries of a 1;urely taxtural nature.

The size of the regioq over which d textural pattern is measured

has d significant effect on how well that texture can be

characterized. Experimental rasults show that a dominant influence on

human textural resplution is the nature of the patterns surrounding

the region of interest. There is a well defined trade off betueen

spatial resolution of a textural boundary and the ability to

distinguish between visually similar textures. The structural

interpretation of textural patterns suggests several additional

methods for estimating minimal resolution regions. Unfortunately, at

least one of these measures (an auto-correlation ratio) *s not

supported experimantally. The performance of the textural edge

operator for varying region sizes corresponds closely to the predicted

visual response frcm the rescluticn experiments.
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5.2 Image Segmentatipn by Eoundary Determination

Ram Nevati.

Finding boundaries of objects in an image is a major concern of

scene analysis. The boundaries ccnsititute a segmentation pf the

scene. Conversely, the Loundaries may be derivei from a given

segmentdtion. A number of sejmentaticn techniques have been suggested

in the past, differing in their assumptions about the contents og the

scene and in tteir ccntrol structure.

Usinj ietailel specific knrwlelge of the objects likely to be

present in an image sisplifies the segmentaticn process [1-2j, but

these techniques suffer frcm loss of geuerality. Another distinction

between various techniques is in their control structures, such as

"tcp-down" vs. "bottom-up." The former treat an entire image as one

otject and successively sut-divide it into more parts as needei [3-4];

the latter start frcm small atomic regions (as small as a single

pixel) or local edges and build larger parts from them.

The bottcm-vi techniques are usually referred to as being 1.edge"

oriented or hdsed on "region growing." The edge based techniques

de~enI on detecting a disccntinuity between some prcperties, such as

brightness or color, of parts of an image and connecting these
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discontinuities to form boundaries. Region yrcwing pcoceeds by

clustering image Eoints of "similar" properties in regions and further

merging of regions of similar properties until a satisfactory

segmentation has been ottained. Knowlelge of image properties has

been used tc guide the merging of regions [5].

The edge based approaches were initially used for analysis cf the

scenes of polyhedral objects, the so-called "blccks world." The

individual objects were of uniform, hcoogeneous surfaces and were seen

against a uniformly light or dark background. Here, the edges

detected by a lccal edge operator usually correspond to the desired

object edges only. However, for more complex scenes, the local

discontinuities dg not necessarily correspond to the object boundaries

only; shadovs, surface imperfections ani texture, and noise *n the

imaging devices being some cf the causes.

Consider the picture in figure la showing a toy tank against a

background of grass. Note the wheels of the tank are not visible in

figure la because of display limitations. Figure lb shows the

intensity edges detected frcm figure la, by the application of a local

edge detector, known as a flueckel edge operator [6], at every second

pixel in every other rcw of the image. This operator detects the

presence of am edge in a circular neighborhood and returns the

position as welL as a direction for the edge. Figure lb contains a

large number of edges, most of which dc mot belong to the desired

boundary of the tank. However, humans presented with this edge

picture have no difficulty in perceiving the tank. The edges along
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(a) Digitized image

(b) Edges detected in (a)

Figure 5. 2- 1. Edge detection for a picture of a toy tank.
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the tank boundazy ccnnect in a coherent way, whereas the edges in the

grass region are seen as being randomly distributed.

An algorithm to find groups of elges that connect 4n an

approximate straight line, to be described later, is very successful

in separating the tank boundary from the background for the above

example. This method of segmentation has the advantage of being

general, as no specific objects in the scene are assumed. Also, the

schemes using texture properties defined over a regicn are senEitive

to the choice of the region size, and it is difficult to locate the

boundary accurately within a region.

The choice cf linking edges into Etraight lines was based on the

computational efficiency of this process. Many man-made and natural

objects have boundaries with elongated segmants. Further, any curve

can be represented by piecewise linear segmants; the linking algorithm

only imposes a ccnstraint on the maximum curvature of the segments

linked.

Linking AlycEithm: Much work in the past has been concerned with

linking local edce elements into straight line segments. Two broad

classes of techniques are tasel on the use of the Hough transform

[7-iC], or the use o graph theoretic methods [11-12]. However, these

techniques have been used in situations where the number of ed]e

elements is small and most of these elements belong to the desired

boundaries. Their effectiveness for the problems considered here is

unclear, dnd in some cases the computational costs are likely to be

unacceptable (e.g. the algorithms using minimal spanning trees,
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require computational times proportional to the cube of the number of

edge elements to be linked). A detailed review may be founi in [13].

A descripticn of tke algorithm developed follows.

For this iscussion, each edge element, ej , is considered to have

a position p. an] an associated direction ai. Two oppositely directed

edge elements are considered to have different directions (differing

by 180 degrees). Length of an edge element, determined by the size of

the local edge cparator, is unimportant.

The entire 360 degrees range of directions is divided in a number

of equiangular intervals (say 12). Linking of edge elements along

directions in each interval is examined. Linking in a chosen interval

is constrained to edge elesents having directions approximately within

this interval. The fcllowing are the steps, in detail, for linking in

an interval whose median angle is, say e.-

1. Examine each edge element and put in a set E. if the

lirection cf the elge, a . is within a fixed, chosen range, AO of
1

the directicn 0.. Note that Ae need not be the same as the width

of the angular interval. Figure 2a shows the edge elements for

the tank frgc figure Ib, which are within a 60 degree range of

horizontal direction 10. = 0 degrees).

2. Transform the co-ordinates so that the new x-axis, lies along

0.. Let (X. ',yi') be the transformed co-ordinates Qf the i-th

idge eleuent in set Ej.
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3. Divide the image Flane in parallel strips (buckets) of a

fixed size (say 3 pixels wide), normal to X9 (figure 3 shows

schematically sPme buckets, with the rotated X-axis displayed

horizontally). Each edge element e. in E. will fall into one of1 J

the buckets, determined by the co-ordinate x. '. Store the edge
1

elements in each bucket in a list ordered by the value of the y'

co-ordinate.

4. Link edges in each bucket: If two ccnsecutive edge elements

in the edge list for a bucket differ in their y' co-ordinates by

a distance smaller than a threshold TY, say 2 pixels, then the

two elezents belong to a common segment. e.g., tucket 2 in

figure 3 is divided into segments S1 , S2, S3 .

5. Link segments in neighboring buckets: If the end Foints of

two segments in adjacent buckets are within a distance ct TY in

their y' co-ordnates and also within a distance of TX in their x'

co-ordinates, then the two segments are merged into cne. Also,

the merging must not result in a change of orientation of the

segment, e.g. in figure 3, S4 and 37, or 55 and S8 are merged

but not 36 and S9.

6. Retain only sejments of a length exceeding a filed number

(say 7)

Figure 2b shows the linked segments resulting from the edge

elements of figure 2a, using the thresholds indicated i n the

lescription of the algorithm above. Figure 2c shows linked segments
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from 12 intervals covering the entire 363 degrees range. Note that

segments from lifferent intervals are not linked though they appear so

in the figure, and some elge elements are connected to more than one

segment. Rescluticn of such overlaps and linking of intersecting

inter-interval segfents is straight-forward.

The above described algorithm uses many thresholds at various

steps. However, the dlgcrithm is relatively robust to these choices

and the programs work well on widely different scenes without changing

these thresholds. The same program, without change of thresholds has

been tried cn iifferent images, including the problem of rib detection

in a chest X-ray, with encouraging results. The details of the basis

of choice of threshclds are found in [13].

Computational Complexity: The various steps of this algorithm

require the processing of an edge element either in isolaticn or in

comparison with its immediate neighbors in an crdered list. Thus all

computing costs are linearly ptoportional to the number of edges

processed, except for the possible costs of sorting the edge lists in

step 3 above.

The number of edges in any single bucket is normally a small

proportion of the total number of edges. Taking advantage pf the

initial raster order of the edges, the sorting time can be limited to

increase only linearly bith the number of pixels in the image. The

sorting details are not discussed here.

For the exasile of the tank, the total time to link An 12
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directions was 20 seconds on a PDP-KI10 processor. The programs are

written in the SAIL lanjuace. The total number of edges detected was

about 5000. Ihe oaximum memory requirements were about 50K, 36 bit

words.

The techniques described are limited to discovering elongated i
segments of Edge bounlaries. These segments have to be cpnnectei to

form complete cbject boundaries. There is sufficient informatipn to

connect these segments as evidenced by our ability, as humans, to do

so (in figure l for example) without recourse to the original grey

level picture. The segments cannot be simply ccnnected to their

nearest neighbors; some notion of preferred configuraticns is

required. Two lpng parallel segments are often boundaries of opposite

sides of a part cf an object; e.g., see the boundaries of the barrel

of the tank in figure lb. Information cbtained by other fccas of

analysis of the image, such as texture or color analysis, will aid in

the connection of these segments. Alternatively, these segments may

be used to aid in such analysis.
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1.3 Color Edge Detection

Ram Nevatia and William D. Miller

A digital iiage may be represented as a matrix of values of a

function I(x,y), defined at digitized points in the image. For a

black and white image, I is a scalar valued function, corresponding to

the brightness of the image at the digitized points. For a color

image, I is a vector valued function having three compon3nts, say IR'

IG and IB' the intensity values in the red, green and blue color bands

respectively.

In a black and white image, an edge is defined by a discontinuity

in the scalar valued function I(x,y). An elge in a color image may be

defined in several ways. If d metric were iefined on the vector space
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spanned by I, edges could be detected in the new scalar space. Note#

this is similar to reducing the color image to an equivalent grey

level image. Alternatively, edges may be detected in the three

components IR' IG and I B of independently and a single edge

determined frcm their ccutination. A scheme for color edge detection

is developel in the tclloving.

First ccnsider the details of edge detection in a single grey

level image. It is useful to consider an edge as having a position

and also a direction (a magnitude reflecting the discontinuity may

also be included). A simple gradient operation followed by

thresholding prcvides such edge output. An edge is often limited to

belong to certain classes of discontinuities, e.g. a step-like or a

line-like discontinuity. Consider step edges only. Edge detection

may then be viewed as the test fit of a neighborhood of an image by a

step functicn, and requires determination of the position, prientation

and the magnitude of the step. Decisicn cf the presence of an edge is

based on the size of the step (and perhaps the quality of the fit).

It was suggested by Binford [1], that a color edge be determined

by making best fits to the three functions TR' 
I G and IB separately,

but constraining the orientation of the step to be the same for all

three components, and the decision of the presence of an edge based on

the magnitudes cf the three steps.

A popular edge detector for black and white image has teen

developed by Hueckel [2]. This operator determines the presence of an

edge in a circular neighborhood and provides the position, grientation

1
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and tha magnitude of the edge. Briefly, it proceeds by approximating

the circular neightorhood by expansion in a finite number of terms of

an orthogonal series of functions. Hueckel claims the chosen series

to be optimal under certain assumptions. Lat a i be the c9efficients

of the expansion for a given neighborhcod (i ranges from 0 to 7).

A best step function is fit to the approximated function nelt. A

step function, Farametarized by a tupl, is expanded in the same

series to yield coefficients s. (tuple). Tha parameters of the step1

are chosen to minimize the function

7

N2 =E[a i - si(tuple)1 2  (1)

i= 0

An attractive part of Hueckel's approach is that analytic

sclutions to this minimization problem can be found, avoiding

expensive searches. In particular, the orientation of the optimal

step can be deterwined independently of other parameters.

To extend this concept to a color elge, the function to be

finisized may be fcrrulated as

2 2 2 2
= NR + NG + NB (2)

Tht functions Nw N G and NB are as lefined in eq.(1) for the three

components of the image I, i.e.
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N R _ EN.- si(tuple)z (3)

i=O R

where the subscript R refers to the red component and sjmilar

expressions exist for NG and NB.

The minimization process now reguires determination of three

tuples of parameters, with the constraint that all three have the same

orientation parameters. Again, it turns out that the prientation

parameter can te determined indeFendent of the other parameters.

Further, once the crientation has been determined, the parameters in

one tupla can be determined independently of parameters in the other

toples.

The algebraic details of the derivation are not presented here.

A black and white, Hueckel edge operator program, coded in assembly

language, has been in use at USC since last year. It is Fossible to

use many parts of this ptogram, as they are, in the develrpmenk of a

color edge operator. This new program is now- being developed and

debugged.

Other interesting considerations for color elge detectton are in

the weightings of thq steps obtained for the threa color comionents.

It is expected that transformations of the R-G-B space to another

three dimensional spact, which is claimed to be Euclidean, based on

moels of human perception developei at USC [3), should aid in this

task.
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5.4 Image Boundary Estimation*

Nasser E. Nahi and Mohammad Jahanshahi

in visual percepticn, among the most effective stimulus

configurations are the "edges" outlining objects within an image, [ 1].

This has motivated many researchers in the area of automated image

processing, specifically scene analysis, to develop various techniques

of edge detecticn and boundary estimation. An incentive for research

in scene analysis is the study of robotics [2]. The available

information about the shapes and sizes of physical objects ccnstitute

and total visual intelligence required by a robot. Such information

can be provided through kncwledge of object boundaries.

The ollest method known for boundary latermination is that of

thresholding [3]. This method, along with the later procedures of

*This research was partially supported by National Science Foundation

ENG 75-03423.
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lccatinJ the maximum jradients, are well known to be highly sensitive

to the sources of 3egradaticn phenomenon [4]. Various refinements of

the above methcds, which tc some extent account for the presence of

ncise, have been recently introduced [5].

In this report, a boundary estimator is introduced for a certain

class of noisy images. The images considered contain an object of

interest within a background. Defining the set of points which

separate the object and the background as "object b9undacy," a

recursive estimatcr is desiJn3d to yield an estimate of the qbject

boundary. Extensions cf the estimator to multi-object images are

discussed. The perfcrmance of the estimator is illustrated through

apFlications to a fev images.

Problem Statement: Consider the class of images which can be

partitioned into two regions: background and foregrgund. The

fcreground is asEumed to form a "horizontally convex" object. G*ven a

ncisy version of such an image, the aim is to obtain an estimate of

the object boundary.

.odeling of Images by Replacement Processes: An image whoEe grey

level values, denoted by a two-dimensional function t nm), are

unknown is ccmmonly modeled by the given first and second order

statistics of b(m,R). Literature in the area of digital image

restoration includes use of this information, along with a set of

observations, to derive a set of estimates (often a minimum mean

Equare estimate) for b(m,n) [6,7]. However, consistent in the results

has been the presence cf blurry edges. Intuitively, it may be
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ccucluded that an image model based solely on the first two morents of

t(m,n) might be suitable Zor reccustruction of image grey level

values, but it does not carry sufficient information to adeqyately

reconstruct t~e cbject boundary.

A mod- for the image signal b(m,n) which explicitly represents

the object boundary along with the background and object internal

*letails is giver by

b(m,n) = y(m,n)b0 (m,n) + [l-y(m,n)]bb(m,n), (1)

whre bo0 and bb represent the intensity values of the object and the

background, respectively, and y carries the boundary information of

the object withir the image. The two-dimensional functions b (M,n)

and b b(m,n) are assumed to be sample functions of two statistcally

independent, wide sense stationary random processes whose first two

mcments are given. The mean values of bo and bb are indicative pf the

object and the background brightness similarities, whereas, their

respective autocorrElation functions are measures of the object and

the background textural information.

The binary valued function y(m,n), another random process, takes

values of 1 or C corrisponding to the points in the image belonging to

the object or the tackground, respectively. In the literature, this

function is usually known as the image "characteristic function" [8].

The statistical Fioperties of y will be described shortly.
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The image mcdel mathematically reFresented by eq.(l), is rased on

a concept called a "replacement Ftocess" where, by definition, a

segment of a tuncticn or a ranlom process is replaced by another

function or randca process according to a certain rule [9].

Considering that for typical images the object signal, in fact,

"replaces" a particn of the background signal, the structure of this

model is justified. In the model of eq. (1), replacement of the object

process b0 with the backgrcund process bb takes place according to the

values of y.

For future reference, note that the domains of the sample

functions be (m,n) and bb(mn) are defined to be the entire image.

This is, in fact, the main motivation behini introducing the concept

of replacement Frocesses in the image modeling.

A sequence of ctservations constructed as

y(m,n) = b(m,n) + V(m,n) (2)

are assumed available for neasurement, where b(m,n) is as defined by

eq.(1), and v(u,n) denotes an uncorrelated process representing the

observation noise.

An image scanner will now be considered which transforms the

two-dimensicnal data representing the noisy image, y(u,n), into

one-dimensional data. Tbe scanner output, in the atsence of

observation noise, is denoted by s(k), where

a (k) =X )(k)s 0 (k) + [l- X(k)] sb(k) (3)
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models the image in terms cf its grey level values and object boundary

as viewed by the output of a line by line scanner.

The structure of the one-dimensicnal model of eq. (3) preserves

the replacement processing concept. The functions s (k) and sc b (k) are

associated with t (a,n) and bb(mn), respectively. Thdt is, s (k) and

sb(k) ienote the grey level values of the scanned qbjeck and

background, and are assumed to be sample functions Cf two

statistically indepenient, cyclo-stationary randcm processes [10],

whose first tuc mcments are obtainable directly in terms of the first

and second-order statistics of b (m,n) and bb(m,n) [6]. As in the
0 b

case of b0 (m,n) and bb(m,n), the dcmains of the sample functions s (k)

and sb(k) are the entire scanned image.

The binary valued process X(k) is the one dimensional counterpart

of y(m,z&). Its statistics will be described below. Note that the

statistics of X ccn~letely define those of y.

Let mI and m indic4te the first and the last lines of the object

as viewed by the scanner, anla., 0. represent the beginning and end

points of the ob'ect cn line t, respectively. In general, all m2 11ato

t for mI <t<m 2 are random.

The function X(k), appearing in eg. (3), is now defined in terms

of a and

m2
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whEre u[ ] is the unit step function, J lenotes the number of picture

.lements in one line of the imaje, and >at. The statistics cf the

process N(k) can now be given in terms of the statistics of m , 8 2 ,

and the sequence

W= (cLe (5)

Assume that W forms a first-order Markov process. This

assumption is made for the sake of comFutational simplicity, and it

emphasizes the dependence of the object boundary points on line t opon

the points iccated on the previous line, t-1. It is further assumed

that the requireJ density functions are given, and that

p(WI Wtl, ' ,r mZn) =p(Wt l , Y (6)

Notice also that

p(, w _1 , 'Y = p(L, 0 t -1' t-11 ni )

(7)

= p((% tIc~, %l,'nl ) " p(t1 a r ,' 1 , rn

The two dirensiondl observation sequence y(m,n) in e. (2) will

also te replaced ty its scanned version given by

y(k) = s(k) + v(k) (8)

where s(k) is as defined in ea. (3), and v(k) is a zero mean Gaussian

2
white-noise process with vdriance (
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To locate the object boundary, estimates cf the first and last

lines (ml and a2) and estimates of the starting and ending points (a

and ) of the chject are Eoujht. The estimation procedure developed

here, as will Le shown, rejuires the values of s (k), and s (k),
0 b

1<k<N, where N is the total number of pixels (picture elements) in the

image. Since, in general, th.se values are not known (cases of 4mages

with known grey levels are exceptional), the estimates of s (k) and
0

sb(k) will be used in their place. Such 3stimates can, for example,

be obtained by implementation of the results in [11] where only

two-dimensional statistical informaticn on s(k), or y(k) is used.

Notice that the concept of replacement processes assures the existence

of the estimatee of s (k) and sb(k) for all 1<k<N. Since the aim of

this paper is estimation of the object boundary, it will te assumed

that the values s o and sb (cr their estimates) are given.

The boundary estimaticn probl-m, as evident from eqs. (3) and (8),

is a nonlinear estimaticn problem. Furthermore, due to the type of

nonlinearities invclvel (such as the binary nature of 1(k)), the

available estimators based cn linearizaticn concepts (such as extended

Kalman filters) do not yield satistactcry results.

In this work, a set of maximum a posteriori (MAP) estimates for

thE unknowns ml, m2 ,at, and Ot are obtained. It is shown that the

MAE estimates will minimize the following expression

min t-2c2  np( 2rn 2 n1 ) - 2(2tn p(rn)

m, w (9)

a

+ [T(w,)-2(7 t p(wj 1W, 1 ,rn. 1)
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Numerical Derivation cf Estimates: Acluisition of a numerical

sclution for the minimization process of eq. (9) is an integral Fart of

this presentation. Since a rigorous sclution of eq.(9), resulting in

a set of oFtimal estimates for Im a 2 ,c, , and R, is compmtatignally

unacceptable, apFicximate solutions are soujht. Two approaches, shown

later to yield satisfactor) results, are described in the following.

One approach is to obtain the estimates of a and 0 over the

range m 1 <<m2 , with the assumption that values of m, and m. are given.

For example, values of m1 and m 2 may be chosen as aI=1 and mag=M,

implying that the object boundary points lie on every line of th

image. Then, if necessary, one may utilize additional structural

properties of the cbject to eliminate those boundary point estimates

incompatible with the given structural intcrmation.

An alternative approach is to consider the problem in two steps;

namely, solve fcr a and ml<t<m2  for a selected set of ml and m2;

then solve for the estimates of a 1 and m 2 by replacing the estimates

AA

a and I for Lt and A recursive procedure will result if these

two steps aire performed at each scan line resulting in an algorithm

which yields a set of estimates for ml m2 ,CL, and %, concurrently.

The former approach is computationally more attractive. However,

it requires additicnal information, ot a nonstatistical gecmetric

nature, on 'the object, beyond the given statistical information, to

ccupletely specify the object boundary.

Computation: Assume that the first and the last lines of the
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object, 1.,ml a n] m2, are given. Then, ?q. (q) canl be re~lucrd to

mi[ [~ C n p(w1 Iw 1 ) (0

Now, from eq. (6)

-2a 2 tin p(% I tp CcZ-1 rnm)]

Furthermore, since

Tw)K (k)- K(k) (12)

where

K(k) = K 0 (k) - Kb (k) (13)

then eq.(11) can be writter as

m

1N [ -2a tn p(L [I a

(14)

(11-1)+ Ot,(t-1)J+ at~l

+ K(k) K(k)3~

k= (t-l)J+1 =t-)~
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A recursive, easily implementable solution of eq.(14) is possible

if the density fuDcticns of ey. (13) are approximated. Hence, the

minisizition in eq. (13) is replaced by

m

min a

w E [h( + g(a.15)

W1

where

(t,-1)J+ -1
g(%X) = -ZT tn p(03 1L% ,) " K(k) (16)

k= (-1)J+l

h(C) = n ( , . 1,l n 1 ) + K(k) (17)

k= (I-1)J+l

Examples: Several images have been considered to illustrate the

results of this section. Figure 1 depicts three such examples. All

the pictures have grid size of 256 by 256. In each case the mean and

variance of the ptctures are determined, and then a white Gassian

noise of specified variance is added to each picture (figure 2).

An arbitrary segmentation procedure was performe4 to produde the

tackground, sb (k), and forejround, so (it), 1<k<256*256, sample

functions for each picture. The segentation procedure was based on

replacing the object intensity values by the maximum background

brightness value (forming the background sample) and the tackgrcund
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(a) Original Square (b) Original Diamond

(c) Original "Girl"

Figure 5. 4-1. Original images
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(a) Noisy Square (k) Noisy Square

(S/N 1. 0) (S/N = .6)

(c) Noisy Diamond (d) Noisy Diamond
(S/N = 1.0) (S/N = .6)

(e) Noisy Girl (f) Noisy Girl
(S/N = 10. 0) (S/N =.9)

Figure 5.4-2. Images with additive noise
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intensity values by the minimum object brightness value (forming the

object sam[le). In jeneral an estimator is needed to perfoxm the

segmentation; however, since the original images were available here

(not usually the case), the above technilue was a more convenient

procedure. With values of m1 and m2 givem as I and 256, respectively,

the outputs of the boundary estimator are shown in figure 3

The signal to noise ratio (S/N=signal variance/noise variance) of the

observed image and the conjectured values of the object maximum bidth,

L, are indicated in each figure.

5.5 Principal CcmoFents and Ratioing for Multispectral Image Analysis

Guner S. Robinspn and Werner Frei

Manual or machine classification of multi-spectral images is, in

general, made difficult by the dimensionality of the problem and by

the fact that the information of interest may reside in subtle

differences between the spectral bands. However, the reduniancy

between multispectral images provides potentiality for a reduction in

diuensionality bithcut an appreciable information loss. Both linear

and nonlinear transfcrms have been studied to achieve such a reduction

and to enhance E-ectral dissimilarities for terrain classification of

the four spectral bands of Earth Resources Satellite (ERTS) imagery.

The princiial comFonent transformation is a well-known linear

methol by which a linearly independent (uncorrelated) set of images is

obtained. The energy compaction property of this transformation makes
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(a) Square Boundary (b) Square Boundary
SIN =1. 0 L= 100 SIN =0. 6

(c) Diamond Boundary (d) Diamond Boundary
SIN= 1.0 L 140 S/N o. 06

(e) Girl Boundary (f) Girl Boundary
SIN= 10 L =250 SIN =0. 9

Figure 5.4-3. Boundary estimates
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it particularly attractive for the reduction of dimensionality, but

the ccmputational loal may be considered excessive in some cases.

Another popular technique is to generate ratio images in which

each pizal value is eqjual to the rescaled ratio of the amplitudf-s of

two spectral bands. The advantage of this ncnlinear transformation is

that ratios are invariant to illumination variations and

coiputationally fast. The disalvantage is that there are six possible

ratio images (disrejarding inverses) with rather similar energy

cont ents.

Principal Ccupovent Analysis of Multis pectral images: Principal

components anal~sis of EBTS bands is motivated by the des.~re to

extract the most sigjnificant spectral components from the ava~lable

four. This diffensionality reduction also results in preserving most

of the ERTS information in a smaller number of con,)cnents.

The principal component analysis of ERTS data involves finditng a

unitary transformation matrix which, when applied to the four bands,

results in a new set of bands (principal components) having several

desirable characteristics: the principal components are uncorrelated

and each cou~cnent has a variance less than the previous ccmfoneat.

The principal components are obtained from the original four

spectral bands by the matrix multijlication

y= Ax()

where x is the vectoc of sEectral intersities cn four ERTS tandso is
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the vector of principal components and A is the 4 x 4 Karhunen-Loeve

transformation matrix. This matrix is derived by diagonalizing the

spectral covariance matrix C of the spectral bands. The rows of A
-X

are the normalized eiqqnvectors of C The covariance matrix of the

principal ccmnon~nts is then

X(1) 0 0 0

T 0 X(2) 0 0
-y - -x - 2

o 0 W(3) 0

o o 0 W(3)

where X , , X3 and (the variances of the principal ccmponents)

are the eigenvalues of C crdered such that X1 >yX 3>X4"-X

It should be noted that, since A is a unitary transformatic, the

total data energy is invariant. That is

4 42 = i (3)

3=1 i= I

where the 0., are the variances of the original ERTS bands. As an
1

example, figure 1 shous four ERIS images, and figure 2 presents the

principal ccmpcoents planes. All images have been enhanced by

histogram manipulation before display. The spectral covariance matrix

C of the four ER7S bands is obtained by computing the spectral

covariance matrix on 64 x E4 blocks of ERTS pictures, (each 512 x 512

pixels) ani then averaging over all the blocks. Exhibit 1 contains
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(a) Band 4 (Green (b) Band 5 (Red)

~- 7'

(c) Band 6 (Infared 1) (d) Band 7 (Infared 2)

Figure 5. 5-1. Enhanced ERTS images
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(a) (b)

£It%

tv ;4' v _:

OF

:~4N"

(c) (d)

Figure 5. 5-2. Principal Components of ERTS images
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Exhibit 5. 5-1

Statistical Data on Principal Components of ERTS Planes

spectral covariance matrix

57. 16 75.80 39.23 18.46

75.80 113.69 53.76 24.50

39.23 53.76 68.97 64.78

18.40 24. 50 64.78 85.53

normalized spectral covariance matrix

1.000 .117 .078 .033

.117 1.000 .075 .031

.078 .075 1.000 .105

.033 .031 .105 1.000

Karhunen-Loeve transform eigenmatrix

0.44465 0.63040 0.49520 0. 39958

-0.32653 -0.49866 0. 34168 0.72662

0. 32957 -0. 45586 0. 67249 -0. 48097

0.76619 -0. 38227 -0.43103 0.28469

Karhunen-Loeve transform eigenvalues

( ) .100%

i t X1-

I 224.92 69.14

2 90.78 27. 91

3 5.42 1.66

4 4.13 1.27
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the measured ERIS covariance matrix, the computed covariance matrix of

the Frincipal comFonents planes, and the corresponding eigenvalues.

It should be' noted that the first two principal components represent

971 of the total energy.

Band Ratios: Patioiny of ERIS pictures is a useful pre-processing

technique for multispectral recognition and classification.

Signatures obtained from a training sample under one set of conditions

may not have a good discriminaticn capability for a given

classification scheme if the same area is observed unler a different

set of conditions. If the changes result from simple multiplicative

factors such as the brightress level, then the ratic of the bands will

be invariant.

Taking varicus ratios of the green, red and the two ingrared

bands (bands 4, 5, 6, and 7, respectively) of the ERTS data results in

elimination ot brightness variations due to toFographic relief. Such

ratio images have been shown to be mare useful for determininj

boundaries betweec litholojic units and veg-tation grcups 11]. Ratios

may be taken to emphasize variations due to color also. Such raticing

processes produce a color display whose color variations are more

indicative of material variations than the simple pseudocolor

displays.

Ordinarily, ratio images are obtained by formirg a scaled ratio

A two Lands, (direct ratio). Logarithmic ratio images are produced

:j t Flyij a lcgarithmic stretch to a ratio image. The advantage of

I i 9ithic ratio is a jreater toleranci to quantizaticn error.
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In the cases studiel, it has a j ea rel that logarithmic ratio

images contain more visual infcrmation than direct ratio images. It

is felt that exfesiments with more images are necessary to confirm the

above conclusica.

As an example, figure 3 shows the logarithmic ratios of the EPTS

pictures shown in figure 1. These ratio images have been enhanced

using the same histogram manipulaticn algorithm as the original

images. The choice of ratio ima~es for a certain classification

scheme depends on the data and the ap~lication.

The covariance matrix of various ratios could give some insight

in choosing a set cf ratics for a classification scheme: ratios that

are uncorrelated are likely to produce better results than those that

are highly correlated. This ilea suggests the use of the principal

ccmpcnents of ratios insteal of ratios themselves. Exhibit 2 ccntains

the normalized covariance matrix and eiyenvalues of the Icgarithmic

ritios. It is cbservaed that the first two or three principal

cotponants contain most of the relevant information in ratio images.

This can also be verified ty studying the principal components shown

in tigurp 4

REferance

1. Goetz, A.F.H., et. al., "Apjlication of ERTS Images and Image

Processing to 'Regional Geologic Prcblems and Geologic Mapiny in

Ncrthern Arizcna," JFL Technical Report 32-1597, May 15, 1975.
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Exhibit 5. 5-2

Statistical Data on Principal Components of ERTS

Logarithmic Ratio Planes

normalized covariance matrix

R-tios 4:5 4:6 4:7 5:6 5:7 6:7

4:5 1.0 -0. Z97 -0.390 -0.746 -0.714 -0.399

4:6 -0.297 1.0 0.910 0.837 0.812 0.486

4:7 -0. 390 0.910 1.0 0.840 0.912 0.771

5:6 -0.746 0.837 0.840 1.0 0.955 0. 554

5:7 -0.714 0.812 0.912 0.955 1.0 0.751

6:7 -0.399 0.486 0.771 0.554 0.751 1.0

eigenvalue s

( 6 ) .100%

i _____ \k=1 k

1 35.495 86.0

2 3.270 8.0

3 1. 592 3.9

4 0.084 0.2

5 0.082 0.2

6 0.080 0.2
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6. Image Processinj Systess Projects

The following describes the image processing systems ptojects

which are ccncernei with the develcpment of image processing hardware

and software systems.

6.1 Hardware Prc~lects

Toyone Mayeda

A real time cclor image magnetic tape recorder/playback system is

under develoFment. The recorder is to be used to record real time

digitize4 television signals at a 600 ips rate and played back at a

1-7/8 ips rate to transfer the data to the PDP-10 computer. The

inverse process is performed to produce real time televisi~n s4gnals

frcm coicd ccoputer records.

Delivery of the Emerson (Orion) digital magnetic tape

recorder/playtack unit has been delayed due to difficulty in meeting

the bit error rate and ffdximum skew specifications. Emerson is

prEsently redesignirg the tape transport mechanism to reduce the

problem. It is also planned to increase the ieskew buffer capacity in

the interface hardware which was developed at USC. Delivery Jis now

planned for 1 January 1S76.

A second digital imdye television display system, which is being

developed, is presEntly in the check out and testing phase. This unit

rceceives digital fictura data from the ARPANET, acting as a virtual
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TIP terminal, and produces a modulated television signal for

connection to the antenna terminals of any commercial television

receiver.

6.2 Software PrcJects

Dennis Smith

The software effort of the Image Processing Institute (IPI)

prcgramming grcup has been centered on two projects. The first has

been the implementation of a network of mini-computers, and the second

the augmentation of the library of image processing user programs.

The pux~cses of the network of mini-computers are to handle

communication among the larger computers of the Engineering Ccoputer

Latoratory and the Image Processing Laboratory, and between these

computers and machines at other sites, and to handle lcwest level

protocols with image processing devices.

The primary advantage of this netwoxk is the freeing of the

larger computers ftom the task of minutely supervising complex

devices, many of which cause frequent interrupts that are demandinj

upon a processor's time. All ccmmunications among the larger

computers, and between them and the specialized devices are carried on

in vessagte packets which are blocks of data that can be passed about

with a minimum cf interrupts.

A second advantage of the network is one of reliability. Should
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the PDP-1 mini which is controlling a key device become

ncn-operaticnal, thu software for that device can be easily moved to

another mini, the device plugged into that machine, ani service

restorel. Should the PDP-1O, the principal ccmputer for user

software, be unavailable, the [P-2100 or the IBM 36C/44 can te used in

this capacity, as the user software is written in portable FCRTBAN.

To date, the two programs which will run on all the Il's, the

supervisor prcgam, ani the network contrcl program (NCP), which

manages the routing of message packets from the source to the

iestination ccaruter, are both completed. Remaining to be finished

are the service Ezograms to handle each of the image processing

devices on the Il's, and the NCPs for each of the larger computers.

The second area of concentration is user software. Several

personal programs of the IPI faculty and staff were obtained from the

individuals who wrote them and were added to the IPI library after

modification to make them more useful to the general community. All

of the fcllowing were standardized tc conform to parameter input

conventions of the other library programs, and generalized to process

images which are any power-of-two size smaller than or equal to 1024.

All programs run in an interactive mode, asking the users questions as

to what he wants done. These programs are described below.

CONVOL - a Irogram fcr performing two dimensional convolution was

generalized to provide a choice of impulse response arrays (or allow

the user to enter his own) in sizes 3x3, 5x5, or 7x7.
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HSTMOD - a projram to perform moiification of histograws, which

does equalizaticn, exponentiation, cr a "gamma" function upon the

histogram of a fictuxe.

PICOUT - a projzam for contrast manipulation was expanded to

perform the fo]lcwinj: clipping, labeling, reformatting (packing,

unfacking, integer-real, real-integer), and application of one of a

variety of transfer functions: positive linear, negative 14near,

sawtooth, slicer, eye, half power, third power, log, or a user-defined

step function (256 steps) with autcmatic scaling.

MEDIAN - a median filtering program which offers three chcices of

filtering: MIS, which ccmputes the median for each positicn of a

rectangular window as it scans the picture file; MEDX, which computes

the median for each position of a cross window; and MOVAVG, which

computes the weat fox each positon of a rectangular window. All of

the above may be used with any winiow size 1 x 1 to 11 x 11.

CFIL - a program to dc image restoration and Wiener filtering.

It allows specificatio4 of a blur, correlation coefficient, and

signal-to-noise ratio, and an inplulse response matrix up to 31 z 31.

6.3 A Synthesis Procedure for Optical Nonlinearities

Stephen R. Dashiell and Alexander A. Savchuk

A general technique for implementing nonlinear nonmcnotonic

function incoherent optical parallel sijnal processing systems has
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been Jescribed in recent publications [1-41. The technique cperates

by using special halftone screens and high contrast (binary) ogtical

input devices to effectively pulse-width modulate the input. The

selection cf diffraction orders in a Fourier transform produces a

desampled output which is a point nonlinear function of the input.

A very ccwplete analysis of the entire process has been performed

(4]. One generalization that has been found is that the halftone

prcfiles (cells) themselves which determine] the dot size b need not

be wonotonic. Thus, the effective periodicity of the preprocessing

can be change3. The effect is to reduce the diffraction order

necessary to achieve ncnmcnotonic operation. So many design variables

are now available that the class of mathematical operations jossible

and ease of isIlesentaticn has been greatly extended.

An exdct synthesis procedure for nonlinearities using ordinary

mcnotonic cells has been made and is summarized here for the case of

linear on -Jimensicnal scenes. Cmitting wavelength and geometrical

factors for clarity, the general expression for the amplitude 4n the

transform plane resulting from an infinite grating of opaque bacs of

width, b, and period, a, with unit amplitude illumination is

~)_ :6(f x ) - 6(1x - l)a b a sn bn )

__ (f in
(LX xx a a a

where the y dimensicr is suppressed. By selecting these diffraction

orders with simfile spatial filters, the sinc terms in eq. (1) indicate

that ncnmonotcnic behavior cdn be expected. In the special case ot a
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zero order (n=O) selection, an intensity output

Iout(O) (1 - b/a) 2  (2)

is expected frc eq. (1) after inverse Fourier transfproing and

squaring. For a first order (n=1) selection, the output intensity

1 sin- (3
out(1) 2 si a

a function which is ncnmcnctonic in b.

Because of the halftone process, the value of b in these

expressions is a functicn of the continuous input intensity I . A

one-dimensional halftone screen can be described as periodic

sysmetrical cells centered on x=O and extending from -a/2 to a/2, each

with a density function f(i). The intensity I transmitted by the

infut-screen ccohination in each cell is

= 'in 10 -f(x) (4)

and this functicn is imaged or contact printed onto a binary clipping

medium with effective cutcff I'. Since there is no exposure if I !I't

and full exposure if I >', opaque bars result where x is such that
t

I. 1 1 0 f(x) (5)
in
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Taking logarithms yields

where f-1 is the inverse of f. The cell siza b is simply twice x for

halftone cells symmetrical about tke spacing a.

Combining eg. (6) with eqs. (2) or (3) for the appropriate order

gives the overall mapping

I g0 in = ( - f 1 [log0 )]/a) 2 (7)

for the zero (n=O) order, and

IOU,~ ~ T .1In -i( f- loo Iin]/)

= =g( )-- [lg +I)rJ (8)
out =91 Ui sin lo 1 I f

for the first order (n=1). Similar expressions can be obtained for

two-Jimensional cells and various selections of diffraction orders.

These expressions for transforms and dot sizes are valid cnly in

local regions of constant input values. Input informaticn produces

low spatial fxequency modulation, and the complete expressicn for the

transform is much more complicated. The halftcne process assumes

input samplinj at a rate sufficient to avoid aliasing, ainI these

results describe the local ncnlinear effects if 4esampling filters

choose the lcw frequency input information.

-179-



The follcwinj procedure can be used to obtain the cell pzofile

f(x) and diffraction order for one-dimensional screens given a desired

T=h (I ~lout h lin)

I. Determine the minimum diffraction order n to be used by

counting the number of sign chanjes, q, in the slope of the transfer

function. If q is zero and the initial slope of h is negative, the

n=C order can be used directly. If q is zero with positive initial

slope, the n=1 order must be used. For q greater than zero, add one3

to ' if the initial slcje is negative to obtain q'. If q is greater

than zaro and the initial slope is positive, then q'=q. The number of

slope changes in the jeneral I versus b curve is given by 2n-1
out(n)

for h>O, thus it is selected so that q1 is less than or e iual to 2n-1.

This procedure determines the minimum n, so that a larger order Can be

use-] if desired.

II. Normalize the desired function by scaling so the largest

lout equals the maximum Iou t for the Farticular order used. For n=O,

I <1; for n>C, I <1/nout out

III. Equate h(Iin) with the appropriate general expression

g (Ii ) of the form eq. (1) or eq.(11) for the particular order n
n i n ~-1 | l

used. Solve this equation for f 1 110910 (In/I')).

IV. Solve for f(x) by selecting a solution such that t(*) is

mcnotonic and the initial slopes of h(I. n) and 9n (Iin ) have the same

sign. Whenever the slope of h(I in) changes sign, the halftone cell

size must atruptly increasE so that the diffraction output remains the
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same while jumping tc a region of g (I. ) cf opposite slope.
n in

An example of this procedure is the synthesis of an optical level

slicer, or intensity bandpass, with the characteristics shown in

figure 1. This function is

Iout = h(I. )= K, I I. 1 (9)ot in Icl in IcZ

0, otherwise

and it has one sign change in slope, so q aquals one. The initial

slope is positive, so qI is one and the tirst (n=1) diffracticn orier

2
can be usel. NcxalizinJ the function h(I. ), gives K equal to I/Ti ,

in

and equating h(I in) with g 1(In) gives

-l -1(10)
f (log 1 0 1 ) (a/2TT)sin (TT~h(I. in2

in
where the clii level r?' is assumed unity for simplicity. For I <I

-1 a
f (logloin) sin- (T[O] 2 ) (.1)

= 0 or a/Z

S.lecting the zero Eoluticn to satisfy the monotonic cell condition,

results in

f(0) log I (12)
10oOci
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(b) Halftone cell profile

Figure 6. 3-1. Level slicer function.
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For IC1 <I in<Ic2

l(loglo 1. (

10 n) = ()sin (T()) = a/4 (13)
IT

and sclving gives

f( 4 ) c2 (14)

as a point of discontinuity of f. For IcZ<Iin

(l (01in) .i -()sOin) = 0 or a12 (15)

Here the a/2 sclution is selected to satisfy the monotcnic cell

condition. this is the end point of the profile having period a.

This function f(g), O<x<a/2 shown in figure 2, has been experimentally

demonstrated [2-3]. The width of the level is controlled by the step

size in f(x), and the level iccation is controlled by the

preprocessing step. In general, the halftone cell profile may cpmbine

smooth and discontinuous functions, leading to transfer functions

h(iin) vitA both smooth and limiting nonlinear characteristics.

The analysis of system effects due to low contrast (finite gamma)

input media is bell uniervay. In the zero order the major effect is a

change in the transfer function; in the first order, this effect is

combined with a lcss of diffraction etficiency. These effects are not

serious in practice, and some techniques of pre-compensating halftone

cells to correct for low gamma have been developed. These appeax very

promising for practical implomenation, particularly with real-time

input devices. A series of computer rcutiqes have been written to
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iteratively synthesize cell profiles, produce input/output curves and

study effects of Farameter variation on the results.

A number of experimental halftone screens have been made and

testei. A computer-controlled optronics flatbed sicrodensitometer has

been used, and direct plots on highly resolution film have been

adequate to make good quality screens. Most of the screens have been

one-dimensional line gratings, and plotting aperture sizes dovn to

13 a. have been used, Kodak 50-427 sheet film is used for the screens

because of its high resolution (>250 lines/mm.) and good line holding

ability. Scme of the functions vhich have plotted and tested with

good results so far include: intensity level slicers, intensity notch

filters, logarithms, and exponentials. Experimental verification of

other functions is underway.
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