
❉✉r❤❛♠ ❘❡s❡❛r❝❤ ❖♥❧✐♥❡

❉❡♣♦s✐t❡❞ ✐♥ ❉❘❖✿

✸✵ ❖❝t♦❜❡r ✷✵✶✾

❱❡rs✐♦♥ ♦❢ ❛tt❛❝❤❡❞ ✜❧❡✿

❆❝❝❡♣t❡❞ ❱❡rs✐♦♥

P❡❡r✲r❡✈✐❡✇ st❛t✉s ♦❢ ❛tt❛❝❤❡❞ ✜❧❡✿

P❡❡r✲r❡✈✐❡✇❡❞

❈✐t❛t✐♦♥ ❢♦r ♣✉❜❧✐s❤❡❞ ✐t❡♠✿

▲✐♥✱ ❳✐❛♥①✉❛♥ ❛♥❞ ❲❛♥❣✱ ❳✉♥ ❛♥❞ ▲✐✱ ❋r❡❞❡r✐❝❦ ❲✳ ❇ ❛♥❞ ❨❛♥❣✱ ❇❛✐❧✐♥ ❛♥❞ ❩❤❛♥❣✱ ❑❛✐❧✐ ❛♥❞ ❲❡✐✱ ❚✐❛♥①✐❛♥❣
✭✷✵✶✽✮ ✬■♠❛❣❡ r❡❝♦❧♦r✐♥❣ ❢♦r ❤♦♠❡ s❝❡♥❡✳✬✱ ✐♥ ❱❘❈❆■ ✬✶✽ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡ ✶✻t❤ ❆❈▼ ❙■●●❘❆P❍
■♥t❡r♥❛t✐♦♥❛❧ ❈♦♥❢❡r❡♥❝❡ ♦♥ ❱✐rt✉❛❧✲❘❡❛❧✐t② ❈♦♥t✐♥✉✉♠ ❛♥❞ ✐ts ❆♣♣❧✐❝❛t✐♦♥s ✐♥ ■♥❞✉str②✳ ◆❡✇ ❨♦r❦✿ ❆❈▼✱ ♣✳
✷✾✳

❋✉rt❤❡r ✐♥❢♦r♠❛t✐♦♥ ♦♥ ♣✉❜❧✐s❤❡r✬s ✇❡❜s✐t❡✿

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✺✴✸✷✽✹✸✾✽✳✸✷✽✹✹✵✹

P✉❜❧✐s❤❡r✬s ❝♦♣②r✐❣❤t st❛t❡♠❡♥t✿

❝© ✷✵✶✽ ❆ss♦❝✐❛t✐♦♥ ❢♦r ❈♦♠♣✉t✐♥❣ ▼❛❝❤✐♥❡r②✳ ❚❤✐s ✐s t❤❡ ❛✉t❤♦r✬s ✈❡rs✐♦♥ ♦❢ t❤❡ ✇♦r❦✳ ■t ✐s ♣♦st❡❞ ❤❡r❡ ❢♦r ②♦✉r
♣❡rs♦♥❛❧ ✉s❡✳ ◆♦t ❢♦r r❡❞✐str✐❜✉t✐♦♥✳ ❚❤❡ ❞❡✜♥✐t✐✈❡ ❱❡rs✐♦♥ ♦❢ ❘❡❝♦r❞ ✇❛s ♣✉❜❧✐s❤❡❞ ✐♥ ❱❘❈❆■ ✬✶✽ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡
✶✻t❤ ❆❈▼ ❙■●●❘❆P❍ ■♥t❡r♥❛t✐♦♥❛❧ ❈♦♥❢❡r❡♥❝❡ ♦♥ ❱✐rt✉❛❧✲❘❡❛❧✐t② ❈♦♥t✐♥✉✉♠ ❛♥❞ ✐ts ❆♣♣❧✐❝❛t✐♦♥s ✐♥ ■♥❞✉str②
❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✺✴✸✷✽✹✸✾✽✳✸✷✽✹✹✵✹

❆❞❞✐t✐♦♥❛❧ ✐♥❢♦r♠❛t✐♦♥✿

❯s❡ ♣♦❧✐❝②

❚❤❡ ❢✉❧❧✲t❡①t ♠❛② ❜❡ ✉s❡❞ ❛♥❞✴♦r r❡♣r♦❞✉❝❡❞✱ ❛♥❞ ❣✐✈❡♥ t♦ t❤✐r❞ ♣❛rt✐❡s ✐♥ ❛♥② ❢♦r♠❛t ♦r ♠❡❞✐✉♠✱ ✇✐t❤♦✉t ♣r✐♦r ♣❡r♠✐ss✐♦♥ ♦r ❝❤❛r❣❡✱ ❢♦r
♣❡rs♦♥❛❧ r❡s❡❛r❝❤ ♦r st✉❞②✱ ❡❞✉❝❛t✐♦♥❛❧✱ ♦r ♥♦t✲❢♦r✲♣r♦✜t ♣✉r♣♦s❡s ♣r♦✈✐❞❡❞ t❤❛t✿

• ❛ ❢✉❧❧ ❜✐❜❧✐♦❣r❛♣❤✐❝ r❡❢❡r❡♥❝❡ ✐s ♠❛❞❡ t♦ t❤❡ ♦r✐❣✐♥❛❧ s♦✉r❝❡

• ❛ ❧✐♥❦ ✐s ♠❛❞❡ t♦ t❤❡ ♠❡t❛❞❛t❛ r❡❝♦r❞ ✐♥ ❉❘❖

• t❤❡ ❢✉❧❧✲t❡①t ✐s ♥♦t ❝❤❛♥❣❡❞ ✐♥ ❛♥② ✇❛②

❚❤❡ ❢✉❧❧✲t❡①t ♠✉st ♥♦t ❜❡ s♦❧❞ ✐♥ ❛♥② ❢♦r♠❛t ♦r ♠❡❞✐✉♠ ✇✐t❤♦✉t t❤❡ ❢♦r♠❛❧ ♣❡r♠✐ss✐♦♥ ♦❢ t❤❡ ❝♦♣②r✐❣❤t ❤♦❧❞❡rs✳

P❧❡❛s❡ ❝♦♥s✉❧t t❤❡ ❢✉❧❧ ❉❘❖ ♣♦❧✐❝② ❢♦r ❢✉rt❤❡r ❞❡t❛✐❧s✳

❉✉r❤❛♠ ❯♥✐✈❡rs✐t② ▲✐❜r❛r②✱ ❙t♦❝❦t♦♥ ❘♦❛❞✱ ❉✉r❤❛♠ ❉❍✶ ✸▲❨✱ ❯♥✐t❡❞ ❑✐♥❣❞♦♠
❚❡❧ ✿ ✰✹✹ ✭✵✮✶✾✶ ✸✸✹ ✸✵✹✷ ⑤ ❋❛① ✿ ✰✹✹ ✭✵✮✶✾✶ ✸✸✹ ✷✾✼✶

❤tt♣s✿✴✴❞r♦✳❞✉r✳❛❝✳✉❦

https://www.dur.ac.uk
https://doi.org/10.1145/3284398.3284404
http://dro.dur.ac.uk/29478/
https://dro.dur.ac.uk/policies/usepolicy.pdf
https://dro.dur.ac.uk


Image Recoloring For Home Scene

Xianxuan Lin
Zhejiang Gongshang University

Hangzhou, China

1014250527@qq.com

Xun Wang
Zhejiang Gongshang University

Hangzhou, China

wx@zjgsu.edu.cn

Frederick W.B. Li 
University of Durham 

United Kingdom 
frederick.li@durham.ac.uk

Bailin Yang
Zhejiang Gongshang University

Hangzhou, China

29315817@qq.com

Kaili Zhang
Zhejiang Gongshang University

Hangzhou, China

1282838391@qq.com

Tianxiang Wei
Zhejiang Gongshang University

Hangzhou, China

791164779@qq.com

ABSTRACT

Indoor home scene coloring technology is a hot topic for home

design, helping users make home coloring decisions. Image based

home scene coloring is preferable for e-commerce customers since

it only requires users to describe coloring expectations or manipu-

late colors through images, which is intuitive and inexpensive. In

contrast, if home scene coloring is performed based on 3D scenes,

the process becomes expensive due to the high cost and time in

obtaining 3D models and constructing 3D scenes. To realize image

based home scene coloring, our framework can extract the coloring

of individual furniture together with their relationship. This allows

us to formulate the color structure of the home scene, serving as

the basis for color migration. Our work is challenging since it is not

intuitive to identify the coloring of furniture and their parts as well

as the coloring relationship among furniture. This paper presents a

new color migration framework for home scenes. We �rst extract

local coloring from a home scene image forming a regional color

table. We then generate a matching color table from a template

image based on its color structure. Finally we transform the target

image coloring based on the matching color table and well maintain

the boundary transitions among image regions. We also introduce

an interactive operation to guide such transformation. Experiments

show our framework can produce good results meeting human

visual expectations.

CCS CONCEPTS

•Human-centered computing→ Scenario-based design; Interac-

tion design theory, concepts and paradigms;

KEYWORDS

Indoor home scene, coloring expectation, color structure, color

migration, interactive operation.

1 INTRODUCTION

Image is a most popular and cost-e�ective type of media for e-

commerce applications to present their products. By presenting

images of various home scene coloring design, interior decorators

can e�ectively convey ideas of good designs and pleasing color com-

binations to their customers. Typically, a design comprises style

and color, determining how well a set of collocated furniture goes

well with each other aesthetically. Human perception on object

attractiveness is mainly in�uenced by color [Peters 2007]. While

di�erent color combinations impose distinct e�ects to each per-

son, they also implicitly de�ne home style. In general, style, color

and furniture location forms determining factors of how a person

perceives home scene design.

Home scene coloring research follows two major directions: 3D

model based and image based color migration. 3D model based

methods explore color scheme according to the coloring of indi-

vidual home scene objects, which is well de�ned as each object

is an independent entity from each other. However, a 3D scene

is often expensive to obtain in terms of time and modeling e�ort.

In contrast, image based color migration methods require extract-

ing meaningful regions (or objects) in order to work out region

based local coloring. This is typically challenging since regions or

their boundaries are not natively de�ned in an image. To produce

aesthetic coloring designs, color structure transformation is also

required for both 3D model and image based methods. Existing

methods often perform global color migration without considering

spatially local color properties and interactions, leading to unde-

sirable local color distortion. In addition, the relationship between

colors and furniture parts in a home scene image is di�cult to

establish.

Our work presents a novel framework for migrating colors from

a template image of natural or interior scenery, which represents

user coloring expectation (or design), to a home scene image. We

also involves user intervention to assist object segmentation, ad-

dressing the color distortion problem. Judging from intuitiveness

and simplicity, our work is favorable to both professional interior
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decorators and non-professional users. Our main contributions in-

clude: 1) a color migration framework for home scene images based

on template coloring transformation, 2) meaningful regional color

structure extraction, 3) new color table matching strategy, and 4)

multi-subgraph based color reconstruction.

Figure 1: Input image (left). Our results (Coloring 1 and

2) based on natural and interior scenery templates, respec-

tively.

2 RELATEDWORK

Home scene color processing spans multiple directions, including

color organization processing, dominant colors extraction, color

table strategy, and color transfer. Existing work focuses on process-

ing a home scene according to certain color schemes rather than

migrating colors of a home scene image by observing their spatial

relationships.

2.1 Color Organization Processing

Color organization of indoor home scenes is an important research

topic in computer graphics and vision, including 3Dmodel based [Chen

et al. 2016, 2015; Zhang et al. 2017; Zhu et al. 2017] or image

based [Nguyen et al. 2014; Tanaka et al. 2010; Wang et al. 2012]

approaches. 3D model methods cannot be directly adopted to sup-

port color migration for home scene images since they rely on

pre-de�ned home scene object (or furniture) de�nitions, which are

not available in images. Regarding existing work,Wang et al. [Wang

et al. 2012] proposed an emotion-based image colorization system,

which required users to interactively segment the grayscale image

of an indoor scene and associate the scene with a set of labeled

furniture images, which are externally collected. This work is hard

to generalize for color migration. [Nguyen et al. 2014; Tanaka et al.

2010] performed global image color transformation based on cer-

tain color space constraints, e.g., hue histogram normalization and

scene illumination. In contrast, transforming colors by considering

the relationship among furniture regions and their coloring in a

home scene image are categorized as local color transformation,

which is a challenging problem.

2.2 Dominant Colors Extraction

The overall perceived hue of an image can be well represented by

some dominating hues. Examining dominant colors is popularly

done by color clustering [Bezdek 1981; Chang et al. 2015; Weeks

and Hague 1997]. However, it fails to maintain relative coloring of

local image regions, matching with their physical characteristics.

Alternatively, machine learning can be used to extract primary

color, modeling how people perceive image color theme. Lin et

al. [Lin and Hanrahan 2013] used a regression model to train a

model for characterizing human-extracted themes and performed

image theme extraction. Such an approach processed image col-

oring globally, failing to account for color relationships among

furniture items.

2.3 Color Table Strategy

Several online communities devoted to share and create color themes,

including Adobe Kuler [a13 [n. d.]] and COLOURloverss [a14 [n.

d.]]. Most of their themes are extracted from images and use a small

�xed number of colors, making them cannot be used directly to

transform colors of home scene images, because such images gener-

ally possess more colors. Generating a color theme from an image

may serve as a good reference for recognizing physical beauty of

the image or restoring color relationships of the image. [Birren 1969;

Itten 1973] have con�rmed that di�erent color combinations impose

distinct feelings for each human viewer. Color harmonic model [Ou

and Luo 2006] was then developed to evaluate whether a color pair

is harmonic. This evaluation was only valid within a controlled

environment, not being generalizable. [Cohen-Or et al. 2006] en-

hanced image color harmony by shifting hue values of image colors

to �t a best harmonic scheme, while considering spatial coherence

among colors of neighboring pixels. Alternatively, [O’Donovan

et al. 2011] proposed a data-driven model to evaluate the harmony

of color combinations by scoring 5 colors from a color group. Both

methods only globally evaluated image coloring and depended on

some �xed, small-sized color tables, being di�cult to generalize

for processing home scene images, which may comprise a much

larger set of colors. Also, local region coloring of such images may

possess physical signi�cance due to furniture collocation, which

cannot be properly handled bymerely using a high-scoring, globally

harmonic color table.

2.4 Color Transfer

Color transformation reconstructs target image coloring by some

mapping rules. [Reinhard et al. 2001] proposed to adjust input im-

age color statistics according to a template image under the lab

color space, modifying the input image look and feel. Color transfer

by [Tai et al. 2005] was performed by matching probabilistically

segmented color regions and inter-region smoothness against the

template and target images, where spatial correspondence among

regions were optionally enforced. Some color transfer methods

use nonlinear histogram matching [Neumann and Neumann 2005;

Papadakis et al. 2011; Pouli and Reinhard 2011] to handle global

color migration. Alternatively, [Chang et al. 2015] used an improved

k-means clustering to extract a color palette of a few representa-

tive colors from an image, allowing users to change some palette

colors for modifying image coloring, while preserving luminance

monotonicity and adjusting color change to be within the gamut

boundary. All these methods mainly concerned color relationship

within an image based on certain color statistics without observing

their spatial correlation to the scene objects, local color distortion

may be resulted when they are adopted for home scene color trans-

fer.



3 OVERVIEW

Our framework accounts for both home scene content and human

perception characteristics:

3.1 Color Guidance

To allow faithful transformation of user expectation into a home

scene coloring design, we formulate three constraints to guide color

migration: 1) maximizing the variety of template image colors for

transferring to a target image, 2) aligning the proportions of di�er-

ent colors between template and target image, and 3) maintaining

color relationship of a target image.

3.2 Interactivity

A critical success factor of image based home scene color migration

is to identify semantic information of local scene regions. We also

need to account for user aesthetic preferences. To accommodate

these, our framework involves user invention to form an additional

guidance for color migration.

Figure 2: Our color migration framework.

Fig 2 illustrates the work�ow of our framework with examples.

It accepts a template image of user coloring expectation through

natural (A) or indoor (B) scenery, transforming home scene im-

age (target) coloring to produce image RA or RB, respectively. Our

framework comprises regional dominant color extraction, match-

ing color map generation, and multi-target collaborative migration.

Speci�cally, regional dominant color extraction involves users to

conduct home scene image segmentation, generating a color struc-

ture to formulate color-to-furniture relationship. Based on this color

structure and a template image, we generate a matching color table

with a simulated annealing algorithm, and perform color migration

based on this table. Since we conduct color migration based on

image segmentation, boundaries among image regions are prone to

voids, we then introduce an operation to �x such boundary artifacts.

Algorithm 1 shows how the above work�ow is implemented.

4 BASIS OF HOME SCENE COLORING

4.1 Color Features

Uniquely, our method allows coloring design to be expressed by

natural or indoor scenery, where their color transitions are gradual

and discrete, respectively. Taking human perception in account, it

Table 1: Algorithm 1

Algorithm 1:

Begin: Input:target I,template T;

Phase 1: Regional main color extraction

//Target image subgraph segmentation

segmentation(I)->sub_I;

//color table extraction

[tarC,temC]=extraction(sub_I,T);

//Template image color table extension

NtemC=expand (temC);

Phase 2: Color strategy

interact;//color interactive choice

//Foreground color chart generation

For Temperature conditions(t>0.001) do

For The number of iterations do

Tmp=Adjust(create(NtemC));

Calculated(tarC, Tmp);

End For

//update the temperature

F_C= Tmp;

Update t;

End For

//Background part brightness adjustment

B_C ->Adaptive(I,T, F_C);

Phase 3: Multi-Subgraph Color Reconstruction

NI=combination (transfer(sub_I,F_C, B_C));

is natural to divide a home scene into foreground and background

objects. Foreground objects usually comprise furniture, placing in

certain designated indoor positions. Their placement and coloring

are local, representing user design preferences. Examples include

table and chair (movable), or window and door (at �xed position).

Background objects refer to �xed house parts, such as wall and

�oor, with colors widely spanning across a signi�cant scene portion.

For a home scene, there may be some restricted features, including

outdoor scenery, indoor plants, collectables, etc., with unchangeable

coloring, which should be excluded from color migration.

4.2 Hierarchical Color Structure

Many existing work only cast the color transformation/migration

problem as dominant colors discovery and replacement, solving

them by color clustering algorithms and constraints. Scene object

relationships and their relevance to scene coloring are usually ig-

nored. In contrast, we use a hierarchical color structure to faithfully

transform user expectation into home scene coloring design.

The color structure comprises three levels: 1) L1 globally cat-

egorizes a scene into foreground and background objects, 2) L2

maintains scene objects under each of the above category, allow-

ing relationship among di�erent furniture items to be represented,

3) L3 maintains the color components within each furniture item.

Fig 3 illustrates the color structure of a home scene example. With

L1, we maintain B and F, representing the number of colors in the

background and foreground objects, respectively. BF represents re-

stricted scene features. With L2, we maintain B =
{

B1,B2, ...,Bn
}

and F =
{

F1, F2, ..., Fn
}

, representing the individual background



Figure 3: Color structure relationship.

and foreground object items, respectively. The color composition of

these items is maintained under L3, e.g. Fi =
{

c1, c2, ..., cn
}

denotes

the color set
{

c1, c2, ..., cn
}

formulating item Fi .

4.3 Color Map

Color map comprises a �nite number of colors representing im-

age content. Existing work store their color clustering results as

a color map. Replacing some colors in a color map can change

image tone or style. This operation generally cannot accommo-

date color change to regional image contents, due to lacking scene

structure correspondence. To maintain color relationship, we ar-

gument color map with a two-level color relationship. For a color

mapM =
{

c1, c2, ..., cn
}

, we average all color items cn to produce

a mean color MM, the color map representative. As shown in Fig 4

(a), the �rst level color relationship is modeled by the distances

between MM and each color map element, representing how im-

age coloring spreads out from the representative. The second level

color relationship is formed by the distances between each pair of

color map elements, de�ning spatial relationship among all color

elements. Rule (1) shows the metric formulating the two-level color

relationship.We evaluate color distance by using Euclidean distance

under the standard CIELab color space.
{

mean (M) → ci i, j ∈ n and i , j

ci → c j i, j ∈ n and i , j
(1)

5 OUR APPROACH

5.1 Regional Dominant Color Extraction

5.1.1 User Assisted Segmentation. To faithfully transform user ex-

pectation into home scene coloring design, we account for the

scene furniture and their color relationship. Despite native color

clustering may extract such information, noisy results (Fig 6, mid-

dle) are likely obtained for an input image (Fig 6, left), due to color

or illumination variation appearing on individual furniture item.

To properly extract dominant furniture coloring, we incorporate

user intervention to assist color segmentation. We adopt an in-

teractive segmentation algorithm [Price et al. 2010] to divide a

furniture item into parts by color and edge thresholds, which were

implicitly de�ned by regions-of-interest indicated through user

drawing strokes. As in Fig 5, a user can draw simple strokes over

a furniture item to indicate foreground and background objects.

For example, by drawing red and white strokes over a sofa (Fig 5,

top-left), foreground and background objects (Fig 5, bottom-left)

can be extracted, respectively. Other sub-diagrams of Fig 5 depicts

M

MM

(a) Color Relationship

M TML TL

(b) Luminance Map

T

M

(c) Matching Color Table (d) Brightness Adjustment

Figure 4: Color table strategy

how di�erent stroke inputs generate di�erent foreground and back-

ground objects. Allowing multiple stroke drawing interactions can

further assist complicated scene or furniture item partitioning.

Figure 5: Interactive segmentation.

Figure 6: Color extraction comparison.

5.1.2 Color Extraction: After segmentation, a hierarchical color

structure can be generated. For each furniture item, a subgraph

is generated to represent color parts constitute a furniture item.

This corresponds to L2 and L3 of the hierarchical color structure,

where L3 color nodes can be directly obtained from the segmenta-

tion parts. Finally, L1 can be naturally formed by the foreground



and background object categorization. To allow each furniture item

to be processed as an independent entity during color migration,

we derive a dominant color for each furniture item. This matches

well with practical sense as each furniture item usually comes with

a theme coloring de�ning its tone or style. We perform k-means

clustering to determine the dominant color for each subgraph ex-

tracted, and utilize the resulting dominant colors to generate the

home scene color mapC =
{

c1, c2, ..., ck
}

. An example of our color

extraction result is shown in Fig 6 (right). Our method explicitly

works out the correlation between home scene structure and col-

ors. Alternatively, if only simple color clustering results (e.g. Fig 6,

middle) are used for color replacement, confusing results may be

produced. For instance, by replacing the white color of the sofa

seats at the right side in the home scene, part of the ceiling color

(white) will also be replaced unexpectedly.

5.2 Matching Color Map Generation

According to the input home scene color map produced, we de-

termine a set of colors from the template image, using them to

generate a matching color map. We cast this process as a combina-

torial optimization problem constraining by both user interaction

and visual color di�erence.

We uniquely allow users to express coloring expectation with a

template natural or indoor scenery. If the template image is a home

scene, color migration is quite straightforward as both template

and target images comprise similar color structures. Such a bene�t

may no longer stand when natural scenery is used, as signi�cant

image parts may possess gradual color changes while scene objects

could be ill-de�ned due to �exible shapes and motions, e.g. cloud

and tree leaves. To overcome this, we migrate color separately for

foreground and background objects.

5.2.1 Optimization strategy. For foreground scene portion of color

migration, colors of foreground objects can usually accept a wider

change in intensity values. We obtain a color map from the tem-

plate image. By simulated annealing, we align the color maps of

template and target images by minimizing the distances between

their corresponding elements. We add a luminance map to avoid

unnecessary iterations, as the initial con�guration of a simulated

annealing process is typically generated randomly, making the

process ine�cient.

5.2.2 Matching Color Map. Given a template image, we apply

clustering to generate a template color map C =
{

c1, c2, ..., cn
}

,

where n is the number of colors representing foreground objects.

An example of color map (T) is shown in Fig 8. We further perform

a detailed clustering on top to generate an extended color map

ET = ci j , i = 1...a, j = 1...n, comprising more �ne-grained color

elements, where ci j represents the color of block i and point j in

the image. An example based on color map T is shown in Fig 4 (c)

(histogram at upper part), which also shows the color distribution.

This o�ers users a �ner control on the kind of results to produce.

In practice, when we pick colors for migration using this extended

color map, we should avoid choosing more than one color element

from each block.

5.2.3 Luminance Map. Brightness relationship among colors of

each image region is critical to color migration. It helps us single

out color redundancy and improve color migration quality. We

generate luminance maps to track the brightness information of

the color maps. Fig 4 (b) shows the luminance maps ML and TL,

generated for M (target color map) and T (template color map),

respectively.

5.2.4 Simulated Annealing. We account for color contribution and

structure formatching to supportmeaningful colormigration. Color

contribution corresponds to the percentage of pixels within an im-

age space of a certain color. We measure color contribution sepa-

rately for foreground and background image portions. For a tar-

get image and a template image, their color contribution maps

are RM =
{

r1, r2, r3..., cn
}

and RT =
{

t1, t2, t3..., tn
}

, respectively,

where n is the number of color elements in their corresponding

color maps. Measuring how well two color maps matched w.r.t.

color contributions is evaluated by:

Ep =

n
∑

1

|ri − ti | (2)

Color structure is formulated by the two-level color relationship

as described in Section 4.3, and mathematically de�ned by Rule 1.

We may express the rule in an abstracted form asV = (α , β), where

α and β encompass the rules ofmean (M) → ci and ci → c j , respec-

tively. Color structure implicitly encodes how colors using for con-

structing a color map vary from each other as well as group repre-

sentative. We evaluate color structure di�erence byVs = |VT −VM |,

whereVT andVM represent the color structure for the template and

the target images, respectively. However, the values representing

color structure di�erence are much larger than the color contri-

bution di�erence. Hence, we perform Z-score normalization as

follows:

c∗ =
c − µ

δ
(3)

where c∗ is the normalized value, c is the origin value on Vs , µ and

δ are the sample data mean and standard deviation, respectively.

The similarity degree of the parallax relationship between the two

color maps is determined by the root mean square error of the

normalized values:

Ec =

√

∑n
i=1 |c

∗ |

n
(4)

The color map matching e�ect is quanti�ed as the energy value

E, where E = Ep + Ec . Minimizing E is a combinatorial problem,

addressing via simulated annealing approaches. Based on the target

color map, an optimized matching color map is constructed from

the template image. We stop iterating when the temperature drops

to 0.001. Our tests set the maximum number of iterations to 100.

5.2.5 Brightness Adjustment. A background object of a home scene

may likely comprise a simple color with brightness being adjustable,

such that lighting conditions of a home scene can been taken into

account. To support color migration for a background object, we

allow a user to perform color selection indicating which representa-

tive color from the template image should be migrated to the target

home scene. We also maintain the brightness relationship, where

the brightness adjustment is done by:

Itl −Ctl

Ptl − Itl
=

Iml −Cml

Pml − Iml
(5)



While we migrate a color, we also adjust the brightness accordingly.

As illustrated in Fig 4 (d), Itl and Iml are the average brightness

of the target image and the template image, respectively. Ptl is the

original brightness value of the background of the target image.

Pml is the adjusted background brightness after color migration.

5.3 Multi-Subgraph Color Reconstruction

Our framework involves color structure, well matching indoor

home scene nature, which comprises discrete furniture items. The

color migration process is supported by a matching color map

(ref. Section 5.2.1), which comprises a con�ned set of dominant

colors. On the contrary, since we apply segmentation to obtain

such a color structure, representing each furniture item with a

subgraph structure to support color migration, undesired holes may

be induced between subgraphs. We propose a color reconstruction

method to �x the problem.

As we have segmented a home scene according to the furniture

settings, each target image pixel is e�ectively being classi�ed to

a cluster. When color migration occurs, the color of each cluster

center of the target image will be replaced by an appropriate dom-

inant color from the matching color map. This e�ectively o�sets

the center of each cluster, and that all cluster members should be

updated accordingly to retain the visual representation of all home

scene furniture. With this goal, we update the color of each cluster

members by o�setting its value with its original distance to the

cluster center before color migration. To facilitate this, the number

of elements in the matching color map
{

T1,T2, ...,Tj
}

of a template

image and that in the target color map
{

C1,C2, ...,Cj

}

must be

agreed, i.e. i = j.

There are two main causes of the hole problem, either due to

non-overlapping or partial overlapping of segmented target image

regions. For holes caused by non-overlapping regions, we can �x

them by identifying their existence through edge detection because

such holes will appear along the boundaries of image regions. We

perform this by adopting an edge detection algorithm [Xu et al.

2012]. The probability of a pixel being a boundary point is deter-

mined by the edge intensity of the pixel, which is the color value

of a detected edge. Since an edge can be roughly classi�ed as a

vertical or a horizontal one, we apply the rules as in Eq 6 and Eq 7

to evaluate the possibility of an edge being holes:

Vertical:
{

max (ϕ (w1) , (ϕ (h2) , (ϕ (w2)) == (ϕ (h2)

max (ϕ (w1) , (ϕ (h2) , (ϕ (w2)) , (ϕ (h2)
(6)

Horizontal:
{

max (ϕ (l1) , (ϕ (h2) , (ϕ (l2)) == (ϕ (h2)

max (ϕ (l1) , (ϕ (h2) , (ϕ (l2)) , (ϕ (h2)
(7)

whereϕ (ni ) represents the color value of a particular image pixel as

an edge pixel and n represents the set of pixels under consideration.

If the max value of ϕ (ni ) is equal to ϕ (h2), the pixel of h2 is an

edge pixel. Fig 7 provides a graphical illustration of example holes

and their types.

Holes that are edge pixels in the image are repaired using bound-

ary point matching. Let k is an image boundary pixel and its sur-

rounding pixels are {kt ,kb ,kl ,kr }. Color similarity (min (E)) be-

tween the pixel of the same position in the original target image and

its surrounding pixels is calculated, i.e.,

{

ki
Emin

→ k, i ∈ (l , r , t ,b)

}

.

The algorithm obtains the pixel position with the most similar color

to the hole color and �lls the hole in the reconstructed target image.

In contrast, a non-edge hole will be repaired by the mean color of

pixels {kt ,kb ,kl ,kr }.

6 EXPERIMENT RESULTS

6.1 Our Results

Our framework is unique as besides considering color structure to

assist color migration, it also incorporate user interaction to allow

user expectation to be faithfully expressed during the process. Here

we present our results.

6.1.1 Natural Scenery as Template. Using natural scenery as tem-

plate image for color migration is challenging, as it is di�cult to

obtain a satisfactory result due to their complication in image con-

tent and coloring. We demonstrate our results with using natural

scenery as the template images to express user coloring expectation.

As shown in Fig 8, with each of three di�erent input home scenes

(I), we apply two di�erent template images (T) to generate color mi-

gration results (R1, R2 and R3), where R1, R2 and R3 are obtained by

selecting di�erent regions of interest. Results show that dominant

colors from template images can always be satisfactorily migrated

to home scene images and the visual appearance of all furniture

items can still be properly retained without any distortion.

6.1.2 Indoor Home Scene as Template. It is quite natural to use the

coloring design of another home scenery image to express how color

change should be happened for an indoor environment. As in Fig 9,

given an input home scene (I), we apply two di�erent template home

scene images (T) and obtain two results (R) accordingly. Particularly,

user interaction is also involved to indicate some speci�c regions

of interest for customizing color migration.

6.2 Comparisons

6.2.1 Methods. Fig 10 shows color migration results generated by

our framework and relevant existing work. Given an input home

scene image (I), a template image of natural scenery (T) is used to

guide color migration. While the results from our method is labeled

as OU, the results from [21, 35, 36] are labeled as R, X, F, respectively.

Each column shows the inputs and outputs based on di�erent input

home scene image and template image. In general, our framework

can generate faithful results, as color changes are essentially be

done based on scene objects (furniture items). In contrast, color

migration results generated from all existing work we compared

exhibit arti�cial changes, e.g. with gradual color changes over the

ceiling, and the overall image tone has been globally changed. All

these color change e�ects are not practical for interior coloring

design.

6.2.2 User Study against Designer’s Work. A user study was con-

ducted to evaluate our work according to their intuitive visual

perception. We invited 20 users to evaluate 5 sets of images (S1 to

S5). Each image set consisted two parts of coloring results. One part

was generated by performing color migration with our framework

(OURS), while the other part contained color transformation results



Figure 7: Example of holes (left); Scene edge detection (middle); Hole judgment diagrams (right), for vertical (A) and horizontal

(B) holes, respectively.

Figure 8: Color Migration with Natural Scenery as Template Images.

produced by interior decoration designers (ARTS). Participants de-

scribed their perception on these results using a �ve-point (1-5)

rating system. We depict the user study results by averaging user

ratings separately for these two parts of coloring results. As in

Fig 11, results produced by our framework are mostly compara-

ble with those produced by designers. In S1, our generated output

was better perceived by participants comparing with the designer

output.

6.2.3 Computational Performance. Our frameworkwas implemented

by MATLAB running on a computer with an Intel Core i5 3.30GHz

CPU and 16GB RAM. The preparatory work of interactive seg-

mentation took about 1 hour for each image. The color migration

operation with our framework can typically be �nished within

about 5 minutes per image.



Figure 9: Color Migration by Picking Coloring from Other

Home Scenes.

Figure 10: Comparison Results.

7 CONCLUSION

We have introduced a new color migration framework, allowing

natural scenery to be used as the template for users to express their

coloring expectation. We also allow user invention to be involved

to customize color migration results. Because we have developed

a hierarchical color structure to match with native home scene

composition, i.e., natively forming by collocated furniture, we can

produce faithful and practical color migration results. In future

work, we like to allow using multiple template images to govern

color migration. We also like to investigate how machine learning

can assist home scene segmentation and coloring.

Figure 11: Comparison of Our and Designer’s Outputs.
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