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(a) Image Reconstruction (b) Image Colorization (c) Image Super-Resolution 

(d) Image Denoising (e) Image Inpainting (f) Semantic Manipulation 

Figure 1: Multi-code GAN prior facilitates many image processing applications using the reconstruction from fixed PGGAN [23] models.

Abstract

Despite the success of Generative Adversarial Networks

(GANs) in image synthesis, applying trained GAN models

to real image processing remains challenging. Previous

methods typically invert a target image back to the latent

space either by back-propagation or by learning an addi-

tional encoder. However, the reconstructions from both of

the methods are far from ideal. In this work, we propose

a novel approach, called mGANprior, to incorporate the

well-trained GANs as effective prior to a variety of image

processing tasks. In particular, we employ multiple latent

codes to generate multiple feature maps at some intermedi-

ate layer of the generator, then compose them with adaptive

channel importance to recover the input image. Such

an over-parameterization of the latent space significantly

improves the image reconstruction quality, outperforming

existing competitors. The resulting high-fidelity image

reconstruction enables the trained GAN models as prior to

many real-world applications, such as image colorization,

super-resolution, image inpainting, and semantic manipu-

lation. We further analyze the properties of the layer-wise

representation learned by GAN models and shed light on

what knowledge each layer is capable of representing.1

1Code is available at this link.

1. Introduction

Recently, Generative Adversarial Networks (GANs) [16]

have advanced image generation by improving the synthesis

quality [23, 8, 24] and stabilizing the training process [1, 7,

17]. The capability to produce high-quality images makes

GANs applicable to many image processing tasks, such as

semantic face editing [27, 36], super-resolution [28, 42],

image-to-image translation [53, 11, 31], etc. However, most

of these GAN-based approaches require special design of

network structures [27, 53] or loss functions [36, 28] for

a particular task, limiting their generalization ability. On

the other hand, the large-scale GAN models, like StyleGAN

[24] and BigGAN [8], can synthesize photo-realistic images

after being trained with millions of diverse images. Their

neural representations are shown to contain various levels

of semantics underlying the observed data [21, 15, 35, 44].

Reusing these models as prior to real image processing with

minor effort could potentially lead to wider applications but

remains much less explored.

The main challenge towards this goal is that the standard

GAN model is initially designed for synthesizing images

from random noises, thus is unable to take real images for

any post-processing. A common practice is to invert a given

image back to a latent code such that it can be reconstructed

by the generator. In this way, the inverted code can be
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used for further processing. To reverse the generation

process, existing approaches fall into two types. One is

to directly optimize the latent code by minimizing the

reconstruction error through back-propagation [30, 12, 32].

The other is to train an extra encoder to learn the mapping

from the image space to the latent space [34, 52, 6, 5].

However, the reconstructions achieved by both methods are

far from ideal, especially when the given image is with high

resolution. Consequently, the reconstructed image with low

quality is unable to be used for image processing tasks.

In principle, it is impossible to recover every detail of

any arbitrary real image using a single latent code, oth-

erwise, we would have an unbeatable image compression

method. In other words, the expressiveness of the latent

code is limited due to its finite dimensionality. Therefore,

to faithfully recover a target image, we propose to employ

multiple latent codes and compose their corresponding fea-

ture maps at some intermediate layer of the generator. Uti-

lizing multiple latent codes allows the generator to recover

the target image using all the possible composition knowl-

edge learned in the deep generative representation. The

experiments show that our approach significantly improves

the image reconstruction quality. More importantly, being

able to better reconstruct the input image, our approach

facilitates various real image processing applications by

using pre-trained GAN models as prior without retraining

or modification, which is shown in Fig.1. We summarize

our contributions as follows:

• We propose mGANprior, shorted for multi-code GAN

prior, as an effective GAN inversion method by using

multiple latent codes and adaptive channel importance.

The method faithfully reconstructs the given real im-

age, surpassing existing approaches.

• We apply the proposed mGANprior to a range of real-

world applications, such as image colorization, super-

resolution, image inpainting, semantic manipulation,

etc, demonstrating its potential in real image process-

ing.

• We further analyze the internal representation of dif-

ferent layers in a GAN generator by composing the

features from the inverted latent codes at each layer

respectively.

2. Related Work

GAN Inversion. The task of GAN inversion targets at

reversing a given image back to a latent code with a pre-

trained GAN model. As an important step for applying

GANs to real-world applications, it has attracted increasing

attention recently. To invert a fixed generator in GAN,

existing methods either optimized the latent code based on

gradient descent [30, 12, 32] or learned an extra encoder

to project the image space back to the latent space [34, 52,

6, 5]. Bau et al. [3] proposed to use encoder to provide

better initialization for optimization. There are also some

models taking invertibility into account at the training stage

[14, 13, 26]. However, all the above methods only consider

using a single latent code to recover the input image and the

reconstruction quality is far from ideal, especially when the

test image shows a huge domain gap to training data. That

is because the input image may not lie in the synthesis space

of the generator, in which case the perfect inversion with a

single latent code does not exist. By contrast, we propose

to increase the number of latent codes, which significantly

improve the inversion quality no matter whether the target

image is in-domain or out-of-domain.

Image Processing with GANs. GANs have been widely

used for real image processing due to its great power of

synthesizing photo-realistic images. These applications

include image denoising [9, 25], image inpainting [45, 47],

super-resolution [28, 42], image colorization [38, 20], style

mixing [19, 10], semantic image manipulation [41, 29], etc.

However, current GAN-based models are usually designed

for a particular task with specialized architectures [19, 41]

or loss functions [28, 10], and trained with paired data

by taking one image as input and the other as supervision

[45, 20]. Differently, our approach can reuse the knowledge

contained in a well-trained GAN model and further enable

a single GAN model as prior to all the aforementioned tasks

without retraining or modification. It is worth noticing that

our method can achieve similar or even better results than

existing GAN-based methods that are particularly trained

for a certain task.

Deep Model Prior. Generally, the impressive performance

of the deep convolutional model can be attributed to its ca-

pacity of capturing statistical information from large-scale

data as prior. Such prior can be inversely used for image

generation and image reconstruction [40, 39, 2]. Upchurch

et al. [40] inverted a discriminative model, starting from

deep convolutional features, to achieve semantic image

transformation. Ulyanov et al. [39] reconstructed the target

image with a U-Net structure to show that the structure

of a generator network is sufficient to capture the low-

level image statistics prior to any learning. Athar et al.

[2] learned a universal image prior for a variety of image

restoration tasks. Some work theoretically explored the

prior provided by deep generative models [32, 18], but the

results using GAN prior to real image processing are still

unsatisfying. A recent work [3] applied generative image

prior to semantic photo manipulation, but it can only edit

some partial regions of the input image yet fails to apply

to other tasks like colorization or super-resolution. That is

because it only inverts the GAN model to some intermediate

feature space instead of the earliest hidden space. By

contrast, our method reverses the entire generative process,

i.e., from the image space to the initial latent space, which

supports more flexible image processing tasks.
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Figure 2: Pipeline of GAN inversion using multiple latent codes {zn}
N

n=1. The generative features from these latent codes are composed

at some intermediate layer (i.e., the ℓ-th layer) of the generator, weighted by the adaptive channel importance scores {αn}
N

n=1. All latent

codes and the corresponding channel importance scores are jointly optimized to recover a target image.

3. Multi-Code GAN Prior

A well-trained generator G(·) of GAN can synthesize

high-quality images by sampling codes from the latent

space Z . Given a target image x, the GAN inversion

task aims at reversing the generation process by finding the

adequate code to recover x. It can be formulated as

z
∗ = argmin

z∈Z
L(G(z),x), (1)

where L(·, ·) denotes the objective function.

However, due to the highly non-convex natural of this

optimization problem, previous methods fail to ideally

reconstruct an arbitrary image by optimizing a single latent

code. To this end, we propose to use multiple latent codes

and compose their corresponding intermediate feature maps

with adaptive channel importance, as illustrated in Fig.2.

3.1. GAN Inversion with Multiple Latent Codes

The expressiveness of a single latent code may not be

enough to recover all the details of a certain image. Then,

how about using N latent codes {zn}
N
n=1, each of which

can help reconstruct some sub-regions of the target image?

In the following, we introduce how to utilize multiple latent

codes for GAN inversion.

Feature Composition. One key difficulty after introducing

multiple latent codes is how to integrate them in the gene-

ration process. A straightforward solution is to fuse the

images generated by each zn from the image space X .

However, X is not naturally a linear space such that linearly

combining synthesized images is not guaranteed to produce

a meaningful image, let alone recover the input in detail.

A recent work [5] pointed out that inverting a generative

model from the image space to some intermediate feature

space is much easier than to the latent space. Accordingly,

we propose to combine the latent codes by composing their

intermediate feature maps. More concretely, the generator

G(·) is divided into two sub-networks, i.e., G
(ℓ)
1 (·) and

G
(ℓ)
2 (·). Here, ℓ is the index of the intermediate layer to

perform feature composition. With such a separation, for

any zn, we can extract the corresponding spatial feature

F
(ℓ)
n = G

(ℓ)
1 (zn) for further composition.

Adaptive Channel Importance. Recall that we would

like each zn to recover some particular regions of the

target image. Bau et al. [4] observed that different units

(i.e., channels) of the generator in GAN are responsible

for generating different visual concepts such as objects

and textures. Based on this observation, we introduce the

adaptive channel importance αn for each zn to help them

align with different semantics. Here, αn ∈ R
C is a C-

dimensional vector and C is the number of channels in the

ℓ-th layer of G(·). We expect each entry of αn to represent

how important the corresponding channel of the feature map

F
(ℓ)
n is. With such composition, the reconstructed image can

be generated with

x
inv = G

(ℓ)
2 (

NX

n=1

F
(ℓ)
n ⊙αn), (2)

where ⊙ denotes the channel-wise multiplication as

{F(ℓ)
n ⊙αn}i,j,c = {F(ℓ)

n }i,j,c × {αn}c. (3)

Here, i and j indicate the spatial location, while c stands for

the channel index.

Optimization Objective. After introducing the feature

composition technique together with the introduced adap-

tive channel importance to integrate multiple latent codes,

there are 2N sets of parameters to be optimized in total.

Accordingly we reformulate Eq.(1) as

{z∗n}
N
n=1, {α

∗
n}

N
n=1 = argmin

{zn}N

n=1
,{αn}N

n=1

L(xinv,x). (4)
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To improve the reconstruction quality, we define the objec-

tive function by leveraging both low-level and high-level

information. In particular, we use pixel-wise reconstruction

error as well as the l1 distance between the perceptual

features [22] extracted from the two images2. Therefore,

the objective function is as follows:

L(x1,x2) = ||x1 − x2||
2
2 + ||φ(x1), φ(x2)||1, (5)

where φ(·) denotes the perceptual feature extractor. We use

the gradient descent algorithm to find the optimal latent

codes as well as the corresponding channel importance

scores.

3.2. MultiCode GAN Prior for Image Processing

After inversion, we apply the reconstruction result as

multi-code GAN prior to a variety of image processing

tasks. Each task requires an image as a reference, which

is the input image for processing. For example, image

colorization task deals with grayscale images and image

inpainting task restores images with missing holes. Given

an input, we apply the proposed multi-code GAN inver-

sion method to reconstruct it and then post-process the

reconstructed image to approximate the input. When the

approximation is close enough to the input, we assume

the reconstruction before post-processing is what we want.

Here, to adapt mGANprior to a specific task, we modify

Eq.(5) based on the post-processing function:

• For image colorization task, with a grayscale image

Igray as the input, we expect the inversion result to

have the same gray channel as Igray with

Lcolor = L(gray(xinv), Igray), (6)

where gray(·) stands for the operation to take the gray

channel of an image.

• For image super-resolution task, with a low-resolution

image ILR as the input, we downsample the inversion

result to approximate ILR with

LSR = L(down(xinv), ILR), (7)

where down(·) stands for the downsampling operation.

• For image inpainting task, with an intact image Iori
and a binary mask m indicating known pixels, we only

reconstruct the incorrupt parts and let the GAN model

fill in the missing pixels automatically with

Linp = L(xinv ◦m, Iori ◦m), (8)

where ◦ denotes the element-wise product.

2In this experiment, we use pre-trained VGG-16 model [37] as the

feature extractor, and the output of layer conv 43 is used.
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Figure 3: Qualitative comparison of different GAN inversion

methods, including (a) optimizing a single latent code [32], (b)

learning an encoder [52], (c) using the encoder as initialization for

optimization [5], and (d) our proposed mGANprior.

4. Experiments

We conduct extensive experiments on state-of-the-art

GAN models, i.e., PGGAN [23] and StyleGAN [24], to

verify the effectiveness of mGANprior. These models are

trained on various datasets, including CelebA-HQ [23] and

FFHQ [24] for faces as well as LSUN [46] for scenes.

4.1. Comparison with Other Inversion Methods

There are many attempts on GAN inversion in the

literature. In this section, we compare our multi-code

inversion approach with the following baseline methods:

(a) optimizing a single latent code z as in Eq.(1) [32], (b)

learning an encoder to reverse the generator [52], and (c)

combing (a) and (b) by using the output of the encoder as

the initialization for further optimization [5].
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Table 1: Quantitative comparison of different GAN inversion

methods: including (a) optimizing a single latent code [32], (b)

learning an encoder [52], (c) using the encoder as initialization for

optimization [5], and (d) our proposed mGANprior. ↑ means the

higher the better while ↓ means the lower the better.

Bedroom Church Face

Method PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

(a) 17.19 0.5897 17.15 0.5339 19.17 0.5797

(b) 11.59 0.6247 11.58 0.5961 11.18 0.6992

(c) 18.34 0.5201 17.81 0.4789 20.33 0.5321

(d) 25.13 0.1578 22.76 0.1799 23.59 0.4432

To quantitatively evaluate the inversion results, we intro-

duce the Peak Signal-to-Noise Ratio (PSNR) to measure the

similarity between the original input and the reconstruction

result from pixel level, as well as the LPIPS metric [49]

which is known to align with human perception. We make

comparisons on three PGGAN [23] models that are trained

on LSUN bedroom (indoor scene), LSUN church (outdoor

scene), and CelebA-HQ (human face) respectively. For

each model, we invert 300 real images for testing.

Tab.1 and Fig.3 show the quantitative and qualitative

comparisons respectively. From Tab.1, we can tell that

mGANprior beats other competitors on all three models

from both pixel level (PSNR) and perception level (LPIPS).

We also observe in Fig.3 that existing methods fail to

recover the details of the target image, which is due to

the limited representation capability of a single latent code.

By contrast, our method achieves much more satisfying

reconstructions with most details, benefiting from multiple

latent codes. We even recover an eastern face with a model

trained on western data (CelebA-HQ [23]).

4.2. Analysis on Inverted Codes

As described in Sec.3, our method achieves high-fidelity

GAN inversion with N latent codes and N importance

factors. Taking PGGAN as an example, if we choose the

6th layer (i.e., with 512 channels) as the composition layer

with N = 10, the number of parameters to optimize is

10 × (512 + 512), which is 20 times the dimension of the

original latent space. In this section, we perform detailed

analysis on the inverted codes.

Number of Codes. Obviously, there is a trade-off between

the dimension of the optimization space and the inversion

quality. To better analysis such trade-off, we evaluate our

method by varying the number of latent codes to optimize.

Fig.4 shows that the more latent codes used, the better

reconstruction we are able to obtain. However, it does not

imply that the performance can be infinitely improved by

increasing the number of latent codes. From Fig.4, we can

see that after the number reaches 20, there is no significant

improvement via involving more latent codes.

Different Composition Layers. On which layer to perform

feature composition also affects the performance of the
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Figure 4: Effects on inversion performance by the number of latent

codes used and the feature composition position.

Target Image SegmentationInversion

z #1: Tower

IoU=0.21

z #7: Tree
IoU=0.21

z #9: Building
IoU=0.40

z #14: Road
IoU=0.33

z #17: Tree
IoU=0.22

Figure 5: Visualization of the role of each latent code. On the top

row are the target image, inversion result, and the corresponding

segmentation mask, respectively. On the bottom row are several

latent codes annotated with a specific semantic label.

proposed mGANprior. We thus compose the latent codes

on various layers of PGGAN (i.e., from 1st to 8th) and

compare the inversion quality, as shown in Fig.4. In general,

a higher composition layer could lead to a better inversion

effect. However, as revealed in [4], higher layers contain the

information of local pixel patterns such as edges and colors

rather than the high-level semantics. Composing features

at higher layers is hard to reuse of the semantic knowledge

learned by GANs. This will be discussed more in Sec.4.4.

Role of Each Latent Code. We employ multiple latent

codes by expecting each of them to take charge of inverting

a particular region and hence complement with each other.

In this part, we visualize the roles that different latent

codes play in the inversion process. As pointed out by

[4], for a particular layer in a GAN model, different units

(channels) control different semantic concepts. Recall

that mGANprior uses adaptive channel importance to help

determine what kind of semantics a particular z should

focus on. Therefore, for each zn, we set the elements in αn

that are larger than 0.2 as 0, getting α
′
n. Then we compute

the difference map between the reconstructions using αn

and α
′
n. With the help of a segmentation model [51], we can

also get the segmentation maps for various visual concepts,

such as tower and tree. We finally annotate each latent

code based on the Intersection-over-Union (IoU) metric

between the corresponding difference map and all candidate

segmentation maps. Fig.5 shows the segmentation result

3016



Grayscale Image (a) Optimizing Feature Maps (b) DIP (c) Zhang et al. (d) Ours Ground Truth

Figure 6: Qualitative comparison of different colorization methods, including (a) inversion by optimizing feature maps [3], (b) DIP [39],

(c) Zhang et al. [48], and (d) our mGANprior.

Table 2: Quantitative evaluation results on colorization task with

bedroom and church images. AuC refers to the area under the

curve of the cumulative error distribution over ab color space [48].

↑ means higher score is better.

Bedroom Church

Method AuC (%)↑ AuC (%)↑

Grayscale input 88.02 85.50

(a) Optimizing feature maps [3] 85.41 86.10

(b) DIP [39] 84.33 83.31

(c) Zhang et al. [48] 88.55 89.13

(d) Ours 90.02 89.43

and the IoU maps of some chosen latent codes. It turns

out that the latent codes are specialized to invert different

meaningful image regions to compose the whole image.

This is also a huge advantage of using multiple latent codes

over using a single code.

4.3. Image Processing Applications

With the high-fidelity image reconstruction, our multi-

code inversion method facilitates many image processing

tasks with pre-trained GANs as prior. In this section, we

apply the proposed mGANprior to a variety of real-world

applications to demonstrate its effectiveness, including im-

age colorization, image super-resolution, image inpainting

and denoising, as well as semantic manipulation and style

mixing. For each application, the GAN model is fixed.

Image Colorization. Given a grayscale image as input, we

can colorize it with mGANprior as described in Sec.3.2.

We compare our inversion method with optimizing the

intermediate feature maps [3]. We also compare with DIP

[39], which uses a discriminative model as prior, and Zhang

et al. [48], which is specially designed for colorization

task. We do experiments on PGGAN models trained for

bedroom and church synthesis, and use the area under the

curve of the cumulative error distribution over ab color

space as the evaluation metric, following [48]. Tab.2 and

Fig.6 show the quantitative and qualitative comparisons

LR Image (a) DIP (b) RCAN

(c) ESRGAN (d) Ours Ground Truth

Figure 7: Qualitative comparison of different super-resolution

methods with SR factor 16. Competitors include DIP [39], RCAN

[50], and ESRGAN [42].

respectively. It turns out that using the discriminative model

as prior fails to colorize the image adequately. That is

because discriminative models focus on learning high-level

representation which are not suitable for low-level tasks.

On the contrary, using the generative model as prior leads

to much more satisfying colorful images. We also achieve

comparable results as the model whose primary goal is

image colorization (Fig.6 (c) and (d)). This benefits from

the rich knowledge learned by GANs. Note that Zhang et al.

[48] is proposed for general image colorization, while our

approach can be only applied to a certain image category

corresponding to the given GAN model. A larger GAN

model trained on a more diverse dataset should improve its

generalization ability.

Image Super-Resolution. We also evaluate our approach

on the image super-resolution (SR) task. We do experiments

on the PGGAN model trained for face synthesis and set the

SR factor as 16. Such a large factor is very challenging

for the SR task. We compare with DIP [39] as well as

the state-of-the-art SR methods, RCAN [50] and ESRGAN

[42]. Besides PSNR and LPIPS, we introduce Naturalness

Image Quality Evaluator (NIQE) [33] as an extra metric.

Tab.3 shows the quantitative comparison. We can con-
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Corrupted Image (a) Single Latent Code (b) Optimizing Feature Maps (c) DIP (d) Ours Ground Truth

Figure 8: Qualitative comparison of different inpainting methods, including (a) inversion by optimizing a single latent code [30, 32], (b)

inversion by optimizing feature maps [3], (c) DIP [39], and (d) our mGANprior.

Old InversionTarget Image PoseLeft Right

Target Image Inversion ExpressionNeutral Laugh

InversionTarget Image AgeYoung

Target Image Inversion GenderFemale Male

Figure 9: Real face manipulation with respect to four various attributes. In each four-element tuple, from left to right are: input face,

inversion result, and manipulation results by making a particular semantic more negative and more positive.

clude that our approach achieves comparable or even better

performance than the advanced learning-based competitors.

A visualization example is also shown in Fig.7, where

our method reconstructs the human eye with more details.

Compared to existing learning-based models, like RCAN

and ESRGAN, our mGANprior is more flexible to the SR

factor. This suggests that the freely-trained PGGAN model

has spontaneously learned rich knowledge such that it can

be used as prior to enhance a low-resolution (LR) image.

Image Inpainting and Denoising. We further extend our

approach to image restoration tasks, like image inpainting

and image denoising. We first corrupt the image contents by

randomly cropping or adding noises, and then use different

algorithms to restore them. Experiments are conducted

on PGGAN models and we compare with several baseline

inversion methods as well as DIP [39]. PSNR and Structural

SIMilarity (SSIM) [43] are used as evaluation metrics.

Table 3: Quantitative comparison of different super-resolution

methods with SR factor 16. Competitors include DIP [39], RCAN

[50], and ESRGAN [42]. ↑ means the higher the better while ↓
means the lower the better.

Method PSNR↑ LPIPS↓ NIQE↓

(a) DIP [39] 26.87 0.4236 4.66

(b) RCAN [50] 28.82 0.4579 5.70

(c) ESRGAN [42] 25.26 0.3862 3.27

(d) Ours 26.93 0.3584 3.19

Table 4: Quantitative comparison of different inpainting methods.

We do test with both centrally cropping a 64 × 64 box and

randomly cropping 80% pixels. ↑ means higher score is better.

Center Crop Random Crop

Method PSNR↑ SSIM↑ PSNR↑ SSIM↑

(a) Single latent code [30, 32] 10.37 0.1672 12.79 0.1783

(b) Optimizing feature maps [3] 14.75 0.4563 18.72 0.2793

(c) DIP [39] 17.92 0.4327 18.02 0.2823

(d) Ours 21.43 0.5320 22.11 0.5532
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Figure 10: Comparison of the inversion results using different

GAN models as well as performing feature composition at dif-

ferent layers. Each row stands for a PGGAN model trained on

a specific dataset as prior, while each column shows results by

composing feature maps at a certain layer.

Tab.4 shows the quantitative comparison, where our ap-

proach achieves the best performances on both settings of

center crop and random crop. Fig.8 includes some examples

of restoring corrupted images. It is obvious that both

existing inversion methods and DIP fail to adequately fill in

the missing pixels or completely remove the added noises.

By contrast, our method is able to use well-trained GANs

as prior to convincingly repair the corrupted images with

meaningful filled content.

Semantic Manipulation. Besides the aforementioned low-

level applications, we also test our approach with some

high-level tasks, like semantic manipulation and style mix-

ing. As pointed out by prior work [21, 15, 35], GANs have

already encoded some interpretable semantics inside the

latent space. From this point, our inversion method provides

a feasible way to utilize these learned semantics for real

image manipulation. We apply the manipulation framework

based on latent code proposed in [35] to achieve semantic

facial attribute editing. Fig.9 shows the manipulation

results. We see that mGANprior can provide rich enough

information for semantic manipulation.

4.4. Knowledge Representation in GANs

As discussed above, the major limitation of using single

latent code is its limited expressiveness, especially when the

test image presents domain gap to the training data. Here

we verify whether using multiple codes can help alleviate

this problem. In particular, we try to use GAN models

trained for synthesizing face, church, conference room, and

bedroom, to invert a bedroom image. As shown in Fig.10,

when using a single latent code, the reconstructed image

still lies in the original training domain (e.g., the inversion

Grayscale Image

Ground TruthCorrupted Image Layer 8Layer 4Layer 2

Figure 11: Colorization and inpainting results with mGANprior

using different composition layers. AuC (the higher the better) for

colorization task are 86.83%, 87.44%, 90.02% with respect to the

2nd, 4th, and 8th layer respectively. PSNR (the higher the better)

for inpainting task are 21.19db, 22.11db, 20.70db with respect to

the 2nd, 4th, and 8th layer respectively. Images in green boxes

indicate the best results.

with PGGAN CelebA-HQ model looks like a face instead

of a bedroom). On the contrary, our approach is able to

compose a bedroom image no matter what data the GAN

generator is trained with.

We further analyze the layer-wise knowledge of a well-

trained GAN model by performing feature composition at

different layers. Fig.10 suggests that the higher layer is

used, the better the reconstruction will be. That is because

reconstruction focuses on recovering low-level pixel values,

and GANs tend to represent abstract semantics at bottom

layers while represent content details at top layers. We also

observe that the 4th layer is good enough for the bedroom

model to invert a bedroom image, but the other three models

need the 8th layer for satisfying inversion. The reason is

that bedroom shares different semantics from face, church,

and conference room, therefore the high-level knowledge

(contained in bottom layers) from these models cannot be

reused. We further make per-layer analysis by applying our

approach to image colorization and image inpainting tasks,

as shown in Fig.11. The colorization task gets the best

result at the 8th layer while the inpainting task at the 4th

layer. That is because colorization is more like a low-level

rendering task while inpainting requires the GAN prior to

fill in the missing content with meaningful objects. This is

consistent with the analysis from Fig.10, which is that low-

level knowledge from GAN prior can be reused at higher

layers while high-level knowledge at lower layers.

5. Conclusion

We present mGANprior that employs multiple latent

codes for reconstructing real images with a pre-trained

GAN model. It enables these GAN models as powerful

prior to a variety of image processing tasks.
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