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Abstract—The reconstruction of images is an important problem in many applications. From
sampling theory it is well known that the sinc function is the ideal interpolation kernel which,
however, cannot be used in practice. In order to be able to obtain acceptable reconstructions, both
in terms of computational speed and mathematical precision, it is required to design a kernel that is
of finite extent and resembles the sinc function as much as possible. In this paper, the applicability
of a particular class of sinc-approximating symmetrical piecewise nth-order polynomial kernels
is investigated in satisfying these requirements. After the presentation of the general concept,
kernels of first, third, fifth and seventh order are derived. An objective, quantitative evaluation of
the reconstruction capabilities of these kernels is obtained by analyzing the spatial and spectral
behavior using different measures and by using them to translate, rotate and magnify a number
of real-life test images. From the experiments it is concluded that while the improvement of cubic
convolution over linear interpolation is significant, the use of higher-order polynomials yields only
marginal improvement.

Keywords—Interpolation, image reconstruction, image resampling, piecewise polynomial kernels,
cubic convolution, quintic convolution, septic convolution.

I Introduction

The reconstruction1 of images, which are in general N -dimensional signals, is an important
problem in many applications. Operations such as magnification, subpixel translation,
rotation, deformation or warping of images cannot be carried out without reconstructing
the image under consideration. Many interpolation schemes have been devised for that
purpose. These include the very simple nearest-neighbor and linear interpolators as well
as the more computational expensive cubic-convolution [11] and windowed-sinc [1, 15]
interpolation schemes.

In a particular application, the accuracy with which the original signal needs to be
reconstructed from the samples determines which alternative to use. Linear interpolation
is computationally very cheap and is satisfactory in many situations. Nowadays, linear
interpolation is available as a standard operation in special graphics hardware, making it
an attractive option. It has to be expected that as hardware becomes faster, higher-order

1In this paper, the term “reconstruction” is used to indicate the process of retrieving an original
continuous image from its samples. The term “interpolation” is used to indicate the more general process
of “filling in” between the samples. That is, any type of interpolation can be used to calculate values
at intermediate points. However, in order to reconstruct the values at the intermediate points, specific
constraints need to be imposed on the interpolation scheme.
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interpolation schemes will become feasible as well. It has been demonstrated [9, 13, 15]
that when further mathematical processing of the data is required, cubic convolution,
although more computationally demanding, is a relatively very accurate scheme. The
improvement with respect to linear interpolation stimulated us to investigate interpolation
kernels consisting of higher-order polynomials than just first or third order.

The purpose of this paper is twofold. First, we will prove that the concept of the
two most popular interpolation schemes—linear interpolation and cubic convolution—
can be generalized to a class of what we call symmetrical piecewise nth-order polynomial
interpolation kernels. By utilizing this concept, higher-order interpolation kernels will be
derived. Secondly, it will be shown that while the improvement of cubic convolution over
linear interpolation is substantial, the improvements of higher-order schemes with respect
to cubic convolution are only marginal.

The paper is organized as follows. First, in Section II, the concept of N -dimensional
image reconstruction is presented. It will be shown that the operation can always be
carried out by N successive one-dimensional interpolations (cascaded convolution). Next,
in Section III, the concept of one-dimensional signal reconstruction by convolution with
symmetrical piecewise nth-order polynomial kernels is presented. In Section IV, exam-
ples of interpolating kernels consisting of polynomials up to seventh order are given. A
quantitative comparison of the reconstruction capabilities of these kernels is presented in
Section V. Finally, concluding remarks are made in Section VI.

II Reconstruction of N-Dimensional Images

A real-valued continuous image I(x) can be constructed from a real-valued N -dimensional
discrete image Is(p) by means of interpolation according to:

I(x) = Is(p) ∗ h(x), (1)

where ∗ denotes (discrete) convolution, x = (x1, . . . , xN ) ∈ R
N are points in N -dimensional

continuous space, p = (p1, . . . , pN ) ∈ Z
N are points in N -dimensional discrete space (i.e.,

they are assumed to lie on a regular grid with unit distance between grid points), Is(p)
are the image values at those points (the samples), and h : R

N → R is the convolution
kernel, interpolating the samples, that is,

I(x1, . . . , xN ) =
∑
pN

· · ·
∑
p1

Is(p1, . . . , pN ) · h(x1 − p1, . . . , xN − pN ). (2)

In the Fourier domain this becomes

Î(f) = Îs(f)Ĥ(f), (3)

where Î : R
N → C is the Fourier transform of I(x), f = (f1, . . . , fN ) ∈ R

N denotes N -
dimensional frequency, Îs : R

N → C the Fourier transform of the discrete image Is(x) (the
sample data), and Ĥ : R

N → C the Fourier transform of the convolution kernel.
The question arises whether it is possible to let the interpolated image I(x) become

exactly equal to the original continuous version of the sampled image Is(p), prior to
sampling. In other words: can the original image be reconstructed from its samples? For
one-dimensional signals, the answer is provided by the following well-known theorem.

Theorem 1 Let I : R → R be a real-valued function that does not contain any frequencies
higher than Fm > 0, that is, the Fourier spectrum Î : R → C of that function satisfies
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Î(f) = 0, |f | > Fm. Then I(x), x ∈ R, is completely determined by the samples Is(p), p ∈
Z and Is(p) = I(p), if and only if the sampling frequency Fs satisfies Fs > 2Fm.

The essence of this theorem has been known to mathematicians in the field of interpo-
latory function theory since at least 1915 [14] and has later been applied to the fields of
telecommunication and information theory by Nyquist [6] and Shannon [12]. An excellent
tutorial review on sampling theory has been presented by Jerri [3].

The theorem can easily be extended to N -dimensions, in which case I(x), x ∈ R
N can

be completely reconstructed from the samples Is(p), p ∈ Z
N , Is(p) = I(p), if and only

if the sampling frequencies satisfy Fsi > 2Fmi , ∀i = 1, 2, . . . ,N , where Fmi is the highest
frequency in the ith dimension, i.e., Î(f) = 0, |fi| > Fmi , ∀i = 1, 2, . . . ,N . To this end,
the filter Ĥ(f) in (3) must be an N -dimensional box filter, defined by

Ĥ(f) =

{
1, if |fi| 6 1

2Fsi , ∀i = 1, 2, . . . ,N,

0, if otherwise.
(4)

For a regular grid with unit distance between grid points, the sampling frequencies Fsi are
equal to 1. Equation (4) can also be written as

Ĥ(f) =
N∏

i=1

ĤB(fi), (5)

where ĤB : R → R is now a one-dimensional box filter. Thus Î(f) becomes

Î(f) = Îs(f)ĤB(f1)ĤB(f2) · · · ĤB(fN ). (6)

The inverse Fourier transform yields

I(x) =
(
. . .

((
Is(p) ∗ hB(x1)

) ∗ hB(x2)
) ∗ . . .

) ∗ hB(xN ), (7)

from which it is concluded that N -dimensional reconstruction can always be carried out
by N successive one-dimensional interpolations. Therefore, in the sequel only the merits
of one-dimensional kernels h(x) are investigated.

III Symmetrical Piecewise nth-Order Polynomial Kernels

As shown in the previous section, exact reconstruction of an N -dimensional image is
accomplished by multiplying the Fourier spectrum Îs(f) of the sampled signal Is(p) with
an N -dimensional box filter or, equivalently, with N successive one-dimensional box filters.
By defining the inverse Fourier transform of a spectrum Ĥ(f) as

∫ ∞
−∞ Ĥ(f)ei2πfxdf , it can

easily be shown that the kernel of the box filter is the sinc function, defined by

hB(x) = sinc(x) , sin(πx)
πx

. (8)

This kernel has infinite extent and cannot be used in practice, thereby ruling out the
possibility of exact reconstruction. In order to obtain an acceptable reconstruction (in
terms of both computational cost and mathematical precision), it is required to design a
kernel of finite extent that resembles the sinc function as much as possible. The purpose of
this paper is to investigate to what extent piecewise nth-order polynomial kernels satisfy
these requirements. First, the precise definition of these kernels is given.
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Definition 1 Given a regular sampling grid with unit distance between the sample points,
the symmetrical piecewise nth-order polynomial interpolation kernel h(x) is defined as

h(x) =

{
ani|x|n + . . . + a1i|x| + a0i, if i 6 |x| < i + 1,

0, if m 6 |x|, (9)

where i = 0, 1, . . . ,m − 1, the parameter m ∈ N\{0} determines the extent of the kernel,
and n and m are related by n = 2m − 1.2

The (n + 1)m coefficients aji are to be determined by imposing constraints on h(x).
Since the samples Is(p) are the exact values of the original image I(x) at the positions p
on the sampling grid, the value of the interpolant at those positions must also be equal
to the sample values. Additional constraints are derived by requiring h(x), which consists
of piecewise polynomials, to be continuous and, if possible, have continuous derivatives at
the transition points p. These requirements can be translated into the constraints

(i) h(0) = 1 and h(x) = 0 for |x| = 1, . . . ,m − 1,

(ii) h(l)(x) must be continuous at |x| = 0, 1, . . . ,m,

where the super-script (l) denotes the lth derivative. The second constraint holds for
l = 0, 1, . . . , k, where k must be sufficiently large so as to yield a sufficient number of
equations in order to solve for the unknown coefficients aji.

For the determination of an upper limit for k, the following lemma is necessary.

Lemma 1 In generating a set of equations according to the aforementioned constraints, in
order to solve for the unknown coefficients of the polynomials constituting an interpolation
kernel h(x) as given in Definition 1, the requirement that h(l)(x) must be continuous at
x = 0 does not yield a non-trivial equation in the case l is even.

Proof From the general definition of symmetrical nth-order polynomial kernels it can
easily be derived that h(l)(0) = (l!)al0. The continuity constraint of h(l)(x) at x = 0, which
is expressed as the requirement limx↑0 h(l)(x) = limx↓0 h(l)(x), leads to (l!)al0 = (l!)al0,
which does not contain any information. Note that in the case l is odd, the constraint
leads to (l!)al0 = −(l!)al0, which results in the requirement al0 = 0.

By taking into account the result of this lemma, the maximum value for k is given by
the following theorem.

Theorem 2 In generating a set of equations according to the aforementioned constraints,
in order to solve for the unknown coefficients aji of the polynomials constituting an inter-
polation kernel h(x) as given in Definition 1, the maximum allowable value of k is 0 for
n = 1 and n − 2 for n > 1.

Proof According to Definition 1 there are (n + 1)m unknown coefficients aji, which
require the same amount of independent equations in order to be able to obtain a unique
solution. The first constraint will result in m equations. The second constraint will
yield (k +1)(m+1) equations, and according to Lemma 1,

⌈
k+1
2

⌉
of them will not contain

information. Hence, the constraints lead to a total of m+(k+1)(m+1)−⌈
k+1
2

⌉
equations.

Substituting k = n − 1 and using the fact that, because n is odd, n − ⌈
n
2

⌉
=

⌈
n
2

⌉ − 1, we
have n(m + 1) = (n + 1)m + (m − 1) equations. For n = 1, m and n are both equal to 1

2This choice for n will be motivated at the end of this section.
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and therefore the number of equations equals the number of unknowns. For n > 1 we have
n > m, which results in an over-constrained problem that cannot be solved uniquely, but
only e.g. in a least-squares sense. The next smaller integer value is k = n − 2, which can
be derived to yield (m + 1)n − m = (n + 1)m − 1 equations.

Corollary 1 If, in generating a set of equations according to the aforementioned con-
straints in order to solve for the unknown coefficients aji of the polynomials constituting
an interpolation kernel h(x) as given in Definition 1, the maximum value for k (according
to Theorem 2) is used, the coefficients aji can be solved uniquely for n = 1 and are a
function of exactly one free parameter, say α, for n > 1.

Corollary 2 If, in generating a set of equations according to the aforementioned con-
straints in order to solve for the unknown coefficients aji of the polynomials constituting
an interpolation kernel h(x) as given in Definition 1, the maximum value of k (according
to Theorem 2) is used, the resulting interpolant will be an element of C0 for n = 1 and of
Cn−2 for n > 1.

Now that it has been proven that for n > 1 the coefficients of the polynomials are always
a function of a free parameter α, that is to say there is a family of possible kernels for
every value of n > 1, it remains to derive a reasonable value for, or at least bounds on, this
parameter. An obvious choice would be to require h(k+1)(x) to be continuous at exactly
one of the transition points p, which results in exactly one additional equation, thereby
allowing the system of equations to be solved uniquely. However, this is not guaranteed
to be the best choice when it comes to accurate (mathematical precise) reconstruction. It
will be shown that there always exists exactly one optimal value for the parameter α. In
order to prove this, the following lemma is necessary.

Lemma 2 The Taylor series expansion of the Fourier transform Ĥ(f) of a symmetrical
piecewise nth-order polynomial interpolation kernel h(x) as given in Definition 1, in which
the coefficients aji are functions of exactly one free parameter α, has the form

Ĥ(f) = β0(α) + β2(α)f2 + β4(α)f4 + β6(α)f6 + . . . . (10)

That is, the series consists of even terms only, in which the factors βc(α) are linear
functions of the parameter α. In other words, they have the form

βc(α) = ζc1α + ζc2. (11)

Proof Because h(x) is a real-valued function, the Fourier transform Ĥ(f) is conjugate
symmetric. Furthermore, because h(x) is an even function, the Fourier transform is also
even [5]. These two properties lead to the conclusion that Ĥ(f) is a real-valued symmet-
rical function, from which it is known that the Taylor series contains only even terms:

Ĥ(f) = Ĥ(0) +
1
2
Ĥ(2)(0)f2 +

1
24

Ĥ(4)(0)f4 + . . . . (12)

By defining the Fourier transform of h(x) as
∫ ∞
−∞ h(x)e−i2πfxdx, it can easily be derived

that Ĥ(f) can be written as the sum

Ĥ(f) =
n∑

j=0

m−1∑
i=0

ajiĤji(f), (13)
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with

Ĥji(f) = 2
∫ i+1

i
xj cos(2πfx)dx, (14)

where use is made of the symmetry property of h(x), and i =
√−1 (not to be confused

with the index i). According to (13), the derivatives in (12) are calculated as

Ĥ(l)(0) =
n∑

j=0

m−1∑
i=0

ajiĤ
(l)
ji (0), (15)

from which it is concluded that the factors βc(α) in the series are linear combinations of
the coefficients aji, which are in turn linear combinations of the parameter α.

Theorem 3 The value of the free parameter α that yields the most mathematical precise
interpolant h(x) can be determined by taking

β2(α) = 0. (16)

Proof In order to prevent high-frequency emphasis in the Fourier spectrum Ĥ(f) of the
interpolation kernel h(x), the value of the parameter α should be chosen so as to force
Ĥ(f) to be concave downward at f = 0. This is expressed in the requirement

d2Ĥ(f)
df2

∣∣∣∣∣
f=0

6 0. (17)

In order to prevent low-frequency suppression in the Fourier spectrum Ĥ(f) of the inter-
polation kernel h(x), the value of the parameter α should be chosen so as to force Ĥ(f)
to be concave upward at f = 0. This is expressed in the requirement

d2Ĥ(f)
df2

∣∣∣∣∣
f=0

> 0. (18)

This leads to the conclusion that the optimal value for the free parameter α is the one
that satisfies both requirements (17) and (18), and since

d2Ĥ(f)
df2

∣∣∣∣∣
f=0

= 2β2(α), (19)

this implies that the optimal value can be found by taking β2(α) = 0.

In Definition 1, the order n of the polynomials was related to the extent m by n =
2m − 1. Since m ∈ N\{0}, this implies that n will always be odd. It has to be pointed
out that n = 2m − 1 is not the only possible value for n. In fact, it can be shown that
n = 2m or n = 2m + 1 will also lead to a unique kernel for all m ∈ N\{0}. In many cases,
even higher values for n are possible. However, given the extent m, the value n = 2m − 1
is the lowest possible order resulting in one-parameter polynomials for which a unique
solution exists, using the approach described in this section. In order to solve for the
unknown coefficients in the case that n > 2m− 1, higher-order derivatives are required to
be continuous (k must be larger). However, a larger value for k implies that the resulting
kernel will be smoother than its lower-order version with the same extent, causing both
its spatial and spectral behavior to be worse.
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IV Kernel Examples

The theory developed in the previous section will now be used to derive the four lowest-
order piecewise polynomial interpolation kernels, which provide for linear, cubic, quintic
and septic interpolation.

IV.A Linear Interpolation

The kernel of the linear interpolator consists of linear polynomials and approximates the
ideal sinc function in the interval [−1, 1]. The kernel is given by

hL(x) =

{
a10|x| + a00, if 0 6 |x| < 1,

0, if 1 6 |x|. (20)

The two coefficients aji can be derived by imposing the constraints

(i) hL(0) = 1,

(ii) hL(x) must be continuous at |x| = 0, 1.

These constraints yield two equations in the two unknown coefficients aji. This system
can be solved uniquely, yielding a10 = −1 and a00 = 1. The resulting interpolant will be
an element of C0 (that is, it will be continuous).

IV.B Cubic Convolution

The cubic-convolution kernel consists of third-order polynomials and approximates the
ideal sinc function in the interval [−2, 2]. The kernel is given by

hC(x) =


a30|x|3 + a20|x|2 + a10|x| + a00, if 0 6 |x| < 1,

a31|x|3 + a21|x|2 + a11|x| + a01, if 1 6 |x| < 2,

0, if 2 6 |x|.
(21)

The eight coefficients aji can be derived by imposing the constraints

(i) hC(0) = 1 and hC(x) = 0 for |x| = 1,

(ii) h
(l)
C (x) must be continuous at |x| = 0, 1, 2 for l = 0, 1.

These constraints yield seven equations in eight unknown coefficients aji. By allowing
a31 = α to be a tunable parameter, the system can be solved, yielding the values for the
eight coefficients as shown in Table 1.

The Taylor series around f = 0 of the Fourier spectrum of this kernel is given by

ĤC(f) = 1 − 4
15

(2α + 1)(πf)2 +
1
35

(16α + 1)(πf)4 + O(f6). (22)

By imposing the constraints that the lower frequencies are not allowed to be suppressed
and that the higher frequencies are not allowed to be amplified, we find that the best
cubic-convolution kernel is the one with a value for α such that ĤC(f) is neither convex
nor concave at f = 0, that is, the one for which the second-order term in (22) vanishes:

d2ĤC(f)
df2

∣∣∣∣∣
f=0

= − 8
15

(2α + 1) = 0, (23)

which yields α = −1/2 [4,8]. The resulting interpolant will be an element of C1 (that is,
it will be continuous and will have a continuous first derivative).
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i a3i a2i a1i a0i

0 α + 2 −(α + 3) 0 1

1 α −5α 8α −4α

Table 1. The eight coefficients of the polynomials of the cubic-convolution kernel as a
function of the free parameter α.

i a5i a4i a3i a2i a1i a0i

0 10α − 21
16 −18α + 45

16 0 8α − 5
2 0 1

1 11α − 5
16 −88α + 45

16 270α − 10 −392α + 35
2 265α − 15 −66α + 5

2 α −14α 78α −216α 297α −162α

Table 2. The 18 coefficients of the polynomials of the quintic-convolution kernel as a
function of the free parameter α.

IV.C Quintic Convolution

The quintic-convolution kernel consists of fifth-order polynomials and approximates the
ideal sinc function in the interval [−3, 3]. The kernel is given by

hQ(x) =


a50|x|5 + . . . + a10|x| + a00, if 0 6 |x| < 1,

a51|x|5 + . . . + a11|x| + a01, if 1 6 |x| < 2,

a52|x|5 + . . . + a12|x| + a02, if 2 6 |x| < 3,

0, if 3 6 |x|.

(24)

The 18 coefficients aji can be derived by imposing the constraints

(i) hQ(0) = 1 and hQ(x) = 0 for |x| = 1, 2,

(ii) h
(l)
Q (x) must be continuous at |x| = 0, 1, 2, 3 for l = 0, 1, 2, 3.

These constraints yield 17 equations in the 18 unknown coefficients aji. By allowing
a52 = α to be a tunable parameter, the system can be solved, yielding the values for the
18 coefficients as shown in Table 2.

The Taylor series around f = 0 of the Fourier spectrum of this kernel is given by

ĤQ(f) = 1 +
1
14

(64α − 3)(πf)2 − 1
105

(352α + 1)(πf)4 + O(f6). (25)

By imposing the constraint that the Fourier spectrum ĤQ(f) is neither convex nor concave
at f = 0, we find that the best quintic-convolution kernel is the one for which the second-
order term in (25) vanishes:

d2ĤQ(f)
df2

∣∣∣∣∣
f=0

=
2
14

(64α − 3) = 0, (26)

which yields α = 3/64. The resulting interpolant will be an element of C3 (that is, it will
be continuous and will have continuous derivatives up to third order).
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i a7i a6i a5i a4i

0 245α + 821
1734 −621α − 1148

867 0 760α + 1960
867

1 301α + 1687
6936 −3309α − 2492

867 14952α + 32683
2312 −35640α − 128695

3468

2 57α + 35
6936 −1083α − 175

1734 8736α + 1995
2312 −38720α − 4725

1156

3 α −27α 312α −2000α

i a3i a2i a1i a0i

0 0 −384α − 1393
578 0 1

1 47880α + 127575
2312 −36000α − 13006

289 14168α + 120407
6936 −2352α − 2233

1156

2 101640α + 1575
136 −157632α − 5670

289 133336α + 42525
2312 −47280α − 8505

1156

3 7680α −17664α 22528α −12288α

Table 3. The 32 coefficients of the polynomials of the septic-convolution kernel as a
function of the free parameter α.

IV.D Septic Convolution

The septic-convolution kernel consists of seventh-order polynomials and approximates the
ideal sinc function in the interval [−4, 4]. The kernel is given by

hS(x) =



a70|x|7 + . . . + a10|x| + a00, if 0 6 |x| < 1,

a71|x|7 + . . . + a11|x| + a01, if 1 6 |x| < 2,

a72|x|7 + . . . + a12|x| + a02, if 2 6 |x| < 3,

a73|x|7 + . . . + a13|x| + a03, if 3 6 |x| < 4,

0, if 4 6 |x|.

(27)

The 32 coefficients aji can be derived by imposing the constraints

(i) hS(0) = 1 and hS(x) = 0 for |x| = 1, 2, 3,

(ii) h
(l)
S (x) must be continuous at |x| = 0, 1, 2, 3, 4 for l = 0, 1, 2, 3, 4, 5.

These constraints yield 31 equations in the 32 unknown coefficients aji. By allowing
a73 = α to be a tunable parameter, the system can be solved, yielding the values for the
32 coefficients as shown in Table 3.

The Taylor series around f = 0 of the Fourier spectrum of this kernel is given by

ĤS(f) = 1 − 2
867

(83232α + 71)(πf)2 +
8

8415
(97920α − 53)(πf)4 + O(f6). (28)

Again, by imposing the constraint that the magnitude of the Fourier spectrum ĤS(f) is
neither convex nor concave at f = 0, we find that the best septic-convolution kernel is the
one for which the second-order term in (28) vanishes:

d2ĤS(f)
df2

∣∣∣∣∣
f=0

= − 4
867

(83232α + 71) = 0, (29)

which yields α = −71/83232. The resulting interpolant will be an element of C5 (that is,
it will be continuous and wil have continuous derivatives up to fifth order).
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V Experimental Results

In this section, the reconstruction capabilities of the kernels derived in the previous sec-
tion will be quantitatively evaluated and compared. First, both the spatial and spectral
behavior of the kernels will be analyzed. Next, the kernels will be applied in a number of
experiments on real-life images. Finally, the results will be briefly discussed.

V.A Spatial and Spectral Analyses

Plots of the four interpolation kernels hL(x), hC(x), hQ(x), and hS(x), as presented in the
previous section, are shown in Figure 1, together with the plots of their spectra ĤL(f),
ĤC(f), ĤQ(f) and ĤS(f). From these plots it can be observed that the cubic-convolution
kernel resembles the ideal box filter ĤB(f) substantially better than the linear interpo-
lation kernel. The spectra of the quintic- and septic-convolution kernels appear identical
to that of the cubic-convolution scheme. However, their corresponding log-plots in Fig-
ure 1 reveal that the high-frequency suppression capabilities of the quintic- and septic-
convolution kernels are, respectively, one and two orders of magnitude better than that of
the cubic-convolution kernel.

Since the spectra of the kernels are all flat at f = 0 (because of the constraint proposed
in Theorem 3), they can be compared by evaluating the transition rate from stop-band
(|f | > 1/2) to pass-band (−1/2 6 f 6 1/2). This rate corresponds to the first derivative
of the spectrum Ĥ(f) at f = −1/2, and should be as large as possible. The values
of this derivative for the presented kernels are shown in Table 4. The ideal kernel (the
sinc function) has an infinite transition rate, causing high frequencies to be completely
suppressed and low frequencies to be completely conserved. The improvement of cubic
convolution over linear interpolation is 43.2% according to this feature. Quintic and septic
convolution are respectively 49.2% and 56.6% better than linear interpolation, but only
4.2% and 9.3% better than cubic convolution.

In the literature on sampling and reconstruction, an important error measure to study
the spectral behavior of a kernel as a function of frequency is given by

E(f) = |1 − Ĥ(f)|2 +
∑

η∈Z\{0}
|Ĥ(f − ηFs)|2, (30)

where Ĥ(f), f ∈ R denotes the spectrum of the kernel to be analyzed and Fs ∈ R is the
sampling frequency. This measure was originally proposed by Park & Schowengerdt [7]
in studying the blur caused by sampling and reconstruction (SR-blur) and has since been
applied by several others [2, 10] to compare their methods to cubic convolution. Note
that for the sinc function, E(f) = 0 for |f | 6 Fs/2 and E(f) = 2 for |f | > Fs/2.
The error functions E(f) for the spectra of the four interpolation kernels are shown in
Figure 2, together with that of the sinc function. From this figure it is clear that the
cubic-convolution kernel is substantially better than the linear interpolation kernel, but
the improvements of the higher-order kernels are only marginal.

We also computed the total square error (distance) of the spectra Ĥ(f) with respect
to the spectrum ĤB(f) of the sinc function,

ET =
∫ ∞

−∞
|ĤB(f) − Ĥ(f)|2df =

∫ 1
2

− 1
2

E(f)df. (31)
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Figure 1. The kernels of the four lowest-order interpolators, compared to the ideal interpo-
lation kernel: the sinc function (dashed line). First column: the linear interpolation kernel
hL(x), the cubic-convolution kernel hC(x), the quintic-convolution kernel hQ(x) and the
septic-convolution kernel hS(x). Second column: the corresponding Fourier spectra ĤL(f),
ĤC(f), ĤQ(f) and ĤS(f), compared to the spectrum ĤB(f) of the sinc function (dashed
line). Third column: the corresponding log-plots of the spectra.

The results for the four interpolation kernels are listed in Table 5. From these figures it
can be concluded that according to the ET error measure, the improvement of cubic con-
volution over linear interpolation is 33.9%. Quintic and septic convolution are respectively
36.4% and 39.2% better than linear interpolation, but only 3.8% and 8.0% better than
cubic convolution.

V.B Evaluation using Real-Life Images

In order to obtain a quantitative comparison of the performance of the four interpolation
kernels when applied to real-life images, the kernels were used in three different types
of operations, each of which requires accurate reconstruction: (i) subpixel translation,
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Figure 2. The error function E(f) (30) for the spectra of the four interpolation kernels
described in Section IV, compared to that of the sinc function.

Kernel Ĥ(1)(−1
2)

hL(x) 1.621
hC(x) 2.321
hQ(x) 2.419
hS(x) 2.538
hB(x) ∞

Table 4. The first derivative of the Fourier transform Ĥ(f) of the four interpolation
kernels hL(x), hC(x), hQ(x), and hS(x) presented in Section IV, at the transition from
stop-band to pass-band (f = −1/2), compared to that of the sinc function hB(x).

Kernel ET

hL(x) 0.119277
hC(x) 0.078894
hQ(x) 0.075913
hS(x) 0.072559
hB(x) 0

Table 5. The total square error ET (31) of the spectra of the four interpolation kernels
hL(x), hC(x), hQ(x), and hS(x) presented in Section IV, compared to that of the spectrum
of the sinc function hB(x).

(ii) rotation, and (iii) magnification. For these experiments, the 16 two-dimensional test
images shown in Figure 3 were used.3

To carry out a subpixel translation, the following two operations have to be performed:
(i) reconstruction of the image, and (ii) sampling of the reconstructed image at a new,
translated grid. The first operation requires interpolation for which, in this experiment,
the four schemes presented in Section IV were used. The translated images should be

3In all three experiments, the images were mirrored around the borders to reduce border artifacts.
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Figure 3. The 16 test images used in the experiments for comparison of the four in-
terpolation schemes described in Section IV. From top-left to bottom-right: Airfield,

Airplane, Baboon, Boat, Brain, Bridge, Camera, Clown, Couple, Flower,

Girl, Lena, Moon, Orca, Peppers and Tank.

compared to the corresponding ideally translated one (in which the sinc function is used
as interpolation kernel). Since such an image cannot be obtained, the images were trans-
lated back to their initial position (using the same interpolation kernel as for the forward
translation) and the mean square error with respect to the original (non-translated) ver-
sion was computed. The results of this subpixel translation experiment for the 16 test
images and for a displacement of (0.4, 0.7) pixel are presented in Table 6. According to
these figures, the improvement of cubic convolution over linear interpolation is (on aver-
age) 65.1%. Quintic and septic convolution are, respectively, 67.6% and 69.9% better than
linear interpolation, but only 7.6% and 14.3% better than cubic convolution.
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Image Experiment
Subpixel Translation Rotation Magnification
hL hC hQ hS hL hC hQ hS hL hC hQ hS

Airfield 78.85 29.88 27.78 25.97 52.21 18.13 16.83 15.79 90.79 54.74 52.74 50.53
Airplane 16.07 4.09 3.73 3.39 10.29 2.34 2.12 1.93 43.09 22.81 21.69 20.45
Baboon 154.12 63.85 58.98 55.29 107.05 42.32 39.42 37.12 46.22 28.69 27.62 26.43
Boat 28.10 9.95 9.21 8.42 17.03 4.77 4.35 3.97 42.71 25.56 24.56 23.45
Brain 32.26 6.20 5.54 4.90 20.09 3.47 3.09 2.75 95.57 55.10 52.84 50.36
Bridge 98.23 42.84 39.98 37.69 65.59 25.40 23.67 22.32 73.48 44.61 42.91 41.01
Camera 119.99 51.27 47.98 45.01 76.01 27.30 25.33 23.74 87.97 51.36 49.35 47.11
Clown 34.22 8.54 7.79 7.03 21.45 4.75 4.31 3.91 91.22 57.82 55.95 53.88
Couple 41.67 14.83 13.72 12.74 26.62 8.29 7.63 7.09 56.59 36.51 35.31 33.97
Flower 7.10 2.20 2.04 1.91 4.69 1.38 1.29 1.22 25.91 13.89 13.29 12.63
Girl 18.09 6.33 5.87 5.48 12.14 3.92 3.63 3.41 44.14 31.57 30.89 30.13
Lena 14.98 5.02 4.67 4.36 9.49 2.78 2.57 2.39 31.75 18.78 18.10 17.36
Moon 13.52 5.92 5.53 5.19 8.46 3.06 2.83 2.64 11.14 6.78 6.53 6.27
Orca 5.83 1.14 1.03 0.93 3.90 0.71 0.64 0.58 29.59 14.84 14.11 13.32
Peppers 17.43 8.19 7.74 7.38 12.00 5.25 4.99 4.80 30.23 18.17 17.59 16.94
Tank 20.76 8.81 8.19 7.72 14.33 5.62 5.25 4.96 16.50 10.35 10.02 9.65

Table 6. The mean square errors (MSE) made by the four interpolation kernels when
using them in subpixel translation, rotation, and magnification operations, applied to the
16 real-life test images shown in Figure 3. The translation was carried out over the vector
(0.4, 0.7), the rotation was over 15◦, and the magnification was done with a factor of 4.

As a second experiment, the test images were rotated. In order to rotate an image, the
two following operations need to be carried out: (i) reconstruction of the image, and (ii)
sampling of the reconstructed image at a new, rotated grid. The first operation requires
interpolation, for which the four schemes presented in Section IV were used. The rotated
images should be compared to the corresponding ideally rotated one. Since such an image
cannot be obtained, the images were rotated back to their initial orientation (using the
same interpolation kernel as for the forward rotation) and the mean square error with
respect to the original version was computed. The results of this experiment for the 16
test images and for a rotation angle of 15◦ are presented in Table 6. According to these
figures, the improvement of cubic convolution over linear interpolation is (on average)
68.8%. Quintic and septic convolution are, respectively, 71.2% and 73.1% better than
linear interpolation, but only 7.8% and 14.3% better than cubic convolution.

Finally, the test images were magnified. In order to magnify an image, the following
three operations have to be carried out: (i) reconstruction of the image, (ii) sampling of the
reconstructed image at a new, more dense grid, and (iii) scaling of the resampled image.
The first operation requires interpolation for which, again, the four schemes presented in
Section IV were used. The magnified images should be compared to the corresponding
ideally magnified one. Since such an image cannot be obtained and since the inverse
operation (i.e., subsampling) would yield exactly the original image (by definition of the
kernels, recall the constraints in Section III), we had to resort to a different evaluation
strategy: the magnification operation was applied to subsampled versions of the original
images which, in order to reduce the influence of aliasing, were low-pass filtered prior to
subsampling. That is, the low-pass filtered versions of the 16 test images (Figure 3) were
taken as the new originals and were then successively subsampled with a factor 4 and
magnified with the same factor. The magnified images (now having the same size as the
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original images) were compared to the low-pass filtered versions by computing the mean
square error. The results of this experiment are also listed in Table 6. According to these
figures, the improvement of cubic convolution over linear interpolation is (on average)
40.1%. Quintic and septic convolution are, respectively, 42.3% and 44.8% better than
linear interpolation, but only 3.7% and 7.8% better than cubic convolution.

V.C Discussion of the Results

In the subpixel translation, rotation, and magnification experiments, the actual magnitude
of the mean square error for a specific image depends on the information contained in the
image. If large parts of the image are highly structured, the mean square error will be
large, since the largest errors are made at sharp transitions (edges). This is the case in e.g.
the Baboon and Airfield images. In e.g. the Flower and Peppers images, there are
large more-or-less homogeneous regions and only a relatively small part of these images
contains sharp transitions, which entails that the mean square error is relatively small.

We have presented the results for one specific translation vector, rotation angle and
magnification factor. In order to make sure that the observed effects were not dependent
on the specific choice of these quantities, we have carried out experiments with several
other vectors, angles and factors. The results of these experiments were all very consistent
with the results presented here.

As can be gathered from the results of the different experiments, the precise improve-
ment of higher-order schemes with respect to lower-order ones depends on the choice for
the error measure. In general it can be stated that the specific situation in which an inter-
polation scheme is to be chosen also determines the error measure that must be selected
in order to describe the merits of that scheme for the application. In fact, it is the type of
application that determines whether a higher-order scheme is to be preferred. The exper-
iments presented in this paper show that in all cases, the improvement of quintic or septic
convolution over cubic convolution is far less significant than that of cubic convolution
over linear interpolation.

Finally it should be noted that in a particular situation, the type of operations and
the type of images to which they are to be applied may also determine the optimality
criterion for deriving the free parameter α. In this paper, we have chosen a criterion that
has been shown to yield the most mathematical precise interpolation [4,8], i.e., for which
the Taylor series expansion of the interpolant will be equal to that of the original signal
in as many terms as possible. In a general description of these polynomial kernels, this is
the most appropriate choice.

VI Conclusions

In this paper, the sinc-approximating symmetrical piecewise nth-order polynomial kernels
were presented, which can be used for the reconstruction of N -dimensional images. After
a derivation proving that reconstruction (or interpolation) of N -dimensional signals can
be carried out by N successive one-dimensional interpolations, and the presentation of the
concept of symmetrical piecewise nth-order polynomial kernels, the linear, cubic, quintic
and septic convolution kernels were derived.

An objective, quantitative comparison of the performance of the four interpolation
kernels was obtained by analyzing the spatial and spectral behavior of the kernels ac-
cording to several measures, as well as by using them in subpixel translation, rotation
and magnification experiments, applied to a number of real-life test images. The results
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of these experiments show, very consistently, that the errors made by cubic convolution
are substantially smaller than those made by linear interpolation. However, higher-order
schemes yield only marginal improvement, at an increased computational cost.
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