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Abstract

An iterative algorithm, based on recent work in compressive sensing, is developed for volume image
reconstruction from a circular cone-beam scan. The algorithm minimizes the total-variation (TV) of
the image subject to the constraint that the estimated projection data is within a specified tolerance
of the available data and that the values of the volume image are non-negative. The constraints are
enforced by use of projection onto convex sets (POCS) and the TV objective is minimized by steepest
descent with an adaptive step-size. The algorithm is referred to as adaptive-steepest-descent-POCS
(ASD-POCS). It appears to be robust against cone-beam artifacts, and may be particularly useful
when the angular range is limited or when the angular sampling rate is low. The ASD-POCS algorithm
is tested with the Defrise disk and jaw computerized phantoms. Some comparisons are performed
with the POCS and expectation-maximization (EM) algorithms. Although the algorithm is presented
in the context of circular cone-beam image reconstruction, it can also be applied to scanning
geometries involving other x-ray source trajectories.

1. Introduction

The circular cone-beam scanning configuration is widely used in many computed tomography
(CT) applications, because it is a technically simple CT configuration to implement and in
many cases the image artifacts caused by the incompleteness of the circular trajectory may not
be of practical concern. Circular cone-beam CT is employed for dedicated breast CT (Boone,
Nelson, Lindfors & Seibert 2001, Chen & Ning 2002, Boone, Shah & Nelson 2004), micro-
CT (Ritman 2002, Lee, Kim, Chun, Cho, Lee & Cho 2003, Ford, Thornton & Holdsworth
2003), image guided radiation therapy (Ford, Chang, Mueller, Sidhu, Todor, Mageras, Yorke,
Ling & Amols 2002, Jaffray, Siewerdsen, Wong & Martinez 2002, Letourneau, Wong,
Oldham, Gulam, Watt, Jaffray, Siewerdsen & Martinez 2005), and C-arm CT systems
employed for surgery (Rafferty, Siewerdsen, Chan, Moseley, Daly, Jaffray & Irish 2005, Daly,
Siewerdsen, Moseley, Jaffray & Irish 2006). Although the circular source trajectory is
commonly used, it is known that there exists no theoretically exact solution that can stably
reconstruct from projection data acquired from this trajectory. As a result, the majority of one-
shot image reconstruction algorithms, such as Feldkamp Davis and Kress (FDK) (Feldkamp,
Davis & Kress 1984) and its derivatives, for this configuration are approximate. For many
applications, particularly for systems with small cone-angles, algorithms such as FDK perform
adequately when there are a large number of projection views. But in general it is advantageous
to have image reconstruction algorithms that can also yield accurate images for large cone-
angles. There can also be situations where the scanning arc has a limited angular range or the
angular sampling along the source trajectory is low. For some configurations with limited
angular range but dense angular sampling, there is an approximate one-shot algorithm that can
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provide region of interest images with relatively few artifacts (Yu, Zou, Sidky, Pelizarri, Munro
& Pan 2006). But another interesting general approach to counter the effects of limited angular
range or angular sampling, or large cone-angles is to develop iterative image reconstruction
algorithms.

Many iterative methods view the image reconstruction problem as a discrete linear system,
where the projection data are a weighted sum over the image voxels. Though computationally
more intensive, iterative methods may have some advantages over one-shot algorithms derived
from analytic inversion formulas. When the projection data are sufficient for the analytic
inversion formula the corresponding discrete form of the reconstruction algorithm is usually
effective. When the projection data, however, are incomplete, such algorithms can implicitly
make very unrealistic assumptions about the “missing” data, resulting in prominent artifacts
in the reconstructed images. Iterative algorithms, generally make milder assumptions on
missing data and allow for the incorporation of image constraints such as positivity, bounds
on image roughness and maximum value. Much work has been done on developing iterative
methods for CT image reconstruction using both linear and non-linear system models(Lange
& Carson 1984, Sauer & Bouman 1993, Manglos, Gagne, Krol, Thomas & Narayanaswamy
1995, Elbakri & Fessler 2003, Kole 2005, Zbijewski, Defrise, Viergever & Beekman 2007).
For circular cone-beam CT, in particular, research has focused fast volume reconstruction. The
algorithm acceleration is achieved either by reducing the size of the system model or by
developing fast cone-beam projection and back-projection algorithms. Methods for reducing
the system-model size include seeking expansion functions that are potentially more efficient
than voxels (Lewitt 1990, Matej & Lewitt 1996, Carvalho & Herman 2007), or investigating
adaptive gridding (Benson & Gregor 2006). Recently, there has been much effort developing
accelerated projectors and back-projectors through streamlined algorithms and special purpose
hardware (Xu & Mueller 2007, Kachelriess, Knaup & Bockenbach 2007, Kole & Beekman
2006, Sharp, Kandasamy, Singh & Folkert 2007). For the most part the actual iterative
algorithms themselves are well-established. In this article, we develop an iterative algorithm
for image reconstruction based on constrained, total-variation (TV) minimization (Candes,
Romberg & Tao 2006a, Candes, Romberg & Tao 2006b, Sidky, Kao & Pan 2006a). The aim
here is not for algorithm efficiency. Instead, we seek to develop an algorithm that can solve
the constrained, TV-minimization optimization-problem, and to investigate the algorithm's
ability to reconstruct images for circular cone-beam CT with minimal artifacts due to large
cone-angles or limited angular sampling.

The idea of constrained TV-minimization originates in the field of compressive sensing from
the work by Candes et al. on exact recovery of an image from sparse samples of its discrete
Fourier transform (DFT) (Candes, Romberg & Tao 2006a). The exact recovery depends on
the fact that there exists some representation of the image for which the corresponding
coefficients are sparse. For example, if the image is known to have only N non-zero voxel
values of unknown location, 2N measurements of the image's DFT should suffice to completely
determine the image. This fact can potentially allow for enormous reduction in the required
number of samples: if it is known, for example, that only 1,000 voxels of a 1003 image are
non-zero, only 2,000 DFT samples are needed as opposed to the full 1003 needed if nothing is
known about the image. It turns out that the image can be found by solving the convex
optimization problem of minimizing the ℓ1-norm of the image, subject to the constraint that
the image's DFT matches the measured DFT values; although this optimization problem
generally requires a little more than 2N samples. Other non-convex optimization formulations
are being investigated that can potentially improve on the ℓ1-norm minimization in terms of
number of required samples (Chartrand 2007, Sidky, Chartrand & Pan 2007). Sparsity of
images in terms of voxels is generally not a widely applicable assumption on the underlying
image function; but it is often the case that images have sparse gradient-magnitude images
(GMI). For example, the x-ray attenuation coefficient often varies mildly within organs, and
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large image variations are usually confined to the borders of internal tissue structures. A sparse
GMI may also be a good approximation in industrial or security scanning applications. For
such images, minimizing the image TV, which is the ℓ1-norm of the GMI, subject to the data
constraint can yield the accurate images from sparse DFT samples. Though developed for
sparse DFT inversion, it was pointed out that constrained TV-minimization could be applied
to general linear systems (Candes, Romberg & Tao 2006b), but new algorithms need to be
developed for the case of non-orthogonal linear systems such as the present case of cone-beam
projection. We have conducted a preliminary study of constrained, TV-minimization
algorithms to inversion of the x-ray transform from limited numbers and ranges of scanning
views (Sidky, Kao & Pan 2006a, Sidky, Kao & Pan 2006b, Sidky & Pan 2006, Sidky, Chartrand
& Pan 2007, Sidky, Reiser, Nishikawa, Pan, Chartrand, Kopans & Moore 2008).

The image TV has been used as a penalty term in iterative, image reconstruction algorithms
(Vogel & Oman 1996, Panin, Zeng & Gullberg 1999, Persson, Bone & Elmqvist 2001, Song,
Liu, Johnson & Badea 2007, Chen, Tang & Leng 2008). Adding such a term to the data-fidelity-
objective function tends to smooth out noise in the image while preserving edges within the
image. In the traditional approach of using a regularizer such as TV, there is a trade-off between
data fidelity and image regularity; lower image TV implies worse data fidelity. Such a
formulation is sensible for fully sampled tomographic systems where there is a unique image
(or very limited set of images) that minimize the data-fidelity-objective function. For the
present work, we are interested in tomographic image reconstruction where the projection data
are incomplete. Because of the incompleteness there will in general be no unique minimizer
of the data-fidelity-objective function, and TV is used to select a unique image out of the set
of possible images that agree with the available data. For this situation, we find it more natural
to use a constrained optimization approach, where image TV is the objective function and data
fidelity is a constraint. In this case, image TV may be lowered while data fidelity is maintained.
Furthermore, our approach is easily extended to include other constraints such as image
positivity or finite upper bound.

The idea of sparse image recovery from sparse projection data has also been reported in the
literature. Li et al. (Li, Yang & Kudo 2002) investigated an algorithm based on ℓ1-norm
minimization for image reconstruction of blood vessels using contrast agent. In this case,
because the underlying image function is sparse in terms of voxels, they were able to achieve
accurate reconstructions from as low as 15 projection views. In many practical applications,
however, the underlying image functions do not satisfy the sparseness condition assumed by
this algorithm. The idea that medical images are often approximately piecewise constant has
been recognized before and incorporated into an optimization problem from which new
iterative, image reconstruction algorithms were derived (Delaney & Bresler 1998). Although
the motivations for that work and the present article are similar, the optimization formulations
and reconstruction algorithms are different.

In this article we discuss in detail the sampling issues for circular cone-beam CT and present
an image reconstruction algorithm that solves the corresponding constrained, TV-minimization
problem in Sec. 2. In Sec. 3 we demonstrate the algorithm with reconstructions of the Defrise
disk and FORBILD jaw computerized phantoms, including results with simulated projection
data without and with noise. Finally, in Sec. 4 we make remarks about how the present
algorithm may affect the design of scanning protocols, and possible generalizations to other
imaging applications and modalities.

2. Theory

In this section we develop a constrained, TV-minimization algorithm for image reconstruction
in circular cone-beam CT. We first describe the model for the circular cone-beam scan, and
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discuss how the corresponding data sampling impacts image reconstruction. An optimization
problem is then formulated, the solution of which is the minimum-TV image that satisfies the
data and positivity constraints. We derive necessary conditions for the optimality of the solution
that can be used as a check on the results from reconstruction algorithm. Finally, we present
the algorithm itself, which employs projection onto convex sets (POCS) to enforce the image
constraints and steepest descent with an adaptive step-size to reduce the image TV. This
adaptive steepest-descent-POCS (ASD-POCS) algorithm yields an approximate solution to the
constrained, TV-minimization problem.

When the underlying image function has a sparse GMI, the ASD-POCS algorithm can provide
accurate image reconstructions for incomplete sets of projection data. Because the algorithm
is based on the standard POCS algorithm, the performance of ASD-POCS in terms of image-
reconstruction accuracy should be similar to POCS when the underlying image function does
not have a sparse GMI. For the studies presented here, we employ test phantoms that are piece-
wise constant (sparse GMI), but we have found that TV minimization yields accurate images
from incomplete data for small deviations from having a sparse GMI in the context of 2D fan-
beam imaging (Sidky, Kao & Pan 2006a).

2.1. Data model and system discretization

Under ideal, noiseless conditions, the CT measurement can be converted to a form that is
closely modeled by a line integral through the continuous object function:

(1)

where f(r ⃗) represents the object function, the x-ray attenuation coefficient; and the data function

 is the line integral through the object in the direction of the unit vector θ ̂ from a source
location r ⃗0(λ). The parametrized x-ray source trajectory considered here is a circle, but other
trajectories are also possible:

(2)

where λ ∈ [0, 2π). The parameter R is the radius of the source trajectory, and the source location
is specified by the angular parameter λ. The center of rotation is taken to be the origin of the
spatial coordinate system, and the z-axis is perpendicular to the plane of the trajectory. For the
model considered here, the detector is taken to be a flat panel array with bin locations:

(3)

where S is the source-detector center distance, and parameters u and v identify a particular bin
location. Relating the detector model to the data function in Eq. (1), the direction θ ̂ along which
a ray passes through the subject is given by

(4)

The goal of image reconstruction is to find f(r ⃗) from knowledge of . The discussion
on the scanning configuration model up until now has been in the limit of continuous

Sidky and Pan Page 4

Phys Med Biol. Author manuscript; available in PMC 2009 September 7.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



measurement. For any actual CT system, the sampling will naturally be in terms of discrete
projection data.

The imaging model, Eq. (1), can be approximated by the following discrete linear system:

(5)

The vector g̃ has length Nd, the number of measured projection rays; the vector f⃗ has length
Nim, the number of expansion elements used in representing the object function f(r ⃗); and the
system matrix M is a discrete model for the integration in Eq. (1). The rays themselves are
identified by a particular scheme of discretizing the independent variables λ, u, and v of the
projection data space and substituting those values into Eqs. (2) and (3). The particular entries
of M depend on the expansion set of the image and the model for the ray integration. For this
work, the image expansion functions are voxels, and M is a ray-driven projection operator.
Under ideal conditions the image reconstruction problem is tantamount to inverting the linear
system Eq. (5), finding f⃗ from a data set g̃. Even under ideal conditions, solving this linear
system can be complicated by ill-conditionedness of the system matrix M.

The system matrix ill-conditionedness can originate from two sources: insufficient coverage
in the scanning configuration, e.g. projection data truncation or incomplete x-ray source
trajectories; or under-sampling, e.g. too few projection views or low-resolution detectors. For
the circular cone-beam scanning configurations considered here, both of these causes for ill-
conditionedness are considered. The circular scanning trajectory in the continuous sampling
limit does not allow for stable one-shot reconstruction of the volume image, within which most
of the points do not satisfy Tuy's condition.

2.2. Formulation of the optimization problem and constraints on the solution

Having approximated image reconstruction for circular cone-beam CT to inversion of a finite
linear system, we specify the optimization problem that we wish to solve. Constrained TV-
minimization yields the discrete image f⃗ that minimizes its TV

(6)

subject to the inequality constraints: (A) data fidelity

(7)

and (B) non-negativity

(8)

The data-consistency constraint is formulated as an inequality constraint, because there will in
general be multiple sources of data inconsistency, including a simplified data model, noise,
and x-ray scatter, which will make it impossible to always find an image that is perfectly
consistent with the data. As a result we only require that the image yields projection data that
are within a given ℓ2 distance ∊ of the actual projection data. We stress that the parameter ∊
is affiected only indirectly by the noise model, and that ∊ accommodates all sources of data
inconsistency. Selection of the values of ∊ depends on system configuration parameters and
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data quality. The constrained, optimization problem is non-linear because the TV-objective
function and the ellipsoidal constraint on the data are non-linear, but it is convex because the
objective and constraints are all convex.

Before turning our attention to an algorithm for image reconstruction, we discuss the
relationship between the above constrained optimization and the more traditional approach of
unconstrained minimization of an objective function that combines data fidelity and
regularization terms. Ignoring positivity constraints for the moment, the traditional approach
involves solving an unconstrained, convex optimization problem:

(9)

This problem can be solved by standard techniques such as Conjugate Gradients or Steepest
Descent. This formulation makes sense when the data are complete, where there is a unique
image that minimizes the data fidelity term. Adding the regularizing penalty term, sacrifices
data fidelity for image regularity. For incomplete data where a number of images have
equivalent data fidelity, the role of the TV-norm takes on the additional role of selecting the
image with sparsest GMI for the same data fidelity. The two roles of image regularization and
sparse GMI selection are more naturally separated in the constrained optimization problem,
Eqs. (6) and (7). It is true, however, that there is some equivalence between the two approaches.
For any ∊ strictly greater than zero, there is a τ such that the constrained optimization problem,
Eqs. (6) and (7), is equivalent to the unconstrained problem, Eq. (9). However, there is no
equivalent value of τ for the case of ∊ = 0, when Eq. (7) becomes an equality constraint, which
is an important case for sparse image recovery. When the projection data are incomplete, a
large set of images can be consistent with the available data. In the constrained optimization
view, the data fidelity is fixed by the constraint Eq. (7), and the minimum TV-norm is used to
select a unique image out of the set of feasible images. In the case of perfectly consistent data,
which we have studied in a 2D setting in Sidky, Kao & Pan (2006a), setting ∊ to zero may not
specify a unique image, and the TV-norm is minimized to arrive at a unique solution. The ∊
= 0 case can be approached for unconstrained optimization by letting τ approach zero, but in
practice the algorithms for solving Eq. (9) lose efficiency in this limit. Another advantage of
the constrained optimization formulation is that common physical constraints such as image
positivity can be incorporated easily.

2.3. Algorithm selection and necessary conditions for the image solution

The next question is how to solve the above constrained, optimization problem. Even though
the problem is non-linear, it can be reformulated into a second-order cone program (SOCP)
for which there are efficient interior point algorithms for achieving very accurate solutions in
“polynomial time” (Boyd & Vanderberghe 2004, Alizadeh & Goldfarb 2003). The SOCP
formulation is, however, impractical for cone-beam CT because of the enormous size of
optimization problems of practical interest. The known algorithms for efficiently solving
SOCPs are not “row-action”, requiring simultaneous processing of the whole system matrix
for large linear systems at each iteration. For the current case of cone-beam CT image
reconstruction the size of the intermediate linear systems are on the order of the size of the
cone-beam-projection system-matrix. Even for the smallest image reconstruction problem
considered in the Results, the size of system matrix is approximately 106 × 106. Moreover, the
SOCP formulation introduces additional auxiliary variables, which can increase the problem
size by a factor of two or more.

Another interesting approach is to cast the optimization problem as a variational inequality
(VI) (Nagurney & Zhang 1996). Most algorithms for solving VIs, however, require a projection
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operator that takes an arbitrary image and yields the closest (in the ℓ2 sense) image that satisfies
the constraint equations. Currently, no such projection operator exists that can project an image
onto the nearest image satisfying the constraints Eqs. (7) and (8). An exception, however, is
the hybrid steepest descent (HSD) algorithm developed by Yamada for solving VIs (Yamada
2001, Xu & Kim 2003). This algorithm generalizes previous algorithms by allowing the
projection to be an iterated operator. POCS is an efficient iterative algorithm for finding images
that respect the convex constraints in Eqs. (7) and (8); unfortunately, POCS does not, however,
find the nearest image satisfying these constraints. And HSD with POCS as the projector may
not satisfy the convergence proofs of HSD. As a result, we give the present algorithm, ASD-
POCS, a different name so as to not give the impression that there is a proof that it finds the
solution of Eqs. (6)-(8).

The ASD-POCS algorithm for solving the constrained, optimization problem uses gradient
descent to minimize the objective function combined with POCS to enforce the constraints.
Unlike the HSD the proposed ASD-POCS algorithm is adaptive, and therefore convergence
proofs for HSD do not apply. The algorithm is described in detail in Sec. 2.4 after the optimality
conditions are derived.

The ASD-POCS algorithm is constructed so that the convergence properties of POCS are
retained. As a result, images obtained from ASD-POCS obey the constraint Eqs. (7) and (8)
for appropriate choices of the algorithm parameters. Within the set of images obeying these
constraints one cannot guarantee that ASD-POCS will always find the minimum TV-image.
Instead, we can derive conditions for a solution of the constrained, TV-minimization problem.
These conditions are used as a check on the images obtained from the present algorithm.

For constrained minimization the necessary conditions for a given image to be the optimal one
are called the Karush Kuhn-Tucker (KKT) conditions (see for example Boyd & Vanderberghe
(2004) and Nocedal & Wright (2006)). These conditions can be derived through the
Lagrangian,

(10)

which combines the objective function with each constraint multiplied by a multiplier λi.
Because the data constraint is a single constraint, it receives a single multiplier λ0 in the
Lagrangian. The non-negativity constraint is actually a constraint on each voxel, thus there is
a multiplier λi for each voxel, where i runs from 1 to Nim, the number of voxels. The set of
multipliers for the non-negativity constraints are abbreviated as λ ⃗, a vector of the same
dimension as the image size. For inequality constraints two conditions are imposed on the
Lagrange multipliers: (a) non-negativity

(11)

and (b) complementarity

(12)

where i = 0, 1, … ,Nim, and hi represents the inequality constraints in the form hi(f⃗) ≤ 0,
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(13)

When an inequality constraint is violated, its corresponding hi is positive. The complementarity
condition Eq. (12) allows the Lagrange multiplier to be non-zero only when its corresponding
inequality constraint is active, i.e., when Eq. (13) is satisfied with equality. The conditions for
optimality of a potential solution f⃗ thus are Eqs. (11), (12), and (13) together with

(14)

where the differential operator ∇f⃗ is defined as

(15)

and δ ⃗i is an image that is 0 everywhere except at the ith voxel where it is 1. Writing out Eq.
(14) for the Lagrangian at hand, we obtain

(16)

The transpose of the system matrix MT corresponds to back-projection. Physically, the
condition on the gradient of the Lagrangian is like a force balance. The constraint terms can
be interpreted as a contact force, because the multipliers are only non-zero when the
corresponding constraint is satisfied with equality due to Eq. (12). The strength of the contact
force is proportional to the corresponding multiplier, and it always opposes the gradient of the
objective function because of Eq. (11).

In general, the optimality conditions can not be tested based on an image estimate alone,
because the Lagrange multipliers must be determined also. The structure of the problem at
hand, however, does allow us to bypass solving the dual optimization problem directly (i.e.,
the problem whose solution yields the multipliers). For the present optimization problem, we
focus on solving Eq. (16). Because the non-negativity constraints are active only at voxels that
are zero, the Lagrange multipliers will be zero for voxels that are strictly positive, due to
complementarity. This fact can be utilized to simplify Eq. (16). Using the indicator function

(17)

we can simplify Eq. (16):

(18)
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where diag(x⃗) is a function that yields a diagonal matrix with the elements of x⃗ placed along
the diagonal.

Equation (18) turns out to be the key for assessing the optimality of an image estimate f⃗. From
f⃗ the following gradients can be computed:

(19)

(20)

these vectors are the TV and data-constraint gradients masked by the indicator function of the
image estimate. If f⃗ is optimal, the two vectors, d⃗TV and d⃗data, must point in exactly opposite

directions so that Eq.(18) can be satisfied by a positive λ0. In principle, after determining λ0

the rest of the KKT conditions can be tested by using Eq. (16) to solve for λ ⃗, and by checking
that all multipliers are non-negative and that the image estimate respects all the constraints. In
practice, we check that the image estimate obeys the constraints and only that the vectors
d⃗TV and d ⃗data are back-to-back. We use the cosine of the angle between the two vectors

(21)

as a test of optimality. Ideally, cα should be −1.0, but in practice this value is difficult to reach
because a large number of iterations are required. Our experience from extensive numerical
studies is that cα is a very sensitive parameter and that there is often only imperceptible changes
in the image after cα goes below −0.5 (e.g., see the image progression of the jaw phantom
reconstruction in Fig. 14 of the Results section). This test is crucial to the operation of the
algorithm described below. Even though the algorithm is generally effective at finding the
minimum-TV image that satisfies the data constraint and non-negativity, it is possible to select
algorithm parameters that yield an image far from a true solution of the constrained, TV-
minimization problem. The parameter cα provides a very good test for an image estimate
obtained from the algorithm detailed in the next section.

2.4. ASD-POCS: an algorithm for constrained, TV-minimization

The algorithm to find the solution to the constrained, TV-minimization problem is based on
our previous algorithm presented in Sidky, Kao & Pan (2006a). That algorithm did not
explicitly consider data inconsistency, and it was designed to find the solution to the
constrained, optimization problem Eqs. (6)-(8) for the case of perfect data consistency, namely
∊ = 0. As the optimization problem is convex, the algorithm of Sidky, Kao & Pan (2006a) was
simply a combination of gradient descent on the TV objective function, Eq. (6), and POCS to
enforce the data and positivity constraints, Eqs. (7) and (8), respectively. The main problem
was to find a system to balance TV-gradient descent with POCS, and the balance was achieved
by making the TV-gradient-descent step-size proportional to the change in the image due to
POCS. Furthermore the proportionality constant for the TV-gradient descent was selected so
that the change in the image at every iteration of was decreasing.

The ASD-POCS algorithm presented in this article seeks the solution of Eqs. (6)-(8) for a given
∊. We emphasize again that is not a measure of the data inconsistency; it is a parameter of the
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optimization problem, and it represents a bound on the error of the estimated data with respect
to the available data. In developing the present algorithm it is useful to make the following
observation: the data constraint, Eq. (7), is always active for practical values of . (Recall from
Sec. 2.2, the term active refers to an inequality constraint whose dual variable, in this case
λ0, is strictly positive. Physically, in terms of the Lagrangian, this means that the constraint is
exerting a force that prevents the solution from having a lower value of the objective function,
in this case the TV norm.) This statement is obvious; if the data constraint is removed, the
minimum-TV image that satisfies positivity would be any non-negative flat image, because a
flat image has a TV of zero. Because the data-constraint is active, and because the optimization
problem is convex, the solution we seek will satisfy Eq. (7) with equality:

(22)

With this observation, the optimization problem, Eqs. (6)-(8), can be thought of, equivalently,
as a variational inequality.

Some of the ideas for the current algorithm are inspired by the understanding of the present
optimization problem in terms of the variational inequality (VI) formulation. The VI
formulation goes as follows:

(23)

where f⃗* is the solution to the VI problem; f⃗C is an image that satisfies the non-negativity and
data constraints; and C refers to the convex feasible region of all images satisfying these
constraints. In order to give an intuitive picture of the VI problem, a schematic of the problem
is provided in Fig. 1. At the solution of the VI problem, f⃗*, the vector v⃗2, which points to any
other image f⃗C, must point away from the TV-gradient at f⃗*, namely the vector v⃗1.

For the problem at hand, we do not have a projector that takes an image outside the feasible
region and yields the closest image in C; instead we use POCS to move the image estimate
toward the feasible set C. Yamada (2001) and Xu & Kim (2003) present an algorithm where
the projector is the solution of an iterative process such as POCS, but even so POCS is not
strictly a projector for our constraints because the data constraint is a hyper-ellipsoidal, and,
as such, the POCS iteration might not yield an image within C that is closest to the starting
image. In any case, we have adapted the HSD algorithm to the present problem. Operationally,
the change to the HSD algorithm is relatively minor, but it is enough of a difference to void
the convergence proof in Xu & Kim (2003). The modified HSD algorithm iterates POCS until
the image estimate satisfies the data and non-negativity constraints, followed by a “large” step
in the direction opposite to the image TV-gradient. The process is repeated, while reducing the
size of the steepest descent step. The algorithm is effective at finding the solution of the
constrained, TV-minimization problem, but it is quite inefficient. The proposed ASD-POCS
algorithm alternates one iteration of POCS with a steepest-descent step, while adapting the
steepest-descent step-size to ensure that the image-constraints are satisfied.

2.4.1. ASD-POCS—In order to explain the ideas of the ASD-POCS algorithm, we provide
in Fig. 2 a schematic of the image trajectories during the iteration of the algorithm. The
algorithm step that improves data consistency is the algebraic reconstruction technique (ART),
and basic projection enforces positivity. Together the ART and positivity projection is POCS.
The set of images represented by I(∊min) are the images whose projection have the minimum
distance to the given projection data. That ∊min may be non-zero reflects the fact that the
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projection data may not be internally consistent. The set of images represented by I(∊) represent
all images that satisfy a given error tolerance. Obviously ∊≥ ∊min. The goal of the ASD-POCS
algorithm is to provide the minimum-TV image that is in I(∊). The thick dashed line represents
the minimum-TV images as a function of ∊ (The minimum-TV image will necessarily be on
the boundary of I(∊) as long as the constant image is not contained in I(∊)).

The standard POCS algorithm alone would yield the image in I(∊) that is close to (and not
necessarily the closest to) the starting image f⃗0. In order to nudge the image toward the
minimum-TV solution, we instead alternate POCS steps with TV-steepest descent. The result
of this alternation yields a trajectory that is represented by the thin curve. The resulting image
will be in I(∊), and its TV will generally be less than the POCS solution. But the resulting image
may not be close to the minimum-TV image in I(∊). In order to approach this solution the
modified HSD algorithm takes a single large step in the direction of the negative TV-gradient.
This same step will in general take the image outside I(∊), but it can be brought back by
repeating the POCS and gradient-descent alternation (HSD performs only POCS for this
phase). The next time the image hits I(∊) it will in general have a reduced TV. This basic idea
is modified in the ASD-POCS algorithm; instead of taking a large gradient-descent step, the
gradient-descent step-size is slowly increased relative to the POCS step-size so that the current
image estimate gently moves outside I(∊) in the direction of lowered image TV. Once the image
is again outside I(∊) the gradient-descent step-size is reduced, so that it is smaller than the
POCS step-size and the image returns to I(∊). This step-size adaptation is repeated until the
stopping criteria are met. In our tests, the ASD-POCS algorithm appears to converge faster
than the modified HSD algorithm. The step-sizes for the POCS and gradient descent are
controlled adaptively (described in detail below). The complete iteration trajectory is
schematically indicated by the thin curve in Fig. 2, and the proposed algorithm thus yields an
image numerically close to the minimum-TV image within projection-data tolerance ∊.

2.4.2. Pseudo-code for the ASD-POCS algorithm—We present the ASD-POCS
algorithm in the form of a pseudo-code and abbreviate the notation where possible. The
symbol := means assignment, meaning that the result on the right-hand side gets assigned to
the variable on the left-hand side; image-space variables have a vector sign, e.g. f⃗, and a hat is
used if the vector has unit length; data-space variables are denoted by a tilde, e.g. g̃. The vector
M⃗

i is the row of the system matrix that yields the ith data element.

The pseudo-code for ASD-POCS is:

1. β := 1.0 ; βred := 0.995 ;

2. ng := 20; α := 0.2;

3. rmax := 0.95; αred := 0.95;

4. f⃗:= 0

5. repeat main loop (POCS/descent loop)

6. f⃗0 := f⃗

7.

for i = 1, Nd do: if  ART

8. for i = 1, Ni do: if fi < 0 then fi = 0 enforce positivity

9. f⃗res := f⃗

10. g̃ := M f⃗
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11. dd := |g̃ – g̃0|

12. dp := |f⃗ − f⃗0

13. if {first iteration} then dtvg := α * dp

14. f⃗0 := f⃗

15. for i = 1, ng do TV-steepest descent loop

16. df⃗ := ∇ f⃗∥f⃗∥TV

17.

18.

19. end for

20. dg := |f⃗ − f⃗0|

21. if dg > rmax * dp and dd > ∊ then dtvg := dtvg * αred

22. β := β * βred

23. until {stopping criteria}

24. return f⃗res

The optimization problem is specified by the projection data g̃0 and the data-inconsistency-
tolerance parameter ∊. Six parameters control the complete algorithm, which are explained
with the steps that make use of them. The values shown in lines 1-3 are typical of the values
used in generating the results in the next section. For the studies in this paper the initial image
function was initialized to zero, in line 4, but other choices are possible.

The outermost repeat-until loop, lines 5-23, contains two main components: adjustment toward
data consistency with the POCS-step loop, and steepest descent toward lower-TV images. The
key to the algorithm is how each of the respective step-sizes for POCS and TV-steepest descent
are controlled. The image vector f⃗0 is used as a place-holder image, in lines 6 and 14, in order
to compute changes in the current estimate of the image. The POCS steps, lines 7 and 8, cause
the image to respectively move toward data consistency and enforce non-negativity. The
ART operator depends on the relaxation parameter β, which starts at 1.0 and slowly decreases
to 0.0 as the iteration progresses. The current image is stored in f⃗res at line 9; on the last iteration
it is the image after POCS that is considered to be the “final” one. The data residual is
recomputed at lines 10 and 11, and the change in the image due to POCS is computed at line
12. Line 13 is used to convert the steepest-descent step-size from a fraction of a step-size to
an absolute image distance on the first iteration. Lines 15-19 implement the TV-steepest
descent. In practice, we find that, especially for the early iterations, the algorithm is effective
when multiple small descent steps are taken for each POCS step; this point is discussed further
at the end of this section. The change in the image due to TV-steepest descent is computed at
line 20. The step-size adaptation is performed at line 21 in such a way as to have the image-
estimate slide along the boundary of I(∊) toward images of lower TV. If the ratio of the change
in the image due to steepest descent to the change in the image due to POCS is greater than
rmax (usually < 1.0), the gradient-descent step-size is reduced by αred. By controlling the
steepest-descent step-size in this way the current image estimate changes toward I(∊). Once
the current image satisfies the data-tolerance condition, the gradient-descent step-size is no
longer reduced, allowing it to become larger than the POCS step-size, because the POCS step-
size is always decreasing. As a result the current image will drift toward lower-TV images.
When the data constraint is violated again, the steepest-descent step-size reduction will
continue. Finally, in line 22 the ART-relaxation parameter is reduced by a constant fraction

Sidky and Pan Page 12

Phys Med Biol. Author manuscript; available in PMC 2009 September 7.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



βred. This parameter controls the total number of iterations, because it affects the POCS step-
size, which in turn affects the steepest-descent step-size.

The stopping criteria at line 23 are composed of various checks. First, the current image is
checked to see if it satisfies the constraints of Eqs (7) and (8). Second, the parameter cα as
defined in Eq. (21) is examined to see if it is close to −1.0. Finally, if β is too small, the iteration
is stopped. If the optimality conditions are violated, then the program is rerun with new
parameters.

Generally, values of βred closer to 1.0 yield more accurate solutions to the optimization
problem, but such values also lengthen the iteration number. The steepest-descent parameters
ng and α should be set initially so that ng * α is on the order of, but larger than, one. This is
because the steepest-descent step-size dg should be comparable to dp. Note that in the above
pseudo-code this product starts at 4.0, but in practice the initial value of dg in the first iteration
of the main loop ends up being smaller than dp because the small descent steps are not in the
same direction. The initial value of α is not critical, because this parameter is adaptively
adjusted; however, one should err to the high side because α only shrinks during the execution
of the algorithm. The parameters rmax and αred control the evolution of α. The relative size of
dg to dp is controlled by rmax in line 21. Values of rmax should be chosen in the interval(0, 1)
to allow the resulting image to respect the data consistency and positivity constraints. And
αred should be much less than βred so that α can be reduced fast enough to maintain the march
toward data consistency. A progression of images is shown for the jaw phantom reconstruction
in Sec. 3.2.2, showing how the ASD-POCS algorithm converges for a particular example.

The algorithm presented above is designed with simplicity in mind, and several steps could be
taken to improve the efficiency. The projection at line 10 is computationally expensive, and it
is only needed to compute the distance dd at line 11; this could be, for example, computed
every 10th loop. The large number of steepest-descent steps at line 15 are needed to make sure
that the TV-objective function is decreasing with every step; lines 15-19 could be replaced by
a back-tracking search that would take many steps at early iterations when dp is large and few,
or one, at later iterations. Also, depending on the application, early truncation may be an option.
There is also the possibility of using efficient projectors at line 7 and line 10, or graphics
processing unit (GPU) acceleration (Xu & Mueller 2007). The gradient-vector computation at
line 16 is particularly well-matched to GPU computation (Sidky & Pan Lindau, Germany
2007).

The run-time for our current implementation of the ASD-POCS algorithm is 280 seconds per
loop for the jaw phantom results shown below. The size of the jaw phantom simulation is as
follows: the image size is 366 × 546 × 216 ≈ 43, 000, 000 voxels, and the projection data size
is 64 views with a 610 × 93 detector or roughly 3,600,000 measured rays. The POCS step at
line 7 and the projection at line 10 take 200 seconds running on one core of a dual-core AMD
opteron 285 CPU, and the gradient descent loop with 20 sub-iterations runs in 80 seconds with
a GPU implementation on an NVIDIA 7800 graphics card.

The ASD-POCS algorithm is presented here in the context of constrained TV-minimization,
but it is clear that other convex objective functions could be employed such as the ℓ1-norm.

3. Results

To demonstrate the ASD-POCS algorithm for image reconstruction, we perform two sets of
studies: the first set of studies are designed in such a way as to acquire some theoretical
understanding of image reconstruction with the ASD-POCS algorithm on the circular cone-
beam CT configuration, the second set of numerical examples aims at how the ASD-POCS
algorithm could be applied to dental scanning with a circular cone-beam CT scanner. We point
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out that the studies here are designed to illustrate the ASD-POCS algorithm, and necessarily
cannot be “complete” because the algorithm parameter-space is very large, and because 3D
iterative image reconstruction is time-consuming. In the following, we use the ASD-POCS
algorithm to find the solution to the constrained, TV-minimization problem for various
scanning configurations in circular cone-beam CT. As we are using the ASD-POCS algorithm
to find an accurate solution to this optimization problem, we refer to the solution of the
constrained, TV-minimization problem interchangeably with the result of the ASD-POCS
algorithm. Furthermore, for conciseness, we refer to the ASD-POCS algorithm in this
application as the TV algorithm.

The goal of the first set of studies in Sec. 3.1 is to acquire some understanding of how the TV
algorithm performs on image reconstruction with the circular cone-beam configuration under
ideal conditions. For these studies the projection data are generated by applying the projection
system-matrix M to a discrete image f⃗0, so that the data are perfectly consistent, to within
computer accuracy, with the system matrix. Minimal levels of noise are introduced to assess
stability of the algorithm. Such studies give an upper bound to the performance of the TV
algorithm, and they can also give some insight into the theoretical properties of image
reconstruction from the circular cone-beam CT data with constrained TV-minimization.

For the second set of studies in Sec. 3.2, the data model is more realistic in that the projection
data are generated by computing line integrals through computer phantoms represented by
continuous functions. For these studies there are two sources of data inconsistency: the images
are necessarily reconstructed onto voxelized arrays which entails mismatch with data generated
from continuous objects, and different levels Gaussian noise is added where the variance is
proportional to the line integral values (a reasonable approximation for CT). For typical noise
levels and image array sizes these two sources of data inconsistency may be comparable. For
these studies there may be no image f⃗ that satisfies M f⃗ = g̃. Image reconstruction in this situation
is expected to be degraded, but these results give a sense as to how the TV algorithm might
perform on actual circular, cone-beam CT projection data. These tests also demonstrate the
robustness of the proposed algorithm as neither source of data inconsistency is well-matched
with the equally weighted Euclidean norm constraint on the data in Eq. (7).

A potential application to dental CT scanning is studied by simulating data for the FORBILD
jaw phantom (http://www.imp.uni-erlangen.de/forbild/english/results/index.htm), shown in
Figs. 12 and 13. This phantom is challenging because there are many high-contrast structures
along with a low-contrast tumor in the tongue. The problem of imaging the tumor from under-
sampled projection data is a particularly difficult task. Again, because we are performing 3D
iterative reconstructions, the number of simulations is limited. We selected a few scanning
configurations representing different distributions of the projection views, trading off limited
angular scanning for angular under-sampling. The particular examples were chosen to illustrate
that the TV algorithm is effective at reconstructing circular cone-beam CT data with under-
sampled projection data, and furthermore, that the constrained TV-minimization, which is
particularly effective with angular under-sampling, may impact the scan design itself.

3.1. Reconstructions from data generated by the matched projection model

Theoretically, it is known that compactly supported continuous functions can be reconstructed
for the circular cone-beam scanning configuration (Ramm & Katsevich 1996). It is, however,
also known that image reconstruction in this case is highly unstable. The studies in this section
explore these theoretical conclusions in the discrete setting, where the true image f⃗0 is a
voxelized array of gray levels. The problem we address here is the situation where the data
vector g̃0 is given by:
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(24)

as opposed to using Eq. (1) to generate the simulated data, and image reconstruction involves
solving this linear system for f⃗0 from knowledge of g̃0. Recall that M is the system matrix that
yields the discrete set of projection measurements for circular cone-beam scanning from a
discrete image array. Based on what is known for the corresponding analytic image
reconstruction problem, one might expect to obtain fairly accurate reconstructed images in the
situation that the data g̃0 contain no noise or other inconsistencies. Furthermore, iterative
algorithms generally impose additional conditions on the image function that are not done in
the analytic case, i.e. positivity or in the present case minimum TV. If the additional
assumptions on the image are actually satisfied, it is possible that the instability of image
reconstruction in circular cone-beam CT may be reduced.

For the present studies we employ a relatively small image array of 100×100×100 voxels. To
obtain the true image, the Defrise disk phantom is embedded into this array. This phantom is
challenging for studying image reconstruction in circular cone-beam CT because of the rapid
variations in the z-direction. A slice of the true image is shown in Fig. 3. In order to save time
on the image reconstruction, we model a half-cone geometry. The source to iso-center distance
is 50 cm and the source to detector distance is 100 cm. The detector height is 20.7 cm with the
bottom edge of the detector at the plane of the circular trajectory. This configuration is
equivalent to a full cone-angle of 23°. The source trajectory covers the full 360°; in one case
the source trajectory is covered by 128 view angles, and for a few-view simulation the circular
trajectory is executed with only 25 views. The former study with relatively high angular
sampling isolates the effect of the cone-angle, while the latter study demonstrates the
effectiveness of the TV algorithm on few-view projection data in the setting of circular cone-
beam scanning. In both cases, the focus is on reconstruction from noiseless, consistent data,
but we also introduce perturbations in the form of Gaussian noise to the projection data to
assess stability of the image reconstruction in each case. For comparison, the TV-algorithm
results are shown together with POCS, which is essentially the TV algorithm without the TV-
steepest-descent steps.

For the first study, projection data are generated for the discretized disk phantom at 128 views.
Because there is no inconsistency in the projection data, theoretically it is possible to drive the
data residual down to zero. Hence the data-tolerance parameter is set to zero. Slices of the
volumes reconstructed by use of the TV algorithm and POCS are shown in Fig. 4. It appears
that under the conditions of this idealized simulation, both the TV and POCS algorithms yield
accurate reconstructions. The number of measured rays here is 2,880,000, which is greater than
the number of voxels 1,000,000. So it is possible that the discrete linear system describing this
imaging problem has a unique solution. But it is also known that image reconstruction in
circular cone-beam CT is unstable for continuous image functions. We investigate the
instability of image reconstruction in the present discrete case by adding noise to the projection
data.

In the next set of reconstructions, we add Gaussian distributed noise to the simulated projection
data, where the variance is set to 0.1% of the corresponding detector bin value. In Fig. 5, slices
of the reconstructed volumes are shown for the TV and POCS algorithms in a narrow contrast
window. Visually, the POCS image and the TV image for ∊ = 1.775 appear very similar,
because this value of ∊ is near ∊min and with dense ray sampling there is likely not much room
in the set of feasible images. As a result, the TV algorithm has little effect. Loosening the data
constraint by setting ∊ = 2.0 allows the feasible set of images to expand, and the TV algorithm
clearly has a greater effect. The speckle noise is substantially reduced, while the true structures
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still are well-defined. Further increasing ∊ to 2.5 yields an image that appears to lose resolution
at high cone-angles near the top of the image.

The effect of ∊ can be seen quantitatively by plotting the root-square error (RSE) of the
reconstructed image as a function of ∊ in Fig. 6. The trend of this plot is interesting in that the
minimum RSE error occurs at an ∊ > ∊min, mirroring the visual trend of Fig. 5. The reason why
the TV reconstruction can become more accurate with increasing ∊ is that the underlying image
function is known to have a sparse GMI. Another interesting point about this result is that the
minimum image-RSE occurs near the noise level introduced in the simulated data. The RSE
of the projection data from the noiseless data is 2.14. The proximity of the minimum image-
RSE to ∊ = 2.14 is likely due to the fact that the noise introduced is Gaussian which matches
the Euclidean distance used in the data constraint Eq. (7). At first glance the fact that there
exist images with ∊ < 2.14 seems impossible, but on further reflection it is possible to have ∊
lower than the data RSE because a component of the data noise will be consistent with the
cone-beam projection matrix. When ∊ is near ∊min, the TV algorithm for this scanning
configuration tends toward the POCS result, because the present linear system appears to be
over-determined. In other words, the constraints Eq. (13) specify a very limited set of images,
and minimizing the image TV has little effect. As the data tolerance ∊ is loosened, the set of
feasible images expands, and there is more freedom to find feasible images with lower TV. As
∊ is increased further, the image becomes more blurry and less accurate in the RSE sense. In
practice, the true image is not known and such a plot cannot be made, but the operating ∊ can
be found by simulation of the scanning configuration and imaging subject.

In the previous example the sampling of disk phantom projections over-determines the values
of the voxels in image array. For the next set of studies we investigate a decidedly under-
determined system where the scan simulates only 25 projection views with a 100×100 bin
detector. The number of samples in this case is a quarter of the number of voxels in the image;
moreover, the voxel sampling is non-uniform. Figure 7 shows slices from the volumes
reconstructed by TV and POCS algorithms. For this case, the difference between the two results
is more dramatic. The TV reconstruction appears to be very accurate, while the POCS image
has significant artifacts. What allows the TV algorithm to recover the image for this case is the
extra condition imposed on the image that it has a sparse GMI. The disk phantom has 100,327
non-zero voxels in its GMI. In order for the TV algorithm to reconstruct accurately the number
of measurements should be at least twice the number of non-zero GMI values, and the data set
with 25 views contains 250,000 measurements. Indeed, under ideal conditions, the image
recovery is very accurate for the TV algorithm.

With 25 projection view scan, we repeat the study on the effect of the data tolerance on image
reconstruction by constrained TV-minimization. The standard deviation for the Gaussian noise
model is again set to 0.1% of the corresponding data values. Using the POCS algorithm, the
data tolerance minimum RSE, ∊min is estimated to be 0.033, which is much lower than the RSE
of 0.63 introduced into the noiseless projection data. The reason why the data RSE can be
reduced so much is that the projection data are under-sampled in view angle, and as a result
only a small component of the noise is inconsistent with the cone-beam transform. In Fig. 9
the dependence of the reconstructed image RSE is shown as a function of ∊. Again, the RSE
error in the reconstructed image first drops then increases with increasing ∊. Interestingly, the
RSE values for TV algorithm at ∊ = ∊min are lower than that for the POCS algorithm.
Furthermore, looking at the reconstructed images in Fig. 8, the TV algorithm for ∊ = ∊min

appears to give a more accurate reconstructed image than that of POCS. The reason for the
difference in the results between POCS and TV with ∊ = ∊min is that the image sampling is
highly under-determined in this case. The constraint on the image for ∊ = ∊min no longer
specifies a unique image, and in general the images that do satisfy the data constraint do not
all have the same TV. The TV algorithm selects the one with the minimum TV, which will not
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in general be the same as the image arrived at by POCS. Again the success of the TV algorithm
in terms of accuracy of the image reconstruction depends on the fact that the underlying image
function has a sparse GMI.

The system configurations investigated in this section are idealized in the sense that the
simulated projection data are generated from the same discrete cone-beam projection operator
used in the reconstruction algorithms. Furthermore, in the examples with data noise, the
inconsistency in the data is well characterized and understood. These studies do, however, help
in comparing algorithms for inversion of the imaging linear system, and they give an upper
bound to the performance of the reconstruction algorithms. In the case of circular cone-beam
scanning with full sampling in the angular direction, both POCS and TV algorithms yield
accurate reconstructions when there is no data inconsistency. Thus it suggests that the circular
cone-beam configuration can be highly accurate even though this configuration does not satisfy
Tuy's data sufficiency condition. When data noise is introduced, the reconstructed images are
degraded, but the TV algorithm appears to provide improved image reconstruction over POCS.
For the case of under-sampled projection data, the gap between the images reconstructed by
POCS and constrained TV-minimization is much larger. For the discretized disk phantom, the
TV algorithm yields accurate image reconstruction while the POCS results contain severe
artifacts.

An important point to understand about the data inconsistent case, for both the sufficiently-
and under-sampled projection data, is the role of the data tolerance ∊ and how to determine it.
In the studies above, we have studied the dependence of the image-RSE as a function of ∊, and
it is clear that this dependence is not monotonic. As a result there is an ∊ that gives an optimal
reconstructed image in the sense of minimal RSE. This optimal ∊, however, depends on
numerous factors. It depends on the underlying image function, the form and level of the data
inconsistency, the system matrix, and also the metric by which the quality of the image is being
judged (in this case RSE). For the curves computed in Figs. 6 and 9, the difference is the system
matrix which represents sufficient sampling in the former and under sampling in the latter. As
can be seen the ∊ that yields the optimal reconstructed image, in terms of RSE, is very different
in both cases. Additionally, the importance of finding the optimal ∊ also depends on the above
factors and the desired goal of the imaging task. In the under-sampled case studied above, a
wide range of ∊ for constrained TV-minimization leads to substantially better images than
POCS, and the RSE appears to be flat, while for the densely sampled case, the image quality
metric may depend more strongly on ∊.

3.2. Reconstructions from data generated by a continuous object data model

The examples in this section aim at investigating the performance of the TV algorithm using
a continuous object data model which more realistically models cone-beam CT imaging.
Previously, the disk phantom used was a discretized 3D volume array, and data were generated
by discrete projection. In this section, the phantoms are defined as combinations of analytic
shapes such as ellipsoids and cylinders, and the projection data are modeled by analytic line
integrals through these shapes. As a result, even in the case of no noise, there will be a mismatch
between the projection operator that generates the data and the discrete projector used in the
reconstruction algorithms. Theoretically, the inconsistency between the actual data model and
the projector used in the algorithm can be reduced by increasing image resolution (Zbijewski
& Beekman 2006), but in practice there will always be a limitation due to the correspondingly
larger computational effort. Noise is also considered in the data model. The first set of
reconstructions are performed again on the half disk phantom, and the set of studies employ
the FORBILD jaw phantom, which has both high contrast and low contrast objects.
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3.2.1. Disk phantom—For the image reconstruction from projections of the continuous disk
phantom, the size of the projection data set and reconstruction volume are increased. The
simulated detector now has 400×400 bins. The projection data are taken at only 32 views. The
volume is reconstructed into a 4003 array. We show reconstructed volume slices of the disk
phantom for the case where no noise is added to the projection data and for Gaussian noise
added at a level of 1% and 5%. Figure 10 shows a vertical slice through the reconstructed disk
phantom for the 32 view data containing no noise. The TV result clearly shows fewer artifacts
than that of POCS. This difference is not surprising considering that there are only 32 views
in the data set. The TV reconstruction for the present continuous disk phantom and unmatched
system matrix appears to be less accurate than the TV reconstructions of the previous section
with the discrete disk phantom and matched system matrix. Again, this is the expected result
as the present noiseless projection data contain inconsistencies as well as being insufficient for
exact reconstruction. The TV algorithm here is run with ∊ = 10.0. Some results for TV
reconstruction with noisy data are shown in Fig. 11 along with the previous noiseless
reconstruction. The data tolerances for the 1% and 5% noisy data sets are respectively ∊ = 20.0
and ∊ = 64.0. Clearly, the higher noise level results in a noisier image, but the TV algorithm
appears to be robust against data inconsistencies. It is particularly interesting in the 5% noise
case that the few-view streak artifacts seen in the POCS image of Fig. 10 do not appear here.
Although TV images are shown here for single values of , it may be important to explore other
values of ∊ as is done in Sec. 3.1. Such a study, which is beyond the scope of the current work,
is, in any case, usually highly task dependent; the optimal ∊ depends on what the image is being
used for.

3.2.2. Jaw phantom—In order to provide a more stringent and realistic test for the TV
algorithm, we employ a more detailed phantom; namely, we generate data from the analytic
FORBILD jaw phantom. This phantom has more structures with varying contrast levels than
does the Defrise disk phantom, as seen in Figs. 12 and 13. The investigations here explore
different configurations with a limited number of projection views on a circular scanning orbit.
The visual test for the various configurations and the TV algorithm is the apparent contrast of
the low-contrast tumor in the tongue. Such a test is challenging for any reconstruction
algorithm, because streak artifacts from the surrounding high contrast objects such as the teeth
can swamp low-contrast structures. In each of the scans simulated for the jaw phantom, the
number of views is fixed at 64; however, the angular range of the x-ray source is varied. The
64 views are distributed uniformly over a 180° arc in front of the jaw (front scan), in back of
the jaw (back scan), and over the full 360° circle around the jaw (2π scan). The trade-offs for
these scans are as follows: for the back and front scans the angular resolution will be better
than that of the 2π scan while the 2π scan obviously has better angular coverage; and between
the back and front scans the part of the volume opposite the x-ray source will have better cone-
beam coverage due to beam divergence while the angular coverage will be diminished for the
same region. For all of the projection data Gaussian noise is added at a level of 0.1%. The
simulated detector has 610×93 detector bins. As the simulated number of detector rows is only
93, the projection data are truncated in the vertical direction. The reconstructed volume is
composed of 366×546×216 cubic voxels.

Before comparing the different scanning configurations, we look in depth at the progress of
the TV algorithm for the 2π scan. Frames for a sagittal slice through the jaw are shown in Fig.
14 at increasing iteration number. The data tolerance for this reconstruction is set to ∊ = 156.1,
and this value is reached at iteration i = 500. The second image in the series at i = 600 already
satisfies the data constraint, but the value for cα is substantially larger than −1.0. Thus the i =
600 image is not the minimum-TV image satisfying the data constraint. As the various step-
sizes in the TV algorithm are adjusted, the data distance converges to the set value 156.1 and
cα nears −1.0. With the current version of the TV algorithm the image will not in general reach
the solution of the optimization problem Eqs. (6)-(8), but the series of images shown in Fig.
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14 indicate that in practice the present algorithm is close enough and that cα provides a good
test for the constrained, TV-minimization solution. It is clear from the figure that there is little
change in the current image estimate from iteration 1200 to 1800 even though the images are
displayed in a narrow contrast window. There is, however, still quite some change in cα. We
have found empirically that there is little significant difference in the image once cα goes below
−0.5, but we aim to select algorithm parameters so that we can attain cα in the neighborhood
of −0.9. It is possible to achieve images with cα arbitrarily close to −1.0 by replacing the POCS
step with gradient descent, but such an algorithm is slow and appears to be unnecessary.

The large number of iterations to achieve near convergence may lead to questions about the
algorithm practicality. But we point out that no other algorithm that we know of is capable of
recovering the low contrast tumor no matter how many iterations are performed. The number
of iterations necessary to achieve near convergence can vary substantially depending on
scanning configuration and properties of the object being scanned. The jaw phantom example
considered here is particularly challenging, requiring a large number of iterations. This number
may be substantially reduced if the structures of interest have higher contrast. Finally,
mathematical convergence may be unecessary in practice (Sidky et al. 2008).

In Figs. 15-18 we compare image reconstruction of the jaw phantom by the TV algorithm and
by expectation maximization (EM) for data acquired with the front, back, and 2π scans. We
compare with the EM algorithm because it is commonly used for iterative image reconstruction.
We do not make, here, any conclusions about the performance of the TV algorithm versus EM
because there are many parameters in the algorithm implementations. We only seek to illustrate
that the additional assumption of a sparse GMI in the underlying object function for constrained
TV-minimization may yield reconstructed images of greater accuracy. (The reconstructed
images using POCS without TV gradient descent are qualitatively similar to the EM images).
For the present implementation of EM, the current image estimate is regularized by convolving
it with Gaussian with the width of half the voxel length on every iteration. In Fig. 15 transaxial
slices at a z-plane through the tumor are shown, while in Fig. 16 transaxial slices in the plane
of the x-ray source trajectory are shown. Figures 17 and 18 show sagittal and coronal slices
respectively. The EM reconstructions all show prominent streak artifacts due to the fact that
the projection data contain only 64 views. The artifacts in the EM results completely swamp
the low contrast tumor in the tongue. The TV images, however, have no significant streaking
due to the limited number of views, and the resulting images can be displayed in a gray scale
window narrow enough to pick up the tumor.

The tumor in the TV images seems to be most easily seen in the case of the back scan. The
tumor is also clearly visible in the 2π scan, but it is more blurred in comparison with the back
scan. One might expect that the front scan would by the most capable of resolving the tumor,
because, from the point of view of the tumor, the angular coverage in front scan should be more
complete. The angular coverage turns out not to be the deciding factor. The relevant property
of the scan that explains this result is the cone-beam coverage. The tumor is off the mid-plane
of the circular scan; in fact, it is near the edge of the cone-beam. Looking at the TV images in
Fig. 17, the effect of the cone-beam geometry becomes clear. For the front scan, the modeled
x-ray source is closer to the tumor on average, and as a result the cone-beam is too narrow to
see the tumor for some of the views. For the back scan, the cone-beam is larger at the tumor
and it is visible from all the views. Visually, the TV algorithm appears to have relatively
uniform image quality going from the back of the jaw to the front of the jaw, so the back scan
appears to be advantageous due to the increased cone-beam coverage. Note that the EM sagittal
images in Fig. 17 show the intuitive image quality behavior. The front scan for the EM resolves
the front teeth better than the back scan. It is interesting to note the effect of increasing the
angular spacing between views, and thereby the angular coverage, for the TV algorithm. The

Sidky and Pan Page 19

Phys Med Biol. Author manuscript; available in PMC 2009 September 7.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



resulting image appears to lose resolution without introducing streak artifacts typical of angular
under-sampling.

4. Discussion

In this article, we have developed and investigated a compressive-sensing image reconstruction
algorithm which aims at solving constrained minimization of the estimated image TV norm.
Although the application presented here is circular cone-beam CT, it is clear that this algorithm
can be applied to other tomographic imaging modalities with linear system models. The
algorithm is closely related to the well-known POCS algorithm, taking advantage of an
additional property of many underlying object functions: namely, that the object being scanned
often times has a sparse GMI. When this assumption is valid, the ASD-POCS algorithm may
yield accurate image reconstruction even when the projection data are highly under-sampled.
Additionally, for the case of circular cone-beam CT, the minimum-TV restriction on the object
function appears to stabilize image reconstruction at parts of the imaging volume at large cone-
angles for circular cone-beam scanning. When the assumption of sparse GMI does not apply,
the resulting reconstructed images are generally no worse than the POCS result due to the
design of the algorithm. The presented TV algorithm used for TV-minimization is simple with
few algorithm parameters so that analyzing its performance on image reconstruction is
possible. Future work will focus on improving algorithm efficiency, as was discussed at the
end of Sec. 2.4.2, and studying the impact of early truncation, so that the TV algorithm can be
practical for actual scanning systems.

As demonstrated by the results using the FORBILD jaw phantom, the TV algorithm appears
to be able to resolve low contrast structures in the presence of high-contrast objects even with
the projection data sets are limited in angular range or view number, and when the low contrast
object is not at the mid-plane of the circular x-ray trajectory. The fact that the scan with the x-
ray source sweeping over the back of the head appears to yield the best results with constrained
TV-minimization, is counter-intuitive since the tumor being imaged is more toward the front
of the head. This example illustrates a property of the TV algorithm that may play a role in
system scanning design when using this algorithm. In general, the constrained TV-
minimization performs well with respect to angular under-sampling, so it may be advantageous
to sacrifice angular view sampling density for improving cone-beam or angular range coverage.
We emphasis, however, that it is difficult to make general conclusions about the performance
of the TV algorithm because its performance depends on the structure of the object being
scanned.

Although this article presents the TV algorithm in the context of circular cone-beam CT
scanning, it is clear that this algorithm is directly applicable to other cone-beam CT
configurations. More generally, the TV algorithm applies with minor modifications to a host
of other tomographic imaging applications as long as the data model depends linearly on the
underlying object function. In future work, we will investigate the impact of other physical
factors that complicate the data model, and the present algorithm will be applied to actual data
sets from x-ray based tomographic scanning systems.
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Figure 1.

Illustration of the structure of the variational inequality (VI) formulation of the TV optimization
problem. The region C represents all feasible images, in this case images that satisfy the data
and positivity constraints. v⃗ = −f⃗∥f⃗*∥TV and v⃗2 = f⃗C − f⃗*. Solving the VI problem amounts to
finding f⃗* such that v⃗1 · v⃗2 ≤ 0 (or equivalently π/2 ≤ β ≤ 3π/2) for any feasible image f⃗C.
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Figure 2.

Schematic of the ASD-POCS algorithm in the space of possible images. The dark circle labeled
I(∊min) represents the image or set of images with minimum error ∊min in the estimated
projection data. The region labeled I(∊) represents all images that agree with the data to within
tolerance ∊. The image within I(∊) with minimum TV will in general be on the boundary of I
(∊), and the thick dashed line represents the minimum-TV images for the regions I(∊′) where
∊min < ∊′ < ∊. The dot outside of I(∊) and the thin curve are respectively the starting image f⃗0
and image trajectory for the ASD-POCS algorithm. In the ASD-POCS algorithm specified by
the pseudo-code in this section, two image distances dp and dg control the image trajectory.
The distances dp and dg are respectively the magnitudes of the change in the image due to
POCS and TV-steepest descent. When the current image estimate is outside of I(∊), dg is
adaptively controlled to be less than dp. When the current image estimate is inside of I(∊),
dg is adaptively controlled to be greater than dp. The resulting image trajectory that is
schematically denoted by the thin curve terminates near the VI solution f⃗*.
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Figure 3.

Vertical slice at y = 0 through the discrete Defrise disk phantom. The phantom is cut in half at
the z = 0 plane in order to reduce computational time. The plane of the circular x-ray source
trajectory is at z = 0.
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Figure 4.

Vertical slice at y = 0 through the half Defrise disk phantom; top: phantom, middle:
reconstructed image by the TV algorithm, and bottom: reconstructed image by POCS. The
simulated projection data contains 128 views covering 2π radians. The gray scale of the images
is [0.9,1.1].
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Figure 5.

Reconstructed images at the y = 0 slice of the half Defrise disk phantom with simulated 0.1%
Gaussian noise added to the projection data. The top image is the POCS reconstruction, and
the other three are TV reconstructions for three different values of ∊. The simulated projection
data contains 128 views covering 2π radians. The gray scale is [0.95,1.05].
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Figure 6.

Image RSE as a function of data tolerance ∊. For reference, the RSE deviation from the noiseless
data is 2.14, and the POCS estimate for ∊min is 1.772.
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Figure 7.

Vertical slice at y = 0 through the half Defrise disk phantom; top: phantom, middle:
reconstructed image by the TV algorithm, and bottom: reconstructed image by POCS. The
simulated projection data contains only 25 projection views covering 2π radians. The gray scale
of the images is [0.0,2.0].
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Figure 8.

Reconstructed images at the y = 0 slice of the half Defrise disk phantom with simulated 0.1%
Gaussian noise added to the projection data. The top image is the POCS reconstruction, and
the other three are TV reconstructions for three different values of ∊. The simulated projection
data contains 25 views covering 2π radians. The gray scale is [0.95,1.05].
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Figure 9.

Image RSE, for images reconstructed from the 25-view data set, as a function of data tolerance
∊. For reference, the RSE deviation from the noiseless data is 0.63, and the POCS estimate for
∊min is 0.033.
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Figure 10.

Vertical slice at y = 0 through the half Defrise disk phantom; top: phantom, middle:
reconstructed image by the TV algorithm, and bottom: reconstructed image by POCS. The
simulated, analytic projection data contains only 32 projection views covering 2π radians. The
gray scale of the images is [0.0,2.0].
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Figure 11.

Reconstructed images at the y = 0 slice of the half Defrise disk phantom with simulated
Gaussian noise, of varying strength, added to the analytic, 32-view projection data. The gray
scale is [0.0,2.0].
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Figure 12.

Slices at x = 1.0cm(left)andat y = 7.0 cm (right) through the FORBILD jaw phantom. The slices
were chosen to intersect the tumor located at (−1.0 cm, 7.0 cm, 4.0 cm). The displayed gray
scale is [0.9,1.15].
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Figure 13.

Two trans-axial slices at z = 4.0cmand z = 6.0 cm through the FORBILD jaw phantom. The
slice at z = 4.0 cm intersects the tumor located at (−1.0 cm, 7.0 cm, 4.0 cm). The displayed
gray scale is [0.9,1.15].
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Figure 14.

Intermediate images showing the progress of the iterative ASD-POCS algorithm for
constrained TV-minimization. Shown is a sagittal slice at x = −1.0 cm with a gray scale of
[0.995,1.01]. The value of ∊ is set to 156.1 which was reached at iteration number 500.
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Figure 15.

Transaxial slice at z = 4.0 cm for images reconstructed by the TV and EM algorithms for 64-
view projection data distributed in various configurations. The TV and EM images are shown
at a gray scale of [0.98,1.02] and [0.8,1.2], respectively. The larger gray scale window for the
EM results is necessary due to the prominent streaking artifacts.
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Figure 16.

Transaxial slice at z = 6.0 cm for images reconstructed by the TV and EM algorithms for 64-
view projection data distributed in various configurations. The TV and EM images are both
shown at a gray scale of [0.8,1.2].
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Figure 17.

Sagittal slice at x = −1.0 cm for images reconstructed by the TV and EM algorithms for 64-
view projection data distributed in various configurations. The TV and EM images are shown
at a gray scale of [0.98,1.02] and [0.8,1.2], respectively. The larger gray scale window for the
EM results is necessary due to the prominent streaking artifacts.
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Figure 18.

Coronal slice at y = 7.0 cm for images reconstructed by the TV and EM algorithms for 64-view
projection data distributed in various configurations. The TV and EM images are shown at a
gray scale of [0.98,1.02] and [0.8,1.2], respectively. The larger gray scale window for the EM
results is necessary due to the prominent streaking artifacts.
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