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Abstract

In many European countries, image quality for digital x-ray systems used

in screening mammography is currently specified using a threshold-detail

detectability method. This is a two-part study that proposes an alternative

method based on calculated detectability for a model observer: the first

part of the work presents a characterization of the systems. Eleven digital

mammography systems were included in the study; four computed radiography

(CR) systems, and a group of seven digital radiography (DR) detectors,

composed of three amorphous selenium-based detectors, three caesium iodide

scintillator systems and a silicon wafer-based photon counting system. The

technical parameters assessed included the system response curve, detector

uniformity error, pre-sampling modulation transfer function (MTF), normalized

noise power spectrum (NNPS) and detective quantum efficiency (DQE).

Approximate quantum noise limited exposure range was examined using a

separation of noise sources based upon standard deviation. Noise separation

showed that electronic noise was the dominant noise at low detector air

kerma for three systems; the remaining systems showed quantum noise limited

behaviour between 12.5 and 380 µGy. Greater variation in detector MTF was

found for the DR group compared to the CR systems; MTF at 5 mm−1 varied

from 0.08 to 0.23 for the CR detectors against a range of 0.16–0.64 for the DR

units. The needle CR detector had a higher MTF, lower NNPS and higher DQE

at 5 mm−1 than the powder CR phosphors. DQE at 5 mm−1 ranged from 0.02

to 0.20 for the CR systems, while DQE at 5 mm−1 for the DR group ranged

from 0.04 to 0.41, indicating higher DQE for the DR detectors and needle CR

system than for the powder CR phosphor systems. The technical evaluation
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section of the study showed that the digital mammography systems were well

set up and exhibiting typical performance for the detector technology employed

in the respective systems.

1. Introduction

Before a digital mammography x-ray system can be used for breast screening in many European

countries, the system must meet the minimum image quality performance defined in the

current edition of the European Guidelines for Quality Assurance in Mammography Screening

(European Commission 2006), within the dose limits given in this document. While not an

official document that is cast directly in European legislation, these guidelines are extremely

influential and have been adopted as de facto minimum performance standards in many

European countries (see for example NHSBSP (2009a)).

The image quality standard is specified in terms of threshold-detail detectability for a

range of circular discs. The detectability test as presented in the guidelines is used as a

system test, rather than a test that focuses solely on x-ray detector performance, as is the

case for fluoroscopy detectors in the UK (Hay et al 1985). A range of system factors

will therefore influence the ability of a unit to meet the standard in the guidelines; these

include x-ray tube potential, tube anode and filter combination, scatter rejection method and

imaging performance of the x-ray detector, often specified via the detective quantum efficiency

(DQE). Although presented as a system test, threshold contrast-detail detectability test objects

often have a limited dynamic range and generate images that are somewhat removed from

what can be considered typical patient content in terms of greyscale, spatial frequency and

contrast range. Further limitations of this method are examined in the second part of this

study.

Along with the choice of operating point for the automatic exposure control (AEC),

one of the main parameters determining system imaging performance is the x-ray detector

(Aufrichtig 1999, Samei and Flynn 2003). Detector performance can be assessed using

quantitative measurements such as the modulation transfer function (MTF), normalized noise

power spectrum (NNPS) and DQE (Metz et al 1995, Samei et al 2006, Dobbins et al 2006).

While not the final determinant of system image quality, these parameters have considerable

impact on the quality of images produced by an imaging system (Aufrichtig 1999, Marshall

2006a). Part two of this work proposes a model observer approach for use in screening

mammography image quality specification and correlates the calculated detectability index

with the standard metric, that of threshold-detail detectability measured using the CDMAM

test object. Given that these are system specific rather than detector specific metrics of image

quality, it is important to establish the performance of the detectors using standard quantitative

metrics. This will help to isolate elements of system performance related to the intrinsic

detector quality from those related to the AEC operating point, x-ray contrast and scatter

rejection methods. Furthermore, the first part of the study provides a useful comparison of

a range of currently available mammography x-ray detectors. The aims of the paper were

therefore to characterize technical performance using quantitative measures such as response

curve, detector uniformity error, MTF, NNPS and DQE for the 11 x-ray detectors in the

study. Finally, data presented in this part should confirm whether the performance for a given

detector could be considered typical when evaluated by the threshold-detail detectability

method and the calculated detectability index, as described in the second part of this

work.
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Table 1. Characteristics of the x-ray detectors assessed in this study along with the detector

response type and fit coefficients.

Pixel Detector

Detector pitch Pixel response

name Technology (µm) matrix curve A B

Agfa MM 3.0R Single-side powder CR 50 4708 × 5844 Power 695.73 0.521

Agfa HM 5.0 Single-side needle CR 50 4708 × 5844 Power 702.53 0.518

Fuji Profect Dual-side powder CR 50 3540 × 4740 Logarithmic −570.46 228.18

Carestream Single-side powder CR 48.5 3584 × 4784 Logarithmic 2858.5 −359.37

EHR-M3

Fuji Amulet a-Se/optical switch 50 3540 × 4740 Logarithmic −1010.3 1874.4

GE Senographe CsI/a-Si TFT switch 100 1914 × 2294 Linear −3.91 10.08

2000D

GE Senographe DS CsI/a-Si TFT switch 100 1914 × 2294 Linear −12.57 8.83

GE Essential CsI/a-Si TFT switch 100 2394 × 3062 Linear −12.65 7.75

Hologic Selenia a-Se/TFT switch 70 2140 × 2140 Linear 41.21 4.08

Sectra MDM Photon counter/ 50 4915 × 5355 Linear – –

Si-wafer

Siemens Inspiration a-Se/ TFT switch 85 2658 × 3318 Linear 50.31 3.24

2. Materials and methods

2.1. Digital mammography detectors studied

Eleven digital mammography systems were included in this study, with examples of all the

commercially available detector technologies. Four computed radiography (CR) systems were

assessed, including two single-sided readout powder phosphor systems, a dual-sided readout

units used with a powder phosphor and a single-sided readout system used with a needle

CR phosphor. Of the remaining systems, six used flat-panel detectors. Three of these were

indirect conversion units that used a caesium iodide phosphor bonded to a light-sensitive thin

film transistor (TFT) array formed from amorphous silicon (a-Si). Two further flat-panel

systems were evaluated; these were direct conversion detectors using amorphous selenium

(a-Se) in conjunction with a TFT readout array. The final unit utilized a silicon wafer photon

counter with pre- and post-breast slit collimation. Basic technical parameters for the systems

are given in table 1.

CR detectors are generally not integrated into a given x-ray mammography system but

can be used with x-ray units from different suppliers. Both Agfa CR detectors in this study

were used with a Siemens Mammomat 3000 system while the Fuji Profect cassettes were used

with a Siemens Mammomat 3000 Nova x-ray system. Images with the Carestream EHR-M3

were acquired with a Trex Benett Contour 2000 unit. CR system performance, in terms of

image quality produced for a given mean glandular dose (MGD), therefore depends on the

anode/filter (A/F) settings available on x-ray unit with which the cassettes are used. Agfa give

explicit A/F recommendations for different x-ray systems while Fuji make no recommendation

for the Profect CR system and hence A/F used will often be chosen in conjunction with the

local Medical Physics department. The Trex system, used for the Carestream EHR-M3

CR acquisitions, only had molybdenum/molybdenum (Mo/Mo) A/F available. There is no

common A/F setting available between the 11 units and hence a common energy could not be

selected for the objective image quality evaluations.
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Table 2. Acquisition factors used for the evaluation along with number of photons mm−2 µGy−1;

approximate air kerma at the detector for the AEC mode; air kerma at the detector for the DQE

evaluation; detector uniformity error (coefficient of variation (%)).

Air kerma K for DQE Detector

Tube potential/ at detector and NNPS uniformity

Detector anode/ q0 for AEC evaluation error

name filter (mm−2 µGy−1) mode (µGy) (µGy) (%)

Agfa MM 3.0R 29 kV Mo/Rh 5662 102 115 13

Agfa HM 5.0 29 kV Mo/Rh 5662 104 115 14

Fuji Profect 27 kV Mo/Rh 5462 64 124 9.1

Carestream EHR-M3 28 kV Mo/Mo 5057 65 92 17

Fuji Amulet 29 kV W/Rh 6168 88 96 1.4

GE Senographe 2000D 28 kV Rh/Rh 6118 66 91 2.7

GE Senographe DS 28 kV Mo/Mo 5057 98 86 2.4

GE Essential 29 kV Rh/Rh 6248 83 92 2.1

Hologic Selenia 29 kV W/Rh 6168 100 104 2.7

Sectra MDM 28 kV W/Al 6249 64 104 –

Siemens Inspiration 28 kV W/Rh 6070 98 102 1.2

2.2. Test equipment

First, a note on the equipment used for the evaluations. As image data were acquired from

x-ray machines located at two locations (Switzerland and Belgium), two sets of test equipment

had to be used to acquire these data (two different 2 mm Al filters, dosemeters and MTF

edges). The dosemeters were a Radcal monitor (Radcal, Monrovia, USA) used with a

6 cm3 ionization chamber (10×5–6 M) and an RTI Barracuda (Mölndal, Sweden) used with a

solid-state multipurpose detector (MPD). Calibration of both devices was traceable to national

standards. As an additional check on consistency of the output measurements, the two

dosemeters were brought together for comparative measurements on a single mammography

system. Output with 2 mm added Al in the x-ray beam was measured as a function of tube

current-time product (mAs) with the two dosemeters. Two MTF edges were used; a Tungsten

square of side 50 mm and thickness 0.5 mm and a steel rectangle of dimensions 60 mm ×

120 mm and thickness of 1 mm.

2.3. Detector response

The first step in the technical characterization was the measurement of the detector response

at the tube potential and A/F given in table 2, with a 2 mm Al filter of 99% purity placed at

the x-ray tube port. Air kerma was measured at the breast support platform as a function of

tube mAs and corrected by the inverse square law to give the air kerma at the detector (K);

no correction was made for the transmission of detector covers. The detector response was

then measured from uniform exposure (flood) images acquired as a function of air kerma at

the detector. All detectors were fully irradiated (open collimation) for the flood acquisitions

except for the Sectra MDM where a 12.8 cm × 12.8 cm collimated field was used. For the

systems with integrated flat-panel detectors the antiscatter grid was removed, while for CR

systems the cassette was placed on the breast support platform. The target air kerma values

were 12.5, 25, 50, 100, 200 and 400 µGy at the detector, although this range could not be set

for all systems. ‘For Processing’ DICOM images were then acquired; with the integrated flat-

panel units, standard corrections for x-ray heel effect and detector offset, gain and defective
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pixels were applied. Pixel value (PV) and standard deviation were measured with an ROI of

5 mm × 5 mm placed 60 mm from the chest wall edge and centred left–right on the detector.

The standard deviation data were used for a basic separation of the system noise sources,

described later. PV was then plotted against K and one of three curves fitted to the data,

depending on the dependence found:

PV = A + B · K or PV = A + B · ln(K) or PV = A + B · (K)0.5. (1a)

For the slot scanning system, PV is directly related to the air kerma rate K̇ , which in turn is

determined by the tube current and the scanning time:

PV = A + B · K̇. (1b)

All image data were converted to air kerma on a pixel-wise basis before analysis; this step

linearized the image PV data, removed any offset that was present and gave images of unity

gain.

2.4. Detector non-uniformity

Detector uniformity was calculated from the flood image acquired at an air kerma closest to

100 µGy and beam quality specified in table 2. A rectangular ROI with sides chosen to be

1 cm smaller than each respective side for the image was positioned at the image centre and

this region extracted and linearized. ROIs of dimension 1 cm2 were then taken from this

extracted region and the mean, standard deviation and coefficient of variation (cov) calculated

for the ROIs. The flood images were also inspected for specific artefacts at a narrow contrast

setting.

2.5. Modulation transfer function

The pre-sampled MTF (Fujita et al 1992) was measured using a version of the edge method

described by Samei et al (1998) implemented in the IDL (ITT Visual Solutions, Boulder, CO,

USA) programming language (NHSBSP 2009b). For the 50 mm × 50 mm MTF tool, the

edge was placed on the breast support platform or CR cassette such that the horizontal edge

was 60 mm from the chest wall side and the vertical edge was centred left–right in the image.

With the 60 mm × 120 mm edge the MTF was calculated from two images acquired with

the 120 mm edge at a distance of 60 mm from the chest wall edge, one image with the edge

orientated horizontally and the second image edge orientated vertically, and centred left–right

on the detector. For all MTF acquisitions, the edge was twisted such that there was an angle

of approximately 3◦ between edge and pixel matrix.

The edge images were acquired using the beam quality specified in table 2, with a

2 mm Al filter at the x-ray tube port. While details of the MTF implementation can be found

elsewhere (Marshall 2006a), some specific points are given here. A 45 mm × 45 mm region

of interest (ROI) was used to extract the edge ROI with the edge at the centre, which was then

linearized to air kerma. The edge angle was estimated from a first-order least-squares fit to

the maximum gradient calculated for the direction perpendicular to the edge transition. The

edge angle was used to form a finely sampled edge spread function (ESF) from the PV data

using the Crawford reprojection (Samei et al 1998) and a 5 pixel median filter was applied to

the ESF. The ESF was differentiated to form the line spread function (LSF); the modulus of

the fast Fourier transform (FFT) of the LSF was then normalized to the zero spatial frequency

value to give the MTF. The two edge orientations were used to give front-back (across the

detector) and left–right direction pre-sampling MTF curves.
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2.6. Noise power spectrum

The NPS was calculated from the detector response flood images, following the method

prescribed by the International Electrotechnical Commission (IEC 2005). For the

implementation here, a region of dimensions 1536 × 1536 pixels was extracted from the

image centre and linearized to air kerma using the response curve. Region area was chosen

to maximize the number of pixels in the evaluation, hence reducing uncertainty on the NPS,

without adding additional error from increased non-uniformity. This was verified by examining

the effect of region area on NPS and DQE for CR images, where large area non-uniformity

is greater than that for flat-panel detectors. A second-order polynomial was then fitted to

and subtracted from this region in order to reduce the influence of large area non-uniformity

from sources such as the heel effect and detector non-uniformity on the NPS. Records of

dimensions 256 × 256 pixels were taken from this region and the NPS formed by calculating

the 2D FFT of each record using software written in IDL (NHSBSP 2009b). The records

were half-overlapped by 128 pixels in the horizontal and vertical directions, giving 72 records

from each image. Two methods were used to section a 1D NPS from the 2D ensemble; a

radial average at full spatial frequency was used for systems with an isotropic NPS while for

detectors with a non-isotropic NPS, the data were sectioned at full spatial frequency from

7 frequency bins (14 in total) on either side of the 0◦ and 90◦ NPS axes. Data from the 0◦

and 90◦ axes were included in the NPS estimate. The NNPS was then calculated by dividing

by the square of the average PV for the linearized region i.e. by the square of the air kerma

used for the flood image acquisition. Error on NPS was calculated following the method given

by Dobbins et al (2006); with a radially sectioned NPS, the error is greater at low spatial

frequencies as there are fewer points in the NPS.

2.7. Detective quantum efficiency

The DQE was calculated from the pre-sampled MTF and the NNPS (Dainty and Shaw 1974)

using the equation

DQE(u) =
MTF2(u)

q0 · K · NNPS(u)
, (2)

where q0 is found by integrating the x-ray photon spectrum and then normalizing for the air

kerma to give photons per unit air kerma per mm2 for the x-ray beam (calculated from the

data of Boone et al (1997), and K is the air kerma for the flood image acquisition. The true

q0 values depend on the properties of the actual x-ray photon spectrum for a given system and

this in turn depends on the applied voltage waveform, tube target angle, tube potential and

filtration composition, density, purity and linear thickness. Establishing this is not possible

for field measurements such as these and hence the q0 values used here are only approximate

(in common with other studies). We note that the measured tube potential was within the

remedial value (±1 kV) for all systems, and the estimated inherent filtration (filtration prior

to the added 2 mm Al filter) was within manufacturer tolerance for all systems. The values

used for q0 in this work are listed in table 2. The DQE was calculated as a function of air

kerma for the detectors. For isotropic systems where the radial NNPS was used, the mean of

the horizontal and vertical MTF curves was taken to form an average MTF. For non-isotropic

NPS results, the 0◦ and 90◦ NNPS data were used in conjunction with the relevant MTF curve

(horizontal and vertical).
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2.8. Separation of system noise sources

The standard deviation data measured in the detector response section were used to perform

a basic separation of system noise sources similar to that described by Barnes (1982) for

radiographic mottle in screen/film (S/F) detectors and applied to digital detectors by Borasi

et al (2003) using standard deviation and Burgess (2004) using image variance. The standard

deviation in the image was assumed to follow the relationship

σ =
(

σ 2
e + σ 2

q + σ 2
s

)0.5
, (3a)

where σ e, σ q and σ s are the standard deviation terms representing electronic noise, quantum

(x-ray photon) noise and structured noise, respectively. Note that this is a simplification and

does not explicitly separate some aspects of detector noise, such as Poisson excess noise,

secondary quantum noise and aliasing due to the sampling action of the pixel matrix. The

contribution from each of these sources is included in the quantum noise term as these sources

have the same dose (signal) dependence as primary quantum noise and hence cannot be

separated using this formulation (Mackenzie and Honey 2007). This equation can be re-

written under the following assumptions. Electronic noise is an additive source and therefore

should be independent of x-ray exposure and equal to some value, σ e = e. Quantum noise

scales with the square root of the air kerma (at a fixed beam quality and assuming Poisson

noise), hence we can write σ q = qK0.5 for the quantum noise where q is some coefficient.

Structured ‘noise’ is in fact a deterministic pattern resulting from factors specific to a given

detector, for example spatial gain variations of the x-ray convertor layer, large area non-

uniformity from the x-ray beam (heel effect), scratches on the detector cover, dust and any

non-uniformity added by the detector corrections. If known with sufficient precision then this

pattern could be corrected; hence, this is not strictly an ergodic noise source although the

pattern can potentially reduce the detectability of objects and hence can be thought of as a

noise. The signal from these sources is amplified by the x-ray signal used; hence, we write

σ s = sK. Combining these terms gives the following for the standard deviation:

σ = (e2 + q2K + s2K2)0.5. (3b)

For a given detector, standard deviation taken from the linearized flood image using a

5 mm × 5 mm ROI was plotted as a function of air kerma at the detector; where possible the

target air kerma range for the flood images was 12.5–400 µGy. A least-squares technique was

used to determine the values for the fit coefficients e, q and s.

One final test of detector noise was performed using linearized standard deviation plotted

as a function of air kerma at the detector. An equation of the form

σ = a · Kb (3c)

was fitted to the data; if image noise consists of pure Poisson (x-ray) noise across the exposure

range examined then we expect coefficient b to equal 0.5. The presence of the additive and

multiplicative detector noise sources discussed above will cause coefficient b to deviate from

0.5.

3. Results and discussion

3.1. Detector response

There was a 1.7% difference in measured output between the two dosemeters, averaged across

the mAs values studied. No attempt was made to correct one set of output readings to match

the other as we do not know which readings can be considered more accurate. Another option



4208 N W Marshall et al

Table 3. MTF and DQE results for the systems studied; spatial frequency for the 50% and 10%

points of the MTF (averaged for the two directions unless specified); resolution anisotropy (ratio

of spatial frequency of 50% MTF point (front–back to left–right); MTF at 5 mm−1 (averaged for

the two directions unless specified); peak DQE and DQE at 5 mm−1.

Spatial Spatial Ratio spatial

frequency frequency frequency for 50%

Detector for MTF for MTF 10% MTF front–back MTF at Peak DQE at

name 50% (mm−1) (mm−1) to left–right 5 mm−1 DQE 5 mm−1

Agfa MM 3.0R 1.99 5.82 1.12 0.13 0.36 0.07

Agfa HM 5.0 2.31 7.07 1.09 0.23 0.51 0.20

Fuji Profect—scan 1.97 4.78 0.85 0.08 0.52 0.02

Fuji Profect—subscan 2.31 5.58 – 0.14 0.54 0.07

Carestream EHR-M3 2.28 5.56 0.90 0.14 0.34 0.04

Fuji Amulet 3.19 8.72 0.90 0.34 0.67 0.41

GE Senographe 2000D 3.19 7.17 0.90 0.27 0.41 0.13

GE Senographe DS 3.29 7.32 1.09 0.28 0.40 0.14

GE Essential 2.38 6.07 1.03 0.16 0.59 0.18

Hologic Selenia 4.53 10.1 1.02 0.44 0.48 0.21

Sectra MDM—orthoscan 6.52 12.3 0.53 0.64 0.73 0.37

Sectra MDM—scan 3.48 6.17 – 0.22 0.81 0.04

Siemens Inspiration 4.86 9.58 1.11 0.48 0.44 0.15

would be to increase/reduce (as appropriate) the dosemeter readings by 0.85%; however,

this is a very small correction and was not considered worthwhile. Tube potential and A/F

settings used for the technical characterization are given in table 2; for the majority of systems

these parameters were the same as those selected by the AEC device for 5 cm poly(methyl

methacrylate) (PMMA) and used for the detectability calculations. The exceptions were the

GE Senographe 2000D and DS systems where the technical characterization was performed

at 28 kV and Mo/Mo while the AEC selected Rh/Rh and tube potentials of 28 kV and

29 kV, respectively. Results for the detector response curve type and fitted A and B coefficients

are listed in table 1. As expected, linear, logarithmic and power relationships were found for

PV as a function of air kerma at the detector. The r2 value (correlation coefficient) for the

response curve fits was greater than or equal to 0.999 for all systems except the Fuji Amulet,

where the r2 was 0.975 indicating some deviation from the expected logarithmic (r2 increased

when the higher K values were excluded from the curve fit).

3.2. Detector uniformity error

Table 2 presents the detector uniformity error in terms of coefficient of variation for the

11 detectors. Note that no uniformity data are presented for the Sectra MDM as the flood

images were physically collimated to 12.8 cm × 12.8 cm for the acquisitions. As expected,

the detectors formed two groups; higher uniformity error was seen for the CR cassette-based

systems, with a range in cov from 9.1% to 18%. Uniformity error for the flat-panel detectors

was lower, varying from 1.2% to 2.7%. We expect substantially lower uniformity error for

the flat-panel detectors given the routine calibration of these detectors. Variations in x-ray

signal (largely due to the heel effect) and detector sensitivity are measured as a function of

area across the detector, x-ray signal (detector exposure) and beam quality. From these data,
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a calibration mask (Schmidgunst et al 2007) is formed that is used to correct signal and gain

variations, reducing uniformity error (hence the term ‘flat-field’ correction is often applied

to this procedure). These gain and non-uniformity corrections are not currently applied to

cassette-based CR systems, leading to higher uniformity error. Close inspection under a

narrow contrast setting revealed no artefacts for any of the detectors.

3.3. Modulation transfer function

Table 3 presents the spatial frequency for the 50% point of the pre-sampling MTF averaged

in the front–back and left–right directions across the detector. Two exceptions are the Sectra

MDM, where the MTF orthogonal and parallel to the scan direction is given and the Fuji

Profect where MTF in the scan and subscan directions is given. For CR detectors read in a

raster-type pattern using a laser, the scan direction refers to the direction in which the flying

spot laser is guided rapidly across the CR phosphor plate while the sub-scan direction is the

direction in which the plate is translated mechanically through the reader. As a measure of

MTF isotropy, the ratio of the 50% point front–back to the spatial frequency for the 50% point

for the left–right direction (scan direction for the Sectra MDM) results is given. This ratio

shows less than 15% difference for nine detectors indicating reasonable MTF isotropy for

most units; the exceptions are the Fuji Profect and the Sectra MDM systems. For the Sectra

system, resolution is considerably higher in the direction orthogonal to the scan direction than

in the scan direction. This is expected for the Sectra system and is due to motion blurring as

the tube-detector assembly is translated across the breast platform (Åslund et al 2007). As a

measure of limiting resolution, the spatial frequency at the 10% point of the MTF is also listed

in table 3.

Given the number of systems, the pre-sampling MTF curves are presented as two separate

groups: CR systems are plotted in figure 1(a), while the remaining digital radiography (DR)

detectors (direct and indirect conversion flat-panel detectors and the Si-strip photon counter)

are plotted in figure 1(b). These are averaged curves (front–back and left–right), again with the

exception of the Fuji Profect and the Sectra MDM. Figure 1(a) shows remarkably consistent

MTF performance between the different CR systems; this may suggest a similar thickness

of powder/binder photostimulable phosphors used in this systems. Two MTF curves exhibit

some differences: above 5 mm−1, the Agfa needle system has considerably higher MTF than

the other CR systems which may reflect the reduced signal spread (blurring) for a needle

phosphor compared to the powder phosphors. MTF for the Fuji Profect in the scan direction

is somewhat lower than the other MTF curves above 3 mm−1. The reduced MTF in the

scan direction has been explained in terms of the stimulated luminescence decay time and

the scanning laser dwell time per pixel; resolution in the (fast) scan direction is affected when

the dwell time is of the same order as the decay time (Rowlands 2002, Monnin et al 2006).

These data can be compared against some results from the literature. While the energy does not

have a large influence over the limited range of energies used for mammography, various MTF

methodologies were used for the literature values, and this can have a substantial influence

on the MTF curve (Carton et al 2005). MTF at 5 mm−1 in the work of Vandenbroucke

and Leblans (2010) is approximately 0.20 and 0.18, compared to 0.23 and 0.13 in table 3.

For the Fuji 5000MA (an early version of the dual-sided reading Fuji Profect CS), Fetterly

and Schueler (2003) report approximate MTF values in the scan and subscan directions at

5 mm−1 of 0.12, compared to 0.08 and 0.14, respectively, for scan and subscan directions in

table 3.

Figure 1(b) plots average MTF curves for the DR-type systems, with the exception of

Sectra MDM which is plotted as scan and orthogonal directions. For the sake of clarity just
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(a)

(b)

Figure 1. (a) Pre-sampling MTF for the CR detectors averaged in the left–right and front–back

directions, with the exception of the Fuji Profect data, which are presented separately for the scan

and subscan directions. (b) Pre-sampling MTF for the DR detectors averaged in the left–right and

front–back directions, with the exception of the Sectra MDM data, which are presented separately

for the scan and orthoscan directions.
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the GE Senographe 2000D results, rather than the GE Senographe DS data, are plotted in the

following MTF, NNPS and DQE graphs. The same generation of detector is used in these

systems and the results were almost equivalent; data for the GE Senographe DS are however

given in the tables. A greater range of curves was found for these detectors. First, it can be

seen that the pre-sampling MTF for the newer GE Essential detector is lower than the older

generation detector used in the GE Senographe 2000D (and the GE Senographe DS). MTF

at 5 mm−1 is 0.16 for the Essential compared to approximately 0.28 for the older generation

detector. Pre-sampling MTF for the Fuji Amulet is close to the GE Senographe 2000D up

to 4 mm−1 but then remains higher than the GE system at frequencies greater than 4 mm−1.

Difference between the MTF for the a-Se-based Siemens Inspiration and Selenia Dimensions

was small; however, MTF was higher for the Selenia above 8 mm−1, possibly reflecting the

smaller pixel spacing of 70 µm compared to 85 µm. We note that these MTF results are

pre-sampling curves and include the intrinsic resolution of the x-ray converter layer sampled

through the pixel aperture (which can be approximated by a sinc function that is directly

related to the width of the sensitive region of the pixel (Zhao and Rowlands 1997, Rowlands

and Yorkston 2000). For systems with little pre-sampling resolution loss, such as the two a-

Se-based detectors here, MTF is expected to touch the spatial frequency axis at 1/a where a is

the width of the pixel. MTF touches the axis at approximately 11.8 mm−1 (expect 11.8 mm−1)

for the Siemens Inspiration while the MTF touches the spatial frequency axis at approximately

14.0 mm−1 (expect 14.3 mm−1). Both of these detectors have high pre-sampling MTFs at

the respective Nyquist frequencies, with an MTF of 0.41 at 5.88 mm−1 for the Siemens unit

and 0.29 at 7.14 mm−1 for the Selenia detector. Signals incident upon the detector containing

substantial power at spatial frequencies above the respective Nyquist frequencies may be

aliased, potentially leading to unpredictable behaviour when imaging small objects (Thomas

et al 2005). Highest MTF was found for the Sectra MDM in the direction orthogonal to the

scan motion (front–back) and hence considerable anisotropy exists for the Sectra unit; spatial

frequency for 50% MTF in the scan direction is a factor of 2 lower than that for the direction

orthogonal to the scan. It is worth noting that the CR systems have a pixel spacing of 50 µm

and yet generally have lower pre-sampling MTF curves than the flat-panel detectors, indicating

that the x-ray converter (photostimulable phosphor) is limiting resolution rather than the pixel

dimension. It is possible that a larger pixel spacing could be used without reducing image

quality.

Comparing data for MTF at 5 mm−1 against literature values, we found a value of

0.34 for the Fuji Amulet compared to the approximate figure of 0.45 for Rivetti et al (2009).

For the GE Senographe 2000D, Vedantham et al (2000) give a figure of approximately

0.26 compared to the value of 0.27 found in this study. Results for the GE Senographe DS and

the GE Essential were 0.28 and 0.16; these can be compared to figures of 0.38 and 0.15 in the

study of Ghetti et al (2008). Results of 0.60 and 0.65 were found for an earlier version of the

Hologic Selenia detector in studies by Monnin et al (2007) and Marshall (2009) compared to

0.44 given in table 3 for the newer detector (suitable for digital breast tomosynthesis). Åslund

et al (2007) give results of 0.70 and 0.30 for the orthoscan and scan directions of the Sectra

system; we found values of 0.64 and 0.22 for the orthoscan and scan directions, respectively.

Finally, Oberhofer et al (2010) gave results of approximately 0.55 for a Siemens Inspiration

unit, compared to the value of 0.48. Overall, the pre-sampling MTF results in this study

are consistent with literature values taken from the previous 11 years, given differences in the

various MTF conditioning/calculation methods and developments in the detectors themselves.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Linearized standard deviation representing total detector noise and separated electronic,

x-ray quantum noise and structure noise plotted as a function of detector air kerma for (a) the Agfa

MM 3.0R CR detector, (c) the Fuji Amulet DR detector and (e) the GE Essential DR detector.

Electronic, quantum and structured noise variance presented as a fraction of total noise variance

for (b) the Agfa MM 3.0R CR detector, (d) the Fuji Amulet DR detector and (f) the GE Essential

DR detector.
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Table 4. Approximate air kerma (lower and upper) where quantum noise is no longer the dominant

noise component; approximate air kerma at the detector for the AEC mode; fit coefficient b for

standard deviation versus linearized PV.

Lower Upper Air kerma

air kerma air kerma at detector

Detector bound bound for AEC b

name (µGy) (µGy) mode (µGy) coefficient

Agfa MM 3.0R <18 >450 102 0.65

Agfa HM 5.0 <18 >450 104 0.60

Fuji Profect <124 >384 64 0.62

Carestream EHR-M3 32 >404 65 0.61

Fuji Amulet 40 >384 88 0.39

GE Senographe 2000D <24 >405 66 0.49

GE Senographe DS <21 >429 98 0.49

GE Essential <29 >411 83 0.49

Hologic Selenia <13 >390 100 0.46

Sectra MDM 64

Siemens Inspiration 22 >390 98 0.33

3.4. Separation of noise sources

Figure 2 plots the separated noise components as a function of air kerma for three selected

systems: the Agfa MM 3.0R, the Fuji Amulet and the GE Essential. Both the linearized

standard deviation and the fraction of each noise component compared to the total noise are

plotted as a function of air kerma at the detector. The fractional approach was used for a

digital fluorography system and allows the easy identification of the dominant noise source at

a given air kerma, although previously the various noise sources were grouped together as a

generic ‘system’ noise term (Marshall et al 2001). We note that while the noise sources can

be separated using standard deviation or variance (Borasi et al 2003, Burgess 2004, European

Commission 2006), if the results are to be expressed as a fraction of total noise then noise

variance must be used. The noise components only remain additive and separable if expressed

as a variance before calculating the relative value. From the noise model in equation (2b),

additive noise (assumed to be electronic noise) dominates at low air kerma (x-ray signal),

while structured noise becomes increasingly important at high air kerma. Two properties

are expected for a well-designed detector: (a) quantum noise should be the highest noise

component for the all detector air kerma values used clinically and (b) the magnitude of the

additive and multiplicative noise sources should be low such that quantum noise forms a large

fraction of the total noise, greater than or equal to 50% at least.

Table 4 presents the approximate quantum noise limited range for the detectors in this

study. Electronic noise was sufficiently low for most detectors such that quantum noise

remained the dominant noise at the lowest air kerma studied. Three exceptions were the

Carestream EHR-M3 CR system, Fuji Amulet and the Siemens Inspiration, where electronic

noise became the dominant component below approximately 32, 40 and 22 µGy, respectively.

Figures 2(c) and (d) present this graphically for the Fuji Amulet detector. Although not

presented here, there was a reduction in DQE at low air kerma settings for these three

detectors, which is consistent with the presence of electronic noise at low detector air kerma.

The presence of electronic noise in a CR detector is unusual given that the photomultiplier tube

used in these systems has a low dark current (Rowlands 2002). Operation of the CR detector at
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reduced gain could increase the relative importance of electronic noise at low exposure levels,

an effect that has been demonstrated for flat-panel detectors (Schmidgunst et al 2007, Zhao

2007). This can be contrasted with the more typical result found for the Agfa MM 3.0R CR

system; figures 2(a) and (b) show low electronic noise and structured noise that increases with

exposure, approaching that of the quantum noise component at 400 µGy. Figures 2(e) and (f)

present similar graphs for the GE Essential detector. For this unit, quantum noise remains the

dominant noise source for all the detector air kerma values examined; quantum noise variance

as a fraction of total noise variance also remains between 0.7 and 0.8 for this air kerma range

signifying good detector performance with respect to the additive and multiplicative noise

sources.

Quantum noise remained the dominant noise for all detectors at 380 µGy or higher for

all detectors. System AECs are generally programmed to aim for a target signal within the

detector (in the form of PV) for a given breast thickness; this can be converted to some air

kerma value at the detector using the detector response curve. For 50 mm PMMA, the air

kerma at the detector under AEC control varied from 52 to 104 µGy, with an average of

83.5 µGy; this is shown in the accompanying paper (Monnin et al 2011). The figure of

380 µGy is therefore a factor of approximately 4.5 greater than the typical operating air kerma

under the central region of the breast. Obviously air kerma will be lower in dense breast

regions and higher towards the skin edge. Results in table 4 demonstrate that all the systems

studied were quantum noise limited at the detector air kerma for the AEC operating point with

the exception of the Fuji Profect. However, the data in table 4 show that the Fuji system was

quantum noise limited at the lowest air kerma investigated (124 µGy) for this detector.

Table 4 presents the fitted b coefficients for equation (3c) for the different systems. This

table shows higher b coefficients for two of the CR phosphor units (b∼0.6), where structure

noise often forms a higher proportion of system noise. Coefficients for the three GE systems

and the Hologic Selenia unit are close to 0.5; quantum noise remained the dominant noise

source for these systems over the exposure range studied. Lastly, for the Fuji Amulet and

Siemens Inspiration units, b is lower at 0.39 and 0.33, respectively. Also, for the Carestream

EHR-M3 CR system, b was found to be 0.41 indicating high electronic noise at low detector

air kerma, which is unusual for a CR system. This was confirmed by examining NNPS and

DQE as a function of air kerma. From these results, we suggest that the presence of structure

noise results in a b coefficient greater than 0.5 for un-normalized noise, while electronic noise

tends to reduce/flatten the exposure dependence of the total noise, leading to a b coefficient

considerably less than 0.5. A further link is made in the second part of this study with regard

to the gradient of the threshold contrast resolution plotted as a function of detector air kerma.

3.5. Normalized noise power spectrum

Target air kerma for the NNPS detector comparison was 100 µGy; the largest difference was

24 µGy for the Fuji Profect system (124 µGy used)—see table 2. This is radially averaged

NNPS with the exception of the Fuji Profect and Sectra MDM detectors. For the radial NPS

given here, error varied from 6.6% at 0.15 mm−1 to 1.4% at 5.0 mm−1. The error for axially

sectioned NPS data was 3.0%. NNPS was calculated as a function of air kerma for each

detector. Given that the NNPS is inversely proportional to air kerma, figures 3(a) and (b) plots

NNPS multiplied by the air kerma used for the flood image acquisition from which the NNPS

was calculated. This removes the air kerma dependence between the different measurements;

however, NNPS multiplied by air kerma will still vary between systems given the variation

in DQE between detectors. Differences in q0 as beam quality changes will introduce some

additional variation. Figure 3(a) plots NNPS multiplied by air kerma for the CR cassette-based
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systems and shows a similar shape of NNPS across the CR systems. This is likely related to

the MTF results, as similar pre-sampling MTF curves were seen between the CR units. MTF

plays an important role in noise transfer for an imaging system, filtering both the primary

x-ray noise and secondary quantum noise in the x-ray detector (Nishikawa and Yaffe 1990a,

Mackenzie and Honey 2007). While of similar shape to other CR systems curves, the result for

the Agfa MM 5.0 needle phosphor is lower, indicating lower noise for this CR phosphor. The

result for the Fuji Profect is similar up to a spatial frequency of 4 mm−1; above this frequency

NNPS increases then falls rapidly from 8 mm−1. This has been explained as the influence of

a Butterworth filter on the photomultiplier data during read out in the scan direction, applied

with the aim of reducing aliasing in the image (Kengyelics et al 1998, Rowlands 2002).

Figure 3(b) plots NNPS multiplied by air kerma for the DR-type detectors. Greater

variation is seen in the shape of the NNPS for these systems; we also note greater variation

between pre-sampling MTF curves for these detectors. The Sectra MDM, Selenia Dimensions

and Siemens Inspiration have a flat NNPS, as expected (Rowlands and Yorkston 2000). For

example, the ratio of NNPS at 5 mm−1 to NNPS at 1 mm−1 is 0.8 for the Sectra MDM and

Siemens Inspiration units, an indication that there is limited blurring of the primary x-ray noise

and secondary noise by the x-ray converters for these detectors (Nishikawa and Yaffe 1990b).

Greater reduction in NNPS as a function of spatial frequency was seen for the GE detectors,

with NNPS at 5 mm−1 compared to NNPS at 1 mm−1, dropping by factors of 0.20 and 0.12 for

the GE Senographe 2000D/Senographe DS and GE Essential, respectively. This is probably a

result of the x-ray converter blurring reducing quantum noise, leading to lower x-ray noise at

higher spatial frequencies (Nishikawa and Yaffe 1990b). NNPS for the GE Essential detector

is a factor of 2.0 and 3.4 lower than that for the GE Senographe 2000D/Senographe, at

1 mm−1 and 5 mm−1, respectively. This is despite being measured at a slightly higher x-ray

beam energy, where reduced absorption is expected to increase NNPS (Marshall 2009). The

fact that the reduction in NNPS is greater at high spatial frequencies is due to the lower MTF

and possibly a reduction in noise aliasing arising from greater pre-sampling blurring of the

GE Essential detector.

3.6. Detective quantum efficiency

Table 3 lists peak DQE and DQE at 5 mm−1 for the 11 different systems; these data were

calculated with an averaged MTF (left–right and front–back directions) and the radially

averaged NNPS, unless indicated in the table. Air kerma and beam quality associated with

these measurements is given in table 2. The full DQE curves are plotted in figures 4(a) and

(b), interpolated to 0.25 mm−1 spacing using a linear interpolation. The two exceptions are

the Fuji Profect and Sectra MDM, where the curves are kept separate for the scan and subscan

or orthogonal scan directions. The CR data are plotted in figure 4(a), while the DR data are

given in figure 4(b). For the CR group of detectors, highest peak DQEs are seen for the Fuji

Profect and Agfa HM 5.0 needle phosphor systems. The DQE of the Fuji Profect is quite

strongly peaked at low spatial frequencies, whereas the Agfa HM 5.0 maintains a high DQE

at higher spatial frequencies (factor of approximately 4 greater at 5 mm−1). The Agfa HM5.0

needle phosphor had a higher DQE than the Agfa MM 3.0R and Carestream HER-M3 powder

phosphors; peak DQE was approximately a factor of 1.5 greater while DQE at 5 mm−1 was

higher by a factor of approximately 3.0. The lowest peak DQE of all the detectors was found

for the Carestream EHR-M3 CR cassette at 0.34, while DQE at 5 mm−1 was 0.07.

For the detectors in figure 4(b), largest peak DQE was found for the Sectra MDM at 0.81

and 0.73 for the scan and orthoscan directions, respectively. The influence of the non-isotropic

MTF can be seen in the greatly differing DQE results at 5 mm−1 (0.37 compared to 0.04); it
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(a)

(b)

Figure 3. (a) Radially averaged NNPS for the CR detectors with the exception of the Fuji Profect

data, which is presented separately for the scan and subscan directions. (b) Radially averaged

NNPS for the DR detectors with the exception of the Sectra MDM data, which is presented

separately for the scan and orthoscan directions.

is also possible that some structured noise has reduced DQE at low spatial frequency in the

orthoscan direction (possibly from the structured strip detector assembly). The GE Essential

has the next highest peak DQE in this group at 0.59, which is a factor of 1.45 greater than the
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(a)

(b)

Figure 4. (a) DQE for the CR detectors and (b) DQE calculated for the DR detectors. Acquisition

parameters are given in table 2. See the text for an explanation of the pre-sampling MTF and

NNPS used in the calculation.

GE Senographe 2000D/Senographe DS detector result, with a peak DQE of approximately

0.41. The DQE results for the a-Se-based detectors are rather close, with a peak DQE of

0.48 and 0.44 for the Selenia Dimensions and the Siemens Inspiration, respectively. With

the exception of the Agfa MM 5.0 needle phosphor CR system, the flat panel and photon
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counter-based units were able to maintain a high DQE at higher spatial frequencies compared

to the CR systems. The ratio of DQE at 5 mm−1 to peak DQE for the powder CR detectors

was approximately 0.18 against the average of 0.44 for the flat-panel detectors and a figure

of 0.40 for the Agfa MM 5.0 needle phosphor. This indicates reduced signal-to-noise ratio

transfer at high spatial frequencies is probably due to the poorer high-frequency MTF of the

powder phosphors. While detector DQE influences object detectability (Aufrichtig 1999),

other parameters such as the x-ray energy used for the acquisition (i.e. the contrast) and the

quantity of scattered radiation will also play a major role. The second part of this study

therefore examines the influence of low- and high-frequency DQE (typically peak DQE and

DQE at 5 mm−1) on measured threshold detectability.

As with the MTF data, we can compare DQE (at ∼100 µGy) against some literature values,

although greater variation is expected for DQE owing to dosemeter calibration differences,

the MTF2 squared dependence and the influence of NNPS conditioning, detector air kerma

and beam quality on DQE. The data of Vandenbroucke and Leblans (2010), acquired at

28 kV Mo/Mo, show peak DQEs of 0.55 and 0.40 for the Agfa HM5.0 and MM3.0R, compared

against 0.51 and 0.36 measured at 29 kV Mo/Rh in this work. Fetterly and Schueler (2003)

give a peak subscan DQE of approximately 0.58 measured at 81.7 µGy and 25 kV Mo/Mo for

the Fuji 5000MA, against a value of 0.54 measured at 27 kV Mo/Rh for the Fuji Profect CS.

Ghetti et al (2008) reported peak DQEs of approximately 0.58 and 0.48 for the GE Essential

and GE Senographe DS, respectively, estimated from data acquired at 75 µGy and 28 kV and

a Mo/Mo A/F setting. For comparison, we found a peak DQE of 0.59 for the GE Essential

and 0.40 for the GE Senographe DS. The study of Vedantham et al (2000) reports a peak

DQE of 0.48 at 28 kV Mo/Mo with 40 mm PMMA for the GE Senographe 2000D, compared

against the peak DQE of 0.41 in this work. An earlier study by Monnin et al (2007) gave peak

DQEs of 0.40 and 0.40 for the Fuji Profect CR and Hologic Selenia DR systems, respectively

(28 kV and Mo/Mo); in this work we found figures of 0.54 and 0.48, respectively. Åslund

et al (2007) give peak DQEs of 0.72 and 0.73 in the scan and orthoscan directions, respectively,

measured at 28 kV using a W/Al A/F combination. Table 3 shows figures of 0.81 and 0.73

for the scan and orthoscan, respectively. Finally, Rivetti et al (2009) report a peak DQE of

approximately 0.78 for the Fuji Amulet detector measured at 28 kV W/Rh and 103 µGy at

the detector, which can be compared with the result of 0.67 in table 3. Taken together, these

data indicate that the systems assessed in the current study, using a common methodology,

achieved similar performance in terms of DQE when compared against values reported in the

literature.

4. Conclusions

This work examined a range of technical parameters for 11 mammography x-ray detectors

used in the detectability study, presented in the second part of the work. Results from the study

can be summarized as follows. Detector uniformity error was notably lower for the flat-panel

detectors (1.2% to 2.7%) compared to the CR detectors (9.1% to 17%), as might be expected

given the large area gain corrections applied in these systems. MTF was isotropic to within

15% at the 50% point of the MTF for most detectors, the exceptions being the Fuji Project and

the Sectra MDM. Most detectors were quantum noise limited for the detector air kerma range

of approximately 20–400 µGy, three exceptions being the Carestream EHR-M3 CR unit, the

Fuji Amulet and the Siemens Inspiration DR detectors, where electronic noise dominated the

image at low air kerma values. We could confirm that all systems were quantum noise limited

at the detector air kerma for the AEC operating point; the exception was for the Fuji Profect

was quantum noise limited at the lowest air kerma investigated for this detector of 124 µGy.
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Peak DQE for detectors ranged from 0.34 for the Carestream EHR-M3 CR system to 0.81

for the Sectra MDM system in the scan direction. Reasonably close agreement was found

between the peak DQE data of the systems in this study and data available in the literature;

this is an indication that the systems evaluated were well set up and performing under what

might be considered typical conditions.
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