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Abstract

We propose a novel approach for ranking and retrieval
of images based on multi-attribute queries. Existing image
retrieval methods train separate classifiers for each word
and heuristically combine their outputs for retrieving multi-
word queries. Moreover, these approaches also ignore the
interdependencies among the query terms. In contrast, we
propose a principled approach for multi-attribute retrieval
which explicitly models the correlations that are present
between the attributes. Given a multi-attribute query, we
also utilize other attributes in the vocabulary which are not
present in the query, for ranking/retrieval. Furthermore, we
integrate ranking and retrieval within the same formulation,
by posing them as structured prediction problems. Exten-
sive experimental evaluation on the Labeled Faces in the
Wild(LFW), FaceTracer and PASCAL VOC datasets show
that our approach significantly outperforms several state-
of-the-art ranking and retrieval methods.

1. Introduction

In the past few years, methods that exploit the seman-
tic attributes of objects have attracted significant attention
in the computer vision community. The usefulness of these
methods has been demonstrated in several different appli-
cation areas, including object recognition [5, 17, 24] face
verification [16] and image search [22, 15].

In this paper we address the problem of image ranking
and retrieval based on semantic attributes. Consider the
problem of ranking/retrieval of images of people accord-
ing to queries describing the physical traits of a person, in-
cluding facial attributes (e.g. hair color, presence of beard
or mustache, presence of eyeglasses or sunglasses etc.),
body attributes (e.g. color of shirt and pants, striped shirt,
long/short sleeves etc.), demographic attributes (e.g. age,
race, gender) and even non-visual attributes (e.g. voice type,
temperature and odor) which could potentially be obtained
from other sensors. There are several applications that nat-
urally fit within this attribute based ranking and retrieval
framework. An example is criminal investigation. To locate
a suspect, law enforcement agencies typically gather the
physical traits of the suspect from eyewitnesses. Based on
the description obtained, entire video archives from surveil-
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Figure 1: Given a multi-attribute query, conventional im-
age retrieval methods such as [22, 15], consider only the
attributes that are part of the query, for retrieving relevant
images. On the other hand, our proposed approach also
takes into account the remaining set of attributes that are not
a part of the query. For example, given the query “young
Asian woman wearing sunglasses”, our system infers that
relevant images are unlikely to have a mustache, beard or
blonde hair and likely to have black hair, thereby achieving
superior results.

lance cameras are scanned manually for persons with sim-
ilar characteristics. This process is time consuming and
can be drastically accelerated by an effective image search
mechanism.

Searching for images of people based on visual attributes
has been previously investigated in [22, 15]. Vaquero et al.
[22] proposed a video based surveillance system that sup-
ports image retrieval based on attributes. They argue that
while face recognition is extremely challenging in surveil-
lance scenarios involving low-resolution imagery, visual at-
tributes can be effective for establishing identities over short
periods of time. Kumar et al. have built an image search en-
gine [15] where users can retrieve images of faces based on
queries involving multiple visual attributes. However, these
methods do not consider the fact that attributes are highly
correlated. For example, a person who has a mustache is al-
most definitely a male, or a person who is Asian is unlikely
to have blonde hair.

We present a new framework for multi-attribute image



retrieval and ranking, which retrieves images based not only
on the words that are part of the query, but also considers
the remaining attributes within the vocabulary that could
potentially provide information about the query (Figure 1).
Consider a query such as “young Asian woman wearing
sunglasses”. Since the query contains the attribute young,
pictures containing people with gray hair, which usually
occurs in older people, can be discounted. Similarly pic-
tures containing bald people or persons with mustaches and
beards, which are male specific attributes, can also be dis-
carded, since one of the constituent attributes of the query
is woman. While an individual detector for the attribute
woman, will implicitly learn such features, our experiments
show that when searching for images based on queries con-
taining fine-grained parts and attributes, explicitly model-
ing the correlations and relationships between attributes can
lead to substantially better results.

In image retrieval, the goal is to return the set of im-
ages in a database that are relevant to a query. The aim of
ranking is similar, but with additional requirement that the
images be ordered according to their relevance to the query.
For large scale datasets, it is essential for an image search
application to rank the images such that the most relevant
images are at the top. Ranking based on a single attribute
can sometimes seem unnecessary; for example, for a query
like “beard”, one can simply classify images into people
with beards and people without beards. For multi-attribute
queries however, depending on the application, one can
have multiple levels of relevance. For example, consider
a query such as “man wearing a red shirt and sunglasses”,
since sunglasses can be easily removed, it is reasonable to
assume that images containing men wearing a red shirt but
without sunglasses are also relevant to the query, but per-
haps less relevant than images of men with both a red shirt
and sunglasses. Hence, we also consider the problem of
ranking based on multi-attribute queries to improve the ef-
fectiveness of attribute based image search. Instead of treat-
ing ranking as a separate problem, we propose a structured
learning framework, which integrates ranking and retrieval
within the same formulation.

While searching for images of people involves only a
single object class (human faces), we show that our ap-
proach is general enough to be utilized for attribute based
retrieval of images containing multiple object classes, and
outperforms a number of different ranking and retrieval
methods on three different datasets - LFW [11] and Face-
Tracer [15] for human faces and PASCAL [4] for multiple
object categories.

There are three key contributions of our work: (1) We
propose a single framework for image ranking and retrieval.
Traditionally, learning to rank is treated as a distinct prob-
lem within information retrieval. In contrast, our approach
deals with ranking and retrieval within the same formula-
tion, where learning to rank or retrieve are simply optimiza-
tions of the same model according to different performance
measures. (2) Our approach supports image retrieval and
ranking based on multi-label queries. This is non-trivial, as
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the number of possible multi-label queries for a vocabulary
of size L is 2¥. Most image ranking/retrieval approaches
deal with this problem by learning separate classifiers for
each individual label, and retrieve multi-label queries by
heuristically combining the outputs of the individual labels.
In contrast, we introduce a principled framework for train-
ing and retrieval of multi-label queries. (3) We also demon-
strate that attributes within a single object category and even
across multiple object categories are interdependent so that
modeling the correlations between them leads to significant
performance gains in retrieval and ranking.

2. Related Work

An approach that has proved extremely successful for
document retrieval is learning to rank [12, 7, 18, 2], where
aranking function is learnt, given either the pairwise prefer-
ence relations or relevance levels of the training examples.
Similar methods have also been proposed for ranking im-
ages, [10]. Several image retrieval methods, which retrieve
images relevant to a textual query, adopt a visual reranking
framework [1, 6, 13, 23], which is a two stage process. In
the first stage images are retrieved based purely on textual
features like tags(e.g. in Flickr), query terms in webpages
and image meta data. The second stage involves rerank-
ing or filtering these images using a classifier trained on vi-
sual features. A major limitation of these approaches is the
requirement of textual annotations for the first stage of re-
trieval, which are not always available in many applications
- for example the surveillance scenario described in the in-
troduction. Another drawback of both the image ranking
approaches as well as the visual reranking methods is that
they learn a separate ranking/classification function corre-
sponding to each query term and hence have to resort to
ad-hoc methods for retrieving/ranking multi-word queries.
A few methods have been proposed for dealing with multi-
word queries. Notable among them are PAMIR [8] and Tag-
Prop [9]. However, these methods do not take into account
the dependencies between query terms. We show that there
often exist significant dependencies between query words
and modeling them can substantially improve ranking and
retrieval performance.

Recently, there have been several works which utilize
an attribute based representation to improve performance
of computer vision tasks. In [5], Farhadi et al. advocate an
attribute centric approach for object recognition, and show
that in addition to effective object recognition, it helps in
describing unknown object categories and detecting unex-
pected attributes in known object classes. Similarly, Lam-
pert et al. [17] learn models of unknown object categories
from attributes based on textual descriptions. Kumar et al.
[16] have shown that comparing faces based on facial at-
tributes and other visual traits can significantly improve face
verification. Wang and Mori [24] have demonstrated that
recognizing attributes and modeling the interdependencies
between them can help improve object recognition perfor-
mance. In general, most of these methods exploit the fact
that attributes provide a high level representation which is



compact and semantically meaningful.

Tsochantaridis et al. introduced Structured SVMs [21]
to address prediction problems involving complex outputs.
Structured SVMs provide efficient solutions for structured
output problems, while also modeling the interdependen-
cies that are often present in the output spaces of such prob-
lems. They have been effectively used for object localiza-
tion [3] and modeling the cooccurrence relationships be-
tween attributes [24]. The structured learning framework
has also been utilized for document ranking [18], which is
posed as a structured prediction problem by having the out-
put be a permutation of the documents. In this work, we
employ structured learning to pose a single framework for
ranking and retrieval, while also modeling the correlations
between the attributes.

3. Multi Attribute Retrieval and Ranking

We now describe our Multi-Attribute Retrieval and
Ranking(MARR) approach. Our image retrieval method is
based on the concept of reverse learning. Here, we are given
a set of labels &, and a set of training images ). Corre-
sponding to each label z; (x; € X) a mapping is learned
to predict the set of images y (y C )) that contain the la-
bel ;. Since reverse learning has a structured output (set
of images) it fits well into the structured prediction frame-
work. Reverse learning was recently proposed in [19], and
was shown to be extremely effective for multi-label classi-
fication. The main advantage of reverse learning is that it
allows for learning based on the minimization of loss func-
tions corresponding to a wide variety of performance mea-
sures such as hamming loss, precision and recall. We build
upon this approach in three different ways. First we pro-
pose a single framework for both retrieval and ranking. This
is accomplished by adopting a ranking approach similar to
[18], where the output is a set of images ordered by rele-
vance, enabling integration of ranking and reverse learning
within the same framework. Secondly, we facilitate train-
ing, as well as retrieval and ranking, based on queries con-
sisting of multiple-labels. In [19], training and retrieval
were performed independently for each label, whereas we
explicitly utilize multi-labeled samples present in the train-
ing set for the purpose of learning our model. Finally, we
model and learn the pairwise correlations between different
labels(attributes) and exploit them for retrieval and ranking.
We show that these improvements result in significant per-
formance gains for both ranking and retrieval.

3.1. Retrieval

Given a multi-attribute query Q, where Q C X, our goal
is to retrieve images from the set ) that are relevant to Q.
Under the reverse learning formulation described above, for
an input Q, the output is the set of images y* that contain
all the constituent attributes in Q. Therefore, the prediction
function f,, : @ — y returns the set y* which maximizes
the score over the weight vector w:

y* = argr;lgngw(Q, y) (1
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here w is composed of two components; w® for modeling
the appearance of individual attributes and w? for modeling
the dependencies between them. We define w?)(Q, y) as:

wiP(Qy) = Y wida(ziy)+ Y Y whid,(z;,y)

z;€Q z,€EQux,;EX
(2)
where
q)a (mia y) = Zyk cy ¢a (.1'7;, yk?) (3)
(bp(xﬁy) = Zykey ¢P(xj7yk) 4

¢a(x;,yr) is the feature vector representing image yy, for
attribute ;. ¢p(x;,yx) indicates the presence of attribute
x; in image yy, which is not available during the test phase
and hence can be treated as a latent variable [24]. How-
ever, we adopt a simpler approach and set ¢, (x;, yx) to be
the output of an independently trained attribute detector. In
equation 2, w{ is a standard linear model for recognizing
attribute x; based on the feature representation ¢, (z;, yx)
and wfj is a potential function encoding the correlation be-
tween the pair of attributes x; and x;. By substituting (3)
into the first part of (2), one can intuitively see that this rep-
resents the summation of the confidence scores of all the
individual attributes z; in the query Q, over all the images
yr € y. Similarly, the second(pairwise) term in (2) repre-
sents the correlations between the query attributes z; € Q
and the entire set of attributes X, over images in the set y.
Hence, the pairwise term ensures that information from at-
tributes that are not present in the query Q, is also utilized
for retrieving the relevant images.

Given a set of multi-label training images ) and their re-
spective labels, our aim is to train a model w which given
a multi-label query Q C X can correctly predict the subset
of images y; in a test set ); which contain all the labels
x; € Q. Let Q be the set of queries; in general we can
include all queries, containing a single attribute as well as
multiple attributes, that occur in the training set. During
the training phase, we want to learn w such that, for each
query Q, the desired output set of retrieved images y*, has
a higher score (equation 1) than any other set y € ). This
can be performed using a standard max-margin training for-
mulation:

arg min

iy wTw +CY, & 5)
Vit whp(Qyr) — wTY(Qeye) > Ayl ye) — &

where C' is a parameter controlling the trade-off between
the training error and regularization, Q; (Q; € Q) are the
training queries, &; is the slack variable corresponding to
query Q; and A(y;,y:) is the loss function. Unlike stan-
dard SVMs which use a simple 0/1 loss, we employ a com-
plex loss function as it enables us to heavily(gently) penal-
ize outputs y; that deviate significantly(slightly) from the
correct output y;, measured based on the performance met-
ric we want to optimize for. For example, we can define
A(yy,y:) for optimizing training error based on different
performance metrics as follows:



1— lyeNy; |
|yt‘*
1 Ny

precision

Ay, ye) = recall 6)

yt * — — %
1 — lweDuelHlm:09;] 1;;%07"” hamming loss

Similarly, one can optimize for other performance mea-
sures such as F3. This is the main advantage of the reverse
learning approach, as it allows one to train a model optimiz-
ing for a variety of performance measures.

The quadratic optimization problem in Equation 5 con-
tains O(|Q|2/) constraints, which is exponential in the
number of training instances |)’|. Hence, we adopt the con-
straint generation strategy proposed in [21], which consists
of an iterative procedure that involves solving Equation 5,
initially without any constraints, and then at each iteration
adding the most violated constraint of the current solution
to the set of constraints. At each iteration of the constraint
generation process, the most violated constraint is given by:

& > max [Alr,ye) — (W (Quy;) — 0w (Qe, )] (D

Yt

Equation 7 can be solved in O(|)|?) time, as shown in
[19]. During prediction, we need to solve for 1, which
again as shown in [19] can be efficiently performed in

O(|Y[og(|¥1))-
3.2. Ranking

We now show that, with minor modifications, the pro-
posed framework for image retrieval can also be utilized for
ranking multi-label queries. In the case of image ranking,
given a multi-attribute query Q, where Q C X, our goal
is to rank the set of images ) according to their relevance
to Q. Unlike image retrieval, where given an input Q, the
output is a subset of the test images, in the case of rank-
ing the output of the prediction function f,, : @ — z,is a
permutation z*, of the set of images )V:

®)

* T
Z* = arg max w 2
g max Y(Q, 2)

where () is the set of all possible permutations of the
set of images ). For the case of ranking, we make a slight
modification to ¥ by having:

wIp(Q,2) = S widg(zi,2)+ > S whid,(;,2)

z;€Q ;,€Q T ;€EX
)
where
bo(wi,2) = 2., 00 Alr(2))dal@i ) (10)
Op(2j,2) =, o Alr(z)dplaj, ze) (11

with A(r) being any non-increasing function and r(zy) be-
ing the rank of image z;. Suppose we care only about the
ranks of the top K images, we can define A(r) as:

A(r) = max(K +1—r,0) (12)

804

This ensures that the lower(top) ranked images are assigned
higher weights and since A(r) = 0 for > K, only the top
K images of the ranking are considered.

During the training phase, we are given a set of training
images ) and the set of queries, Q, that occur among them.
Unlike many ranking methods, which simply divide the set
of training images into two sets - relevant and irrelevant -
corresponding to each query and just learn a binary rank-
ing, we utilize multiple levels of relevance. Given a query
Q, we divide the training images into |Q| + 1 sets based
on their relevance. The most relevant set consists of im-
ages that contain all the attributes in the query Q, and are
assigned a relevance rel(j) = |Q|, the next set consists of
images containing any | Q| — 1 of the attributes which are as-
signed a relevance rel(j) = |Q| — 1 and so on, with the last
set consisting of images with none of the attributes present
in the query and they are assigned relevance rel(j) = 0.
This ensures that, in case there are no images containing all
the query attributes, images that contain the most number
of attributes are ranked highest. While we have assigned
equal weights to all the attributes, one can conceivably as-
sign higher weights to attributes involving race or gender
which are difficult to modify and lower weights to attributes
that can be easily changed(e.g. wearing sunglasses). We
use a max-margin framework, similar to the one used in re-
trieval but with a different loss function, for training our
ranking model:

13)

arg migl wlw+CY, &
w,

Vot wlyp(Qp,z) —wTy(Qr,ze) > A2, 20) — &

where A(z*,z) is a function denoting the loss incurred
in predicting the permutation z instead of the cor-
rect permutation z*, which we define as A(z*,z)
1-NDCG@100(z*, z). The normalized discount cumula-
tive gain(NDCG) score is a standard measure used for eval-
uating ranking algorithms. It is defined as:

k_orel(j) _ 1

1
NDCGQk = — P E——
Z ; log(1+ 7)

(14)

where rel(7) is the relevance of the j* ranked image and Z
is a normalization constant to ensure that the correct ranking
results in an NDCG score of 1. Since NDCG@100 takes
into account only the top 100 ranked images, we set K =
100 in Equation (12).

In the case of ranking, the max-margin problem (Equa-
tion 13) again contains an exponential number of con-
straints and we adopt the constraint generation procedure,
where the most violated constraint is iteratively added to
the optimization problem. The most violated constraint is
given by:

&> max [A(zf,z) — (W'p(Qy, 27) — w'h(Qy, 20))] (15)

21,671'(3;)

which, after omitting terms independent of z; and substitut-
ing Equations (9),(10),(14) can be rewritten as:



100 100 grel(zy)
B L el
where
Wize) = Y wia(wsz)+ Y. > whiy(a,z)
z,€Q ©,€Q) ;€X

Equation (16) is a linear assignment problem in z; and
can be efficiently solved using the Kuhn-Munkres algorithm
[14]. During prediction, Equation (8) needs to be solved,
which can be rewritten as:

arg max A(r(zi))W(zk)

(18)
zem(Y) 5

Since A(z;) is a non-increasing function, ranking can be
performed by simply sorting the samples according to the
values of W (zy).

4. Experiments and Results

Implementation Details: Our implementation is based
on the “Bundle Methods for Regularized Risk Minimiza-
tion” BMRM solver of [20]. In order to speed up the train-
ing, we adopt the technique previously used in [24, 3],
which involves replacing ¢, (z;, yx) in Equations (3),(10)
by the output of the binary attribute detector of attribute z;
for the image yi. This technique is also beneficial during
retrieval, as pre-computing the output scores for different
attributes can be done offline, significantly speeding up re-
trieval and ranking.

4.1. Evaluation

Retrieval: We compare our image retrieval approach to
two state-of-the-art methods: Reverse Multi-Label Learn-
ing (RMLL) [19] and TagProp [9]. Neither of these meth-
ods explicitly model the correlations between pairs of at-
tributes and in the case of multi-label queries we simply sum
up the per-attribute confidence scores of the constituent at-
tributes. In case of TagProp, we use the cML variant which
was shown to perform the best [9]. Furthermore, for multi-
label queries, we found that adding up the probabilities of
the individual words gave better results and hence we sum
up the output scores, instead of multiplying them as done
in [9]. In case of RMLL and MARR we optimize for the
hamming loss by setting the loss function as defined in (6).

Ranking: In case of ranking, we compare our ap-
proach against several standard ranking algorithms includ-
ing rankSVM [12], rankBoost [7], Direct Optimization of
Ranking Measures(DORM) [18] and TagProp [9], using
code that was publicly available'. Here again, for rank-
ing multi-attribute queries, we add up the output scores ob-
tained from the individual attribute rankers.

'rankSVM www.cs.cornell.edu/People/tj/svm_light/
svm_rank.html; rankBoost http://www-connex.lip6.
fr/~amini/SSRankBoost/; DORM http://users.cecs.
anu.edu.au/~-chteo/BMRM.html; TagProp http://lear.
inrialpes.fr/people/guillaumin/code.php#tagprop
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We perform experiments on three different datasets (1)
Labeled Faces in the Wild(LFW) [11] (2) FaceTracer [15]
and (3) PASCAL VOC 2008 [4]. We point out that there is
an important difference between these datasets. While the
LFW and FaceTracer datasets consist of multiple attributes
within a single class i.e. human faces, the PASCAL dataset
contains multiple attributes across multiple object classes.
This enables us to evaluate the performance of our algo-
rithm in two different settings.

4.2. Labeled Faces in the Wild (LFW)

We first perform experiments on the Labeled Faces in the
Wild(LFW) dataset [1 1]. While, LFW has been primarily
used for face verification, we use it for evaluation of rank-
ing and retrieval based on multi-attribute queries. A subset
consisting of 9992 images from LFW was annotated with a
set of 27 attributes (Table 1). We randomly chose 50% of
these images for training and the remaining were used for
testing.

Asian Goatee No Beard

Bald Gray Hair No Eyewear
Bangs Hat Senior

Beard Indian Sex

Black Kid Short Hair
Black Hair Lipstick Sunglasses
Blonde Hair || Long Hair Visible Forehead
Brown Hair || Middle Aged || White
Eyeglasses Mustache Youth

Table 1: List of Attributes

We extract a large variety of features for represent-
ing each image. Color based features include color his-
tograms, color corelograms, color wavelets and color mo-
ments. Texture is encoded using wavelet texture and LBP
histograms, while shape information is represented using
edge histograms, shape moments and SIFT based visual
words. To encode spatial information, we extract feature
vectors of each feature type from individual grids of five
different configurations (Fig. 2) and concatenate them. This
enables localization of individual attribute detectors, for ex-
ample, the attribute detector for hat or bald will give higher
weights to features extracted from the topmost grids in the
configurations horizontal parts and layout (Fig. 2).

Figure 2: Facial Feature Extraction: Images are divided
into a 3x3 grid(left) and features are extracted from five
different configurations(middle,center).
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Figure 5 plots the NDCG scores, as a function of the
ranking truncation level K, for different ranking methods.
From the figure, it is clear that MARR (our approach) is sig-
nificantly better than the other methods for all three types
of queries, at all values of K. At a truncation level of 10
(NDCG@10), for single, double and triple attribute queries,
MARR is respectively, 8.9%, 7.7% and 8.8% better than
rankBoost [7], the second best method. The retrieval results
are shown in Figure 3. In this case, we compare the mean
areas under the ROC curves for single, double and triple at-
tribute queries. Here MARR is 7.0%, 6.7% and 6.8% better
than Reverse Multi-Label Learning (RMLL [19]), for sin-
gle, double and triple attribute queries respectively. Com-
pared to TagProp [9], MARR is 8.8%, 10.1% and 11.0%
better for the three kinds of queries. Some qualitative re-
sults, for different kinds of queries are shown in Figure 4.

MARR(our approach)|
0.9F

08
© 07F

Single Attribute
Queries

Double Attribute
Queries

Triple Attribute
Queries

Figure 3: Retrieval Performance on the LFW dataset.

Figure 6 shows the weights learnt by the MARR rank-
ing model on the LFW dataset. Each row of the matrix
represents Equation 9 for a single-attribute query, with the
diagonal elements representing w; and the off-diagonal en-
tries representing the pairwise weights w?.. As expected,
the highest weights are assigned to the diagonal elements
underlining the importance of the individual attribute de-
tectors. Among the pairwise elements, the lowest weights
are assigned to attribute pairs that are mutually exclu-
sive such as (White,Asian), (Eyeglasses,No-Eyewear) and
(Short-Hair,Long-Hair). Rarely co-occuring attribute pairs
like (Kid,Beard), and (Lipstick,Sex) (Sex is 1 for male and 0
for female) are also assigned low weights. Pairs of attributes
such as (Middle-aged,Eyeglasses) and (Senior,Gray-Hair)
that commonly co-occur are given relatively higher weights.
Also note that the weights are asymmetric, for example, a
person who has a beard is very likely to also have a mus-
tache, but not the other way round. Hence while retrieving
images for the query “mustache”, the presence of a beard is
a good indicator of a relevant image, but not vice-versa, and
this is reflected in the weights learnt.

4.3. FaceTracer Dataset

We next evaluate our approach on the FaceTracer Dataset
[15]. We annotated about 3000 images from the dataset
with the same set of facial attributes (Table 1) that was
used on LFW. We represent each image by the same fea-
ture set and compare the performance of the ranking models
learnt on the LFW training set. Figure 7 summarizes the re-
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Figure 4: Qualitative results: Sample multi-label ranking
results obtained by MARR and RankBoost(the second best
method) for different queries on the LFW dataset. A green
star(red cross) indicates that the image contains(does not
contain) the corresponding attribute.

sults. One can observe that the performance of each method
drops when compared to LFW. This is due to the difference
in the distributions of the two datasets. For example, the
FaceTracer dataset contains many more images of babies
and small children compared to LFW. However, MARR
still outperforms all the other methods and its NDCG@ 10
score 18 5.0%, 8.1% and 11.6% better than the second best
method(rankBoost) for single, double and triple attribute
queries respectively, demonstrating the robustness of our
approach.
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Figure 7: Ranking Performance on the FaceTracer dataset
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Senior images, while the validation set consisting of 6355 images
Short-Hair is used for testing. Each of these images have been labeled
Visible-Forahead with a set of 64 attributes [5]. We use the set of features
Whi . . . .
used in [5], with each image being represented by a feature
vector comprised of edge information and color, HOG and

Figure 6: Classifier weights learnt on the LFW dataset, red texton based visual words.
and yellow indicate high values while blue and green denote Figure 9 plots the ranking results on the PASCAL
low values. (best viewed in color). dataset. We can observe that MARR substantially outper-
forms all other ranking methods except TagProp, for all
4.4. PASCAL the three kinds of queries. Compared to TagProp, MARR
is significantly better for single attribute queries(7.4% im-
Finally, we experiment on the PASCAL VOC 2008 [4] provement in NDCG@10) and marginally better for dou-
trainval dataset, which consists of 12695 images compris- ble attribute queries(2.4% improvement in NDCG@10),
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Figure 9: Ranking Performance on the PASCAL dataset.

while TagProp is marginally better than MARR for triple
attribute queries(1.5% improvement in NDCG@10). The
retrieval results are shown in Figure 8, here, MARR out-
performs TagProp by about 5% and Reverse Multi-Label
Learning(RMLL [19]) by about 2%.

5. Conclusion

We have presented an approach for ranking and retrieval
of images based on multi-attribute queries. We utilize a
structured prediction framework to integrate ranking and re-
trieval within the same formulation. Furthermore, our ap-
proach models the correlations between different attributes
leading to improved ranking/retrieval performance. The ef-
fectiveness of our framework was demonstrated on three
different datasets, where our method outperformed a num-
ber of state-of-the-art approaches for both ranking as well
as retrieval.In future, we plan to explore image retrieval for
more complex queries such as scene descriptions consist-
ing of the objects present, along with their attributes and the
relationships among them.
Acknowledgements: The authors thank Michele Merler
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