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Image-Quality-Based Adaptive Face Recognition
Harin Sellahewa and Sabah A. Jassim

Abstract—The accuracy of automated face recognition systems
is greatly affected by intraclass variations between enrollment and
identification stages. In particular, changes in lighting conditions
is a major contributor to these variations. Common approaches
to address the effects of varying lighting conditions include pre-
processing face images to normalize intraclass variations and the
use of illumination invariant face descriptors. Histogram equal-
ization is a widely used technique in face recognition to nor-
malize variations in illumination. However, normalizing well-lit
face images could lead to a decrease in recognition accuracy.
The multiresolution property of wavelet transforms is used in
face recognition to extract facial feature descriptors at differ-
ent scales and frequencies. The high-frequency wavelet subbands
have shown to provide illumination-invariant face descriptors.
However, the approximation wavelet subbands have shown to be
a better feature representation for well-lit face images. Fusion of
match scores from low- and high-frequency-based face representa-
tions have shown to improve recognition accuracy under varying
lighting conditions. However, the selection of fusion parameters
for different lighting conditions remains unsolved. Motivated by
these observations, this paper presents adaptive approaches to face
recognition to overcome the adverse effects of varying lighting
conditions. Image quality, which is measured in terms of lumi-
nance distortion in comparison to a known reference image, will
be used as the base for adapting the application of global and
region illumination normalization procedures. Image quality is
also used to adaptively select fusion parameters for wavelet-based
multistream face recognition.

Index Terms—Biometrics, face recognition, illumination, qual-
ity measures, wavelet transforms (WTs).

I. INTRODUCTION

AUTOMATIC face image analysis has received a consider-
able amount of attention by the computer vision research

community. Much progress has been made in developing robust
algorithms and technology to transfer face image analysis from
theory to successful automated identification systems for vari-
ous applications. Continued research in this field is motivated
by the need for convenient, reliable, efficient, pervasive, and
universal person identification methods as proof of entitlement
to services, to counter identity theft, crime, and international
terrorism and as a tool in forensic investigations. The unob-
trusive nature and the relative ease of obtaining face biometric
samples from a distance make face recognition systems very
desirable. The availability of low-cost devices have enabled
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face identification systems to move from centralized control
rooms to portable handheld person identification systems. Such
fieldable biometric systems are an ideal person identification
tool for street/city policing, crowd control at large venues, and
border control.

However, automatic face recognition remains a challenging
task when presented with uncooperative users as well as in
uncontrolled environments. Intraclass variations due to changes
in lighting conditions, facial expressions and pose, occlusion,
and poor sensor quality cause identification errors. In the
literature, there is a tendency to associate these variations as
distortions from “standard” reference images, giving rise to
measures of image quality [1], [2]. This paper is concerned with
face recognition under varying illumination.

Discrete wavelet transforms (DWTs), which are multireso-
lution image analysis tools that decompose an image into low
and high frequencies at different scales, have been successfully
used in a variety of face recognition schemes as a dimension
reduction technique and/or as a tool to extract a multiresolu-
tion feature representation of a given face image [3]–[8]. The
multiresolution property of DWT enables one to efficiently
compute a small-sized feature representation that is particularly
desirable for face recognition on constrained devices such as
mobile phones.

Sellahewa and Jassim [7], [9] have shown that the low-
frequency approximation subband is a suitable face descriptor
for recognition under controlled illumination, but it is signif-
icantly affected by varying illumination. On the other hand,
the detail subbands (e.g., horizontal and vertical face features)
are reasonably robust against varying lighting conditions, but
they are affected by geometrical changes such as varying
facial expressions and pose. Accurate identification of faces,
imaged under poor and uncontrolled lighting conditions, is still
a challenge for both subband representations. This is commonly
addressed by normalizing the illumination of both enrolled and
test images. However, a recent study [9] shows that normalizing
well-lit face images could lead to a decrease in identification
accuracy and suggests that an adaptive approach to illumination
normalization could improve the identification accuracy of face
recognition systems.

Jassim and Sellahewa [8] combine the use of low- and high-
frequency subbands in face recognition by means of score level
fusion. The identification accuracy of the fused multistream
approach is higher than that achieved by any of the individual
subbands. However, the effective selection of fusion parameters
remains unresolved.

Here, we propose a quality-based adaptive approach to
face recognition. The contribution of this paper is threefold:
1) an objective measure of illumination quality of a given face
image is used to decide if the image should be preprocessed to
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normalize its illumination; 2) the global quality-based normal-
ization scheme is extended to a regional quality-based approach
to adaptive illumination normalization; 3) the illumination
quality measure is used as a means to adaptively select the
weighting parameters of the fused wavelet-based multistream
face recognition scheme.

The rest of this paper is organized as follows. Section II
presents a review of approaches to face recognition in the pres-
ence of varying lighting conditions. The illumination quality
measure used in this study and the proposed adaptive approach
to face recognition is presented in Section III. Section IV
evaluates the suitability of the illumination quality measure
for the proposed adaptive face recognition scheme. Recogni-
tion experiments are presented and discussed in Section V.
Conclusions and future work are presented in Section VI.

II. LITERATURE REVIEW

Changes in lighting conditions during enrollment and identi-
fication stages contribute significantly to intraclass variations
of face images. Typical methods employed to address vary-
ing illumination conditions could be categorized as follows:
1) feature-based methods; 2) generative methods; and 3) holis-
tic methods. In feature-based approaches, faces are represented
by illumination invariant features. Typically, these are geo-
metrical measurements and relationships between local facial
features such as the eyes, mouth, nose, and chin [10], [11].
Feature-based methods are known to be robust against varying
illumination conditions. However, they rely on accurate face
and facial feature point detection, which is a challenging task
on its own right.

Generative methods [12]–[15] have been proposed to address
the problem of varying illumination based on the assumption
of the Lambertian model. It has been demonstrated that the
variability of images under a fixed pose, consisting of only
diffuse reflection components and varying illumination condi-
tions can be represented by a linear combination of three basis
images [16], [17]. Belhumeur and Kriegman [18] demonstrated
that a set of images of an object under fixed posed, consisting
of diffuse reflection components and shadows under arbitrary
lighting conditions, forms a convex cone (called the illumina-
tion cone) in the image space and that this illumination cone
can be approximated by a low-dimensional subspace. Experi-
mental results show that these generative methods perform well
under varying illumination conditions. However, they require a
number of training samples that represent extreme illumination
conditions. It may be possible to acquire such images for cer-
tain applications (e.g., identification cards and physical access
control systems), where individuals are cooperative, but not
so for surveillance- and counter-terrorism-related applications
where only one or few images of an individual are available for
training.

In holistic approaches, the entire face image is considered
for face representation without taking into account any specific
geometrical features of the face. A face image could be thought
of as a point in a high-dimensional image space. To avoid
computational complexities and to reduce redundant data, a
face image is first linearly transformed into a low-dimensional

subspace before extracting a feature vector. The most com-
monly used dimension reduction technique in face recognition
is the principal components analysis (PCA) [19]. PCA is known
to retain intraclass variations due to changes in illumination. It
has been demonstrated that leaving out the first three eigenfaces
that corresponds to the three most significant eigenvalues could
reduce the effect of variations in illumination [20]. However,
this may also lead to the loss of information that is useful
for accurate identification. An alternative approach to PCA-
based linear projection is Fisher’s linear discriminant, or the
linear discriminant analysis (LDA), which is used to maximize
the ratio of the determinant of the interclass scatter to that of
interclass scatter [20], [21]. Like generative approaches, the
downside of the holistic approaches is that a number of training
samples from different conditions are required to identify faces
in uncontrolled environments.

A more common approach to address the effects of varying
lighting conditions is to preprocess face biometric samples
to normalize illumination before extracting facial features for
identification. Widely used normalization techniques include
histogram equalization (HE), histogram matching, gamma in-
tensity correction, and quotient image. These normalization
techniques can be applied to an image either globally or re-
gionally. Shan et al. [22] proposed a region-based approach
to illumination normalization where an image is first parti-
tioned into four regions. The selected normalization technique
(e.g., HE) is applied to each region separately (i.e., RHE).
The region-based normalization leads to higher identification
accuracy than the traditional global normalization.

It is commonly accepted that illumination normalization
techniques help in improving recognition accuracy [22], [23].
However, the improvements depend on the extent of variation
in illumination present between enrolled and test images and
are often not repeatable on different data sets [7], [24]. In a
recent study, Sellahewa and Jassim [9] show that normalizing
well-lit face images could lead to a decrease in identification
accuracy and highlight the need for a quality-based adaptive
approach to illumination normalization as an alternative to ex-
isting approaches where all images, irrespective of their lighting
conditions, are normalized prior to feature extraction.

This paper focuses on wavelet-based face recognition in
the presence of varying illumination. A brief description of
WTs and their use in face recognition is given below in
Section II-A and B.

A. Wavelet Transforms (WTs)

A WT hierarchically decomposes a signal into low- and high-
frequency components, providing a multiresolution analysis of
the signal. The DWT is a special case of the WT that provides
a compact representation of a signal in time and frequency that
can be efficiently computed [25], [26].

The most commonly used wavelet decomposition of an
image, which is the one adopted here, is the pyramid scheme
(also known as the nonstandard decomposition). At a resolution
level of k, the pyramid scheme decomposes an image I into
3k + 1 subbands (LLk, HLk, LHk, HHk, . . . , HL1, LH1, HH1),
with LLk being the subband with the lowest pass. The subbands
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LH1 and HL1 contain finest scale wavelet coefficients that get
coarser, with LLk being the coarsest. The LLk subband is
considered as the k-level approximation of I .

B. WTs in Face Recognition

A subband of a wavelet transformed face image can be
used as face feature descriptor [4], [5], [7]. Typically, sub-
band coefficients (i.e., LLk, HLk, and LHk) are normalized by
Z-score normalization (ZN) in terms of its mean and standard
deviation. The ZN has shown to improve the recognition accu-
racy, particularly under varying illumination [7]. Two feature
vectors from the same stream are typically compared by calcu-
lating a distance score, and the subject’s identity is classified
according to the nearest neighbor.

In [4] and [5], WTs are used to reduce image dimension prior
to using statistical dimension reduction techniques such as PCA
and LDA. The wavelet-based schemes are computationally
efficient, and their identification accuracy is comparable, if not
better than the PCA- and LDA-only approaches [5], [24]. The
advantage of using only the wavelet coefficients as the feature
representation over methods such as PCA and LDA is that the
wavelet only approach does not require a training stage to create
a low-dimensional subspace.

Different decomposition levels and/or wavelet filters yield
different face feature vectors, giving rise to different face recog-
nition schemes and providing opportunities for a multistream
(multichannel) identification. In the multistream approach [7],
[8], a face image is represented by multiple feature vectors
at a given scale (e.g., LL and LH subbands). Two images
are compared by first calculating a distance score for each
subband representation, followed by a score fusion that can
be performed by calculating a weighted average of the scores.
The fused score is then used to classify the identity of the
individual. The selection of fusion weights is an important task
as it influences the accuracy of the system. This paper presents
an adaptive approach to select fusion weights based on the
illumination quality of the given probe image.

III. IMAGE-QUALITY-BASED ADAPTIVE

FACE RECOGNITION

Real-time computation of a quantitative objective image
quality measure is an essential tool for biometric-based iden-
tification applications. Such measures can be used as a quality
control to accept, reject, or reacquire biometric samples, as
quality-based processing to select a biometric modality, algo-
rithm, and/or system parameters, and as confidence estimators
of reliability of decision.

This paper investigates the use of an image quality measure
as a base for an adaptive approach to face recognition in the
presence of varying illumination. Naturally, the illumination
quality of a given face image is to be defined in terms of
its luminance distortion in comparison to a known reference
image. The mathematically defined quality measure proposed
by Wang and Bovik [27], i.e., the universal image quality
index (Q), incorporates the necessary ingredients that fits our
needs. The Q aims at providing meaningful comparisons across

different types of image distortions by modeling any image
distortion as a combination of the following three factors:
1) loss of correlation; 2) luminance distortion; and 3) contrast
distortion. Here, the luminance distortion factor of Q is used to
measure global or regional illumination quality of images. This
will be called the luminance quality (LQ) index.

A. Universal Quality Index

Let x = {xi|i = 1, 2, . . . , N} and y = {yi|i = 1, 2, . . . , N}
be the reference and the test images, respectively. The universal
quality index in [27] is defined as

Q =
4σxyx̄ȳ(

σ2
x + σ2

y

)
[(x̄)2 + (ȳ)2]
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Statistical features in (1) are measured locally to accommo-
date space-variant nature of image quality and then combine
them together to a single quality measure for the entire image.
A local quality index Qj is calculated by sliding a window of
size B × B pixel by pixel from the top-left corner until the
window reaches the bottom-right corner of the image. For a
total of M steps, the overall quality index is given by

Q =
1
M

M∑

j=1

Qj . (2)

B. Global LQ (GLQ) and Region LQ (RLQ) Indexes

The universal quality index Q can be written as a product of
three components, i.e.,

Q =
σxy

σxσy
· 2x̄ȳ

(x̄)2 + (ȳ)2
· 2σxσy

σ2
x + σ2

x

. (3)

LQ, which is the luminance distortion factor in Q, is defined as

LQ =
2x̄ȳ

(x̄)2 + (ȳ)2
. (4)

With a value range of [0, 1], LQ measures how close the mean
luminance is between x and y. LQ equals 1, if and only if x̄ = ȳ.
The window size used in this paper is the default 8 × 8 pixels.

GLQ is calculated similarly to the calculation of a single Q
value in (2). RLQ represents the LQ of a region of an image
resulting from a 2 × 2 partitioning of the image. The LQ of a
region of an image is calculated by partitioning the local quality
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Fig. 1. Illumination subsets of Extended YaleB.

index map [resulting from the blockwise calculation of (4)] into
four regions.

C. Image-Quality-Based Adaptive Normalization

The proposed image-quality-based adaptive normalization
works by first calculating the GLQ of a given image and then
normalizing only if its GLQ is less than a predefined threshold.

Inspired by the work of Shan et al. [22] and the fact that the
images tend to exhibit regional variation in image quality as a
result of the direction of the light source, the global quality-
based adaptive normalization is extended by introducing a
region quality-based adaptive approach to normalization. A
region of an image is normalized only if the RLQ score is lower
than a predefined threshold.

The commonly used HE is adopted here for illumination
normalization. Hence, the two proposed approaches to adaptive
normalization will be referred to as global quality-based HE
(GQbHE) and regional quality-based HE (RQbHE). The thresh-
old can be determined empirically, depending on the objectives
of the applications under consideration.

D. Image-Quality-Based Adaptive Fusion

The idea is to select fusion weight parameters to adaptively
suit the condition of probe images. The quality-based fusion
(QbF) works by first calculating the LQ of the input image,
and if its LQ score is higher than a predefined fusion threshold,
then the approximation subband is given a higher weight than
the detail subbands during score fusion. If the LQ score is less
than the threshold, the approximation subband gets a very low
weight (to indicate that the face descriptor is unreliable for the
given image).

IV. EVALUATION OF THE LQ INDEX

A. Evaluation Data

1) Extended Yale Face Database B (Extended YaleB): Ex-
tended YaleB [13], [15] consists of 38 subjects, each imaged
under 64 illumination conditions in frontal pose, capturing a
total of 2414 images. These images can be divided into five
illumination subsets according to the angle θ of the light source
with respect to the optical axis of the camera. The number of
images, the range of the angle θ, and an example image of each
subset are shown in Fig. 1. The 168 × 192 pixel cropped images
in the database are resampled to a fixed size of 128 × 128 for
the experiments reported in this paper.

Fig. 2. Example images of the AT&T database.

Fig. 3. Reference face images used to calculate LQ and a sample of gallery
images from each database. (a) Reference. (b) Example gallery images from
Extended YaleB. (c) Reference. (d) Example gallery images from the AT&T
database.

2) AT&T (ORL) Face Database: The AT&T (formerly
ORL) [28] database consists of 40 subjects, each with ten
face images captured against a dark homogeneous background.
Images of some subjects were captured at different times.
Variations in pose (frontal images, with tolerance to some side
movements), facial expressions (open/closed eyes, smiling/not
smiling), and facial details (glasses/no glasses) are captured in
this collection of face images. Sample images of the database
are shown in Fig. 2. The original 92 × 112 pixel images are
resampled to 128 × 128 for the experiments in this paper.
The AT&T database is used to find a suitable threshold for
the adaptive normalization as well as to demonstrate that the
reference image used to calculate the illumination quality of a
face image can be selected independently of the gallery images
of a face recognition system.

3) Reference Image: The calculation of the LQ index for
a given face image relies on the use of a reference image,
preferably one that is independent of subject and gallery face
images. The reference image used in the evaluation of the LQ
index as well as for face recognition experiments is the average
face image of the 38 individual faces, each one captured in
frontal pose and under direct illumination (i.e., the average
image of the P00A+000E+00 image of each subject). The
same 38 images are commonly used as gallery images for
face recognition experiments using Extended YaleB. The Yale
reference image and a sample of individual faces are shown in
Fig. 3(a).

B. Evaluation

The illumination condition of each image and of each subset
of Extended YaleB is well defined. To demonstrate the appro-
priateness of LQ index for our purposes, we determined the
distribution of GLQ values in different subsets of this database.
The subject-independent reference image [see Fig. 3(a)] based
on Extended YaleB data is used to calculate the LQ scores.
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Fig. 4. Distribution of global quality index scores for images in Extended YaleB and AT&T. (a) Reference and evaluation: Extended YaleB. (b) Reference:
AT&T; evaluation: Extend YaleB. (c) Reference and evaluation: AT&T.

Fig. 5. Distribution of GLQ and RLQ index scores of the five illumination subsets of Extended YaleB. (a) GLQ versus RLQ: subset 1. (b) GLQ versus RLQ:
subset 2. (c) GLQ versus RLQ: subset 3. (d) GLQ versus RLQ: subset 4. (e) GLQ versus RLQ: subset 5.

The P00A+000E+00 image of each subject was excluded in
the evaluation since these are used to calculate the reference
image. The distribution of GLQ scores of the images in each
illumination subset is shown in Fig. 4(a).

A close examination of the distributions reveals that 60%
of the 225 images in subset 1 have a GLQ score of 0.95 or
higher, compared to only 19% of the images of subset 2 with
such high illumination quality. Furthermore, 91% and 73% of
the images of subsets 1 and 2, respectively, have a GLQ score
of 0.9 or higher. This demonstrates that the GLQ measure cor-
rectly quantifies the illumination quality of images in subsets 1
and 2 to be very near that of the reference image while also
recognizing that the images in subset 1 are nearer the reference
image than the images in subset 2. Only 4% of images in

subset 3 have a GLQ score of 0.9 or higher, while 33% of its
images have a GLQ value range of [0.8, 0.9]. This indicates a
noticeable variation in illumination of subset 3 images. Nearly
82% of the images of subset 4 have a GLQ value less than 0.6,
while the highest GLQ score of its images is only 0.76. Nearly
45% of the images in subset 5 scored a quality value less than
0.3, while its highest GLQ score is only 0.59. This reflects the
poor illumination quality of the images in subsets 4 and 5 due
to the extreme changes in illumination direction (horizontally
and/or vertically) with regard to the camera axis (see Fig. 1 for
details).

The above evaluation demonstrates that the luminance qual-
ity index (LQ) is a suitable illumination quality estimator for
face image samples. To determine if the choice of the reference
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Fig. 6. GLQ and RLQ scores of original and normalized face images. (a) Original. (b) HE. (c) QbHE. (d) RHE. (e) RQbHE. (f) Original. (g) HE. (h) QbHE.
(i) RHE. (j) RQbHE.

image, i.e., the average image of the 38 subjects in the database
itself, influenced the above evaluation, the experiment was
repeated using the reference image based on face images from
the AT&T database. The reference image [see Fig. 3(c)] is the
average image of the first image of each of the 40 subjects of
the AT&T database [see Fig. 3(d) for example face images].

The distribution of GLQ scores of images in Extended YaleB,
based on the AT&T reference image, is shown in Fig. 4(b),
and it is similar to that of the reference image calculated from
Extended YaleB. This shows that the reference image used to
calculate illumination quality is independent of enrolled images
and subjects.

The LQ index is further evaluated using images from the
AT&T, which consists of well-lit face images. However, vari-
ations in pose and face size are a characteristic of the images in
this database. The distribution of GLQ scores for 360 images of
the AT&T database is presented in Fig. 4(c), and it confirms that
all images of the AT&T database have a very high illumination
quality and shows that the LQ measure is unaffected by the pose
and size variations present in the database.

The GLQ of nearly all the images from subsets 1 and 2 is
higher than 0.8, while it is less than 0.8 for all the images from
subsets 4 and 5. Taking these factors into account, a sensible
threshold that could distinguish between images with good
illumination and images with poor illumination is an LQ score
of approximately 0.8.

1) GLQ Versus RLQ: The previous section demonstrated
the suitability of using the GLQ index as an objective measure
of illumination quality of face images. However, in real-life
scenarios, variations in illumination between enrolled and test
images could be confined to a region of the face image due
to the changes in the direction of the light source or pose.
Therefore, it is sensible to measure the illumination quality on
a region-by-region basis.

The distribution of GLQ and RLQ scores is shown in Fig. 5.
The analysis demonstrates that the RLQ measure is a better
representation of the illumination quality of a face image than
the GLQ as it identifies individual regions that have either good

or poor illumination quality. This is particularly reflected in
the differences of the distribution of GLQ and RLQ scores of
subsets 3, 4, and 5.

C. Effect of Illumination Normalization on Image Quality

To determine the effect of illumination normalization by HE
on image quality, the evaluation in Section IV-B is repeated
for Extended YaleB after normalizing all the images by the
conventional HE as well as the proposed global and regional
adaptive approaches to normalization. Two example images,
with their GLQ and RLQ scores, before and after normalization
are shown in Fig. 6. The distribution of GLQ scores before and
after normalizing all the evaluation images in Extended YaleB
is shown in Fig. 7.

The distribution of quality scores for subsets 1 and 2 shows
that HE has an adverse effect on well-lit face images. This could
be a result of the noise that HE process adds to images. The
quality scores demonstrate that HE is still a useful illumination
normalization tool when there is a significant variation in
lighting between the enrolled and test images (i.e., subsets 4
and 5 and, to some extent, subset 3) as it improves illumination
quality of these images. However, the most improvement is
achieved by the RQbHE.

V. EXPERIMENTS AND DISCUSSIONS

The accuracy of the proposed illumination-quality-based
face recognition scheme is tested using Extended YaleB. First,
the effect of adaptive normalization on recognition accuracy is
investigated. This is followed by an evaluation of the proposed
adaptive multistream fusion scheme for wavelet-based face
recognition.

The identification experiment setting adopted here is the
same as in [9]. Only the P00A+000E+00 image of each of
the 38 subjects is used for the gallery, and the remaining
2376 images are used as probes to test the accuracy of the
identification system. The Haar wavelet filter is used for the
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Fig. 7. Distribution of LQ index scores of the five illumination subsets of Extended YaleB before and after illumination normalization. (a) Subset 1.
(b) Subset 2. (c) Subset 3. (d) Subset 4. (e) Subset 5.

DWT, and all subband coefficients are normalized by ZN. The
CityBlock distance is used to calculate a distance score between
a probe image and a gallery image.

A. Illumination-Quality-Based Adaptive Normalization

Based on the earlier analysis of the distributions of LQ
scores for each illumination subset (see Section IV-B), an LQ
score threshold of 0.8 is selected for the global and regional
quality-based HE. Identification errors of different wavelet-
based feature representations, with different approaches to illu-
mination normalization, are shown for each illumination subset
in Table I.

Compared to the traditional use of HE, the proposed GQbHE
further decreased the overall identification error by a further
1–2% across different feature representations. More signif-
icantly, unlike HE, the use of GQbHE did not result in a
noticeable increase in identification error that is achieved by
original images. The proposed RQbHE further reduced the
identification error, with LH2 representation being the best
overall feature descriptor, bringing the identification error down
to almost 10%. As these results indicate, the lowest overall
recognition error rate, as well as the lowest error rate of majority
of the illumination subsets are achieved by using the proposed
regional quality-based adaptive normalization.

The experiments confirms the findings in [9] that the LL
subband is the most robust feature representation for face
recognition under controlled lighting conditions, while the LH
and HL subbands are the better option for face recognition in

TABLE I
IDENTIFICATION ERROR RATES FOR EXTENDED YALEB BASED ON

DIFFERENT ILLUMINATION NORMALIZATION TECHNIQUES

the presence of varying illumination. Hence, the motivation
for an image-quality-based adaptive approach to multistream
face recognition, where during recognition, the selection of
weighting parameters of subband scores is to be determined by
the illumination quality of the given probe image. Section V-B
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TABLE II
IDENTIFICATION ERROR RATES FOR EXTENDED YALEB FOR THE LL-

AND LH-BASED MULTISTREAM SUBBAND FUSION APPROACH

TABLE III
IDENTIFICATION ERROR RATES FOR EXTENDED YALEB FOR THE LH-

AND HL-BASED MULTISTREAM SUBBAND FUSION APPROACH

evaluates the proposed image-quality-based adaptive fusion
approach for wavelet-based multistream face recognition.

B. Quality-Based Adaptive Fusion for Face Recognition

The multistream approach to face recognition [8] is tested
on Extended YaleB with the same gallery and probe images as
in the previous experiments. Illumination of the face images
is normalized by the proposed region quality-based HE with
an LQ threshold of 0.8. The identification error rates based
on the fusion of LL2 with the LH2 subband and LH2 with
the HL2 subband using fixed weights are given in Tables II
and III, respectively, followed by the error rates for the pro-
posed illumination-quality-based adaptive fusion approach in
Table IV. For the adaptive fusion, if the LQ of a probe image
is greater than 0.9, the weight given to its LL2 subband score,
i.e., WLL, is 0.7. Otherwise, WLL is set to 0. The last row of
Table IV represents the fusion of distance scores from three
subbands (i.e., LL, LH, and HL). In this case, LH2 and HL2

scores were fused by giving an equal weight to both scores.
The resulting score is then fused with the LL subband score
according to the proposed QbF.

The results in Tables II and III show that the overall iden-
tification accuracy of the multistream approach is higher than
any of the individual subband representations. However, this
depends on the selection of weights as well as the choice of sub-

TABLE IV
IDENTIFICATION ERROR RATES OF EXTENDED YALEB USING THE

PROPOSED IMAGE-QUALITY-BASED ADAPTIVE FUSION APPROACH

bands. On the surface, it appears as if the LL2 subband makes
little or no contribution to improve the identification accuracy.
However, a closer examination of the results in Table II shows
that the LL2 subband is the most suitable feature representation
for probe images of subset 1.

The results for the proposed approach (in Table IV) shows an
improvement in recognition accuracy when LL and LH subband
scores are fused using adaptive weights selected by measuring
the probe image quality. The highest identification accuracy is
achieved by fusing the similarity scores of LH and HL subbands
by giving an equal weight to both subbands and by combining
LL subband score with the adaptive weights. With a single
gallery image per enrolled subject, these results are comparable
to, if not better than, most other face recognition schemes
reported in the literature for Extended YaleB [13], [15], [22].

Overall, the experimental results demonstrate the viability
of using the LQ index to objectively select the weighting
parameters for the wavelet-based multistream face recognition
scheme. The adaptive fusion strategy could be improved further
by incorporating other aspects of face biometric sample quality
(e.g., changes in expression and pose).

VI. CONCLUSION AND FUTURE WORK

This paper is the first part of a project to develop image-
quality-based adaptive approaches to face recognition. We in-
vestigated the challenges of face recognition in the presence
of extreme variation in lighting conditions. The luminance
component of the already known universal quality index is
used to associate a quantitative quality value to an image that
measures its luminance distortion in comparison to a predefined
reference image. This measure is called the LQ index and it
was used to develop global and region quality-based adaptive
illumination normalization procedures. Using the well-known
Extended Yale Database B, we demonstrated the effectiveness
of the proposed image-quality-based illumination normaliza-
tion schemes in face recognition compared to the traditional
approach to illumination normalization.

Finally, the observation that the wavelet-based multistream
recognition scheme that was developed previously has no
objective means of selecting fusion parameters and that it
performed differently for face images captured with different
lighting conditions has led to developing of a new adaptive
approach to face recognition. The illumination-quality-based
adaptive fusion approach works by adapting the weights given
to each subband according to the LQ values of the probe
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image, and again, this led to significantly improved identifica-
tion accuracy rates.

Our future work will investigate other aspects of face image
quality such as facial expression, pose, and occlusion. Such
objective quality measures are to be used in a fully adaptive face
recognition system, which will be able to select the most suit-
able gallery images, an appropriate face feature representation
(or a combination of them), and a classification algorithm for a
given probe image and then be able to predict the confidence of
the system’s decision.
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