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ABSTRACT

Context. With the advent of visible and infrared long-baseline interferometers with more than two telescopes, both the size and the
completeness of interferometric data sets have significantly increased, allowing images based on models with no a priori assumptions
to be reconstructed with an aperture synthesis technique.
Aims. Our main objective is to analyze the multiple parameters of the image reconstruction process with particular attention to the
regularization term and the study of their behavior in different situations (types of astrophysical objects, telescope array configurations,
level of noise, etc.). The secondary goal is to derive practical rules for the users.
Methods. Using the Multi-aperture image Reconstruction Algorithm (MiRA), we performed multiple systematic tests, analyzing
11 regularization terms commonly used. The tests are made on different astrophysical objects, different (u, v) plane coverages and
several signal-to-noise ratios to determine the minimal configuration needed to reconstruct an image. We establish a methodology and
we introduce the mean-square errors (MSE) to discuss the results.
Results. From the ∼24 000 simulations performed for the benchmarking of image reconstruction with MiRA, we are able to classify
the different regularizations in the context of the observations. We find typical values of the regularization weight. A minimal (u, v)
coverage is required to reconstruct an acceptable image, whereas no limits are found for the studied values of the signal-to-noise ratio.
We also show that super-resolution can be achieved with increasing performance with the (u, v) coverage filling.
Conclusions. Using image reconstruction with a sufficient (u, v) coverage is shown to be reliable. The choice of the main parameters of
the reconstruction is tightly constrained. We recommend that efforts to develop interferometric infrastructures should first concentrate
on the number of telescopes to combine, and secondly on improving the accuracy and sensitivity of the arrays.
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1. Introduction

Many astrophysical studies require milli-arcsecond (mas) reso-
lution images at optical wavelengths (visible and infrared), for
example, the understanding of the interplay between accretion
and ejection in the inner part of the disks of young stellar ob-
jects, the expansion mechanisms in novae just a few hours or
days after the explosion, and the nature of dust in active galactic
nuclei. Information at such a high resolution at the optical wave-
lengths requires diffraction-limited images with pupil sizes of
the order of tens to hundreds of meters that can only be achieved
by interferometrically combining light from separate apertures.
The Very Large Telescope Interferometer (VLTI) and the Center
for High Angular Resolution Array (CHARA) are facilities that
provide interferometric measurements that can be used to re-
construct images of stellar surfaces (e.g., Monnier et al. 2007;
Haubois et al. 2009; Zhao et al. 2009), binaries (e.g., Zhao et al.
2008; Kraus et al. 2009), circumstellar shells around evolved
stars (e.g., Le Bouquin et al. 2009), and the close environment
of young stars (Renard et al. 2010; Kraus et al. 2010).

Owing to the sparse (u, v) coverage, the image reconstruction
process is ill posed as there are more unknowns, e.g. the pixels
of the image, than measurements. The data alone are insufficient
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to reconstruct an unambiguous image and some additional con-
straints, so-called the regularizations, are needed to converge to
a unique and stable solution. Compared to radio interferometry,
the data are much sparser in optical interferometry; hence, we
expect the image reconstruction problem to be much more sen-
sitive to the choice and the tuning of the regularization. Since
the general study of regularization by Titterington (1985), many
different methods have been proposed in the literature to adjust
the regularization level. Since image reconstruction for optical
interferometry is still in its infancy, it is fundamental to ana-
lyze the different types of regularization to find those that are
the most suitable for the different astrophysical problems and to
be able to tune the weight of the regularization. In this context,
we carried out systematic tests using the image reconstruction
algorithm devoted to optical interferometry data developed by
Thiébaut (2008), called the Multi-aperture image Reconstruction
Algorithm (MiRA). The analysis of these tests allow us to ex-
tract some general conclusions and establish practical rules for
the users.

The mathematical principles of the image reconstruction
technique is presented in Sect. 2. The parameters of the simu-
lated data are presented together with the characteristics of the
images and the strategy in Sect. 3. The results of the simulations
are presented and discussed in Sect. 4, with an analysis of the
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role of the different terms and parameters in the image recon-
struction. Finally, our conclusions are summarized in Sect. 5.

2. Principles of image reconstruction from optical

interferometric data

We do not intend to provide a formal and precise description of
image reconstruction in optical interferometry, but instead suffi-
cient details to ensure that the paper is self-contained. Readers
interested by a more detailed description of the method should
refer to Thiébaut & Giovannelli (2010).

2.1. Data from optical interferometric observations

The principle of interferometry is to recombine coherently the
beams from two or more independent telescopes and measure
the so-called complex visibilities of the fringe patterns produced
by the interferences. According to the van Cittert-Zernicke the-
orem, for an ideal interferometer, the complex visibility V j1, j2(t)
of the fringes produced by the interferences of the telescopes
j1 and j2 at time t is proportional to the Fourier transform of
the object brightness distribution Î(ν j1, j2 (t)) at spatial frequency
ν j1, j2 (t) = B

⊥
j1, j2

(t)/λ, where λ is the wavelength, and the so-

called baseline B
⊥
j1, j2

(t) represents the separation between the

two telescopes projected on a plane perpendicular to the line of
sight (Lawson 2000; Malbet & Perrin 2007). Since the number
of measurements is finite, to simplify the equations we introduce
some notation for the mth measured complex visibility and the
corresponding spatial frequency given by

Vm
def
= Vj1,m, j2,m (tm) , (1)

νm
def
= B

⊥
j1,m, j2,m

(tm)/λ , (2)

where j1,m and j2,m are the interfering telescopes and tm is the
time of observation.

2.2. Description of the image model

The final product of the image reconstruction is an image that
can be treated as a grid of square pixels. In this context, the ob-
ject brightness distribution as a function of the position θ can be
approximated using the parametrization

I(θ) =

N
∑

n=1

xn bn(θ), (3)

where x = {xn}Nn=1
are the image parameters, e.g. the pixel val-

ues of the image, and {bn(θ)}N
n=1

is the chosen basis of functions,
e.g. the response function of each pixel. The image reconstruc-
tion then consists of estimating the N parameters x that most
closely fit the interferometric data. In this paper, we chose xn to
be proportional to the value of the nth pixel of a sampled image
and bn(θ) = b(θ − θn), where b(θ) is the pixel shape and θn the
position of the nth pixel; thus

xn
def
= α I(θn), (4)

where α > 0 is a scaling factor such that x is normalized (this is
required by the interferometric data format, cf. Pauls et al. 2005).
With this model, the exact Fourier transform of the brightness
distribution is given by

Î(ν) =
∑

n

xn b̂n(ν) = b̂(ν)
∑

n

xn e−i 2 π θn·ν, (5)

where b̂n(ν) and b̂(ν) are the Fourier transforms of the basis func-
tions. In our case, they correspond to the Fourier transform of the
pixel response function, i.e. the pixel shape. Hence, the model of
the mth complex visibility is given by

Îm = Î(νm) =
∑

n

Am,n xn = (A · x)m, (6)

where A is a matrix with the complex coefficients

Am,n = b̂n(νm) = b̂(νm) e−i 2π θn·νm . (7)

This matrix multiplication performs a linear transformation that
contains the Fourier transform, the pixel shape, and the sparse
sampling of the (u, v) plane.

The main problem in optical interferometry is the small num-
ber of telescopes (currently up to four or six), which leads to a
sparse sampling of the spatial frequencies, the so-called (u, v)
plane (see Fig. 2). Owing to random effects caused by the atmo-
spheric turbulence, the visibility phase cannot be calibrated and
the power spectrum and the closure phase are used. This results
in a partial loss of the Fourier phase information (Thiébaut &
Giovannelli 2010).

2.3. Inverting the problem of interferometric imaging

Because of the sparse (u, v) coverage and the possible lack of
other information such as the phase, the reconstruction of an im-
age obtained by the interferometric data alone is an ill-posed
inverse problem. It needs additional a priori constraints to be
recasted into a problem that has a unique and stable solution.
A general prescription is to express the solution as one that
minimizes a penalty function f under some strict constraints
(Thiébaut 2005; Thiébaut & Giovannelli 2010)

x
+ = arg min

x

f (x) s.t. x � 0 and
∑

n
xn = 1, (8)

with

f (x) = fdata(x) + µ fprior(x), (9)

where the so-called likelihood term fdata(x) measures the dis-
crepancy between the model and the available data, while the
so-called regularization term fprior(x) measures the discrepancy
with the prior information. In other words, minimizing the like-
lihood term fdata(x) enforces the fit with the actual data, while
minimizing the regularization term fprior(x) enforces the agree-
ment with the priors. The so-called hyperparameterµ > 0 is used
to adjust the relative weight of the constraints set by the mea-
surements and the ones set by the priors. In Eq. (8), the positiv-
ity (x � 0) and the normalization (

∑

n xn = 1) of the brightness
distribution are also included by default.

For the image reconstruction, we use MiRA (Thiébaut 2008)
to find solutions of Eq. (8). MiRA can deal with the various kinds
of data provided by an optical interferometer and implements a
number of different regularizations (Thiébaut 2008; Thiébaut &
Giovannelli 2010).

2.3.1. The likelihood term fdata and the data model

We focus on the choice of the priors and the tuning of their pa-
rameters. It is not within the scope of the paper to deal with
global optimization issues and the search for a global minimum
of the penalty function in Eq. (9). We therefore assume that the
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available measurements consist of complex visibilities, i.e. am-
plitude and phase, in order to have a convex likelihood term
fdata(x). If the regularization term fprior(x) is also convex, the
global penalty function f (x) will be convex, which ensures that
the solution of Eq. (8) is unique. Current optical interferome-
ters only provide phase closures and power-spectrum data (i.e.
the phase of the bispectrum and the squared amplitude of the
complex visibilities), this means that our assumption will give
somewhat optimistic results because some Fourier phase infor-
mation is missing and because the likelihood term fdata(x) is
non-convex when dealing with real data. However, as the num-
ber of simultaneous interfering telescopes increases, the number
of missing phases becomes much less important and they can
be reliably derived using self-calibration (Pearson & Readhead
1984) to achieve a situation similar to the case studied in our
simulations. Moreover, new interferometers will make use of a
phase reference source to directly measure the phase of the com-
plex visibilities (Delplancke et al. 2003).

However, the OI-FITS standard (Pauls et al. 2005) imposes
the use of complex visibilities in their polar representation with
independent error bars. We therefore simulate each measured
complex visibility as

̺m = |Vm| + δ̺m, and ϕm = arg Vm + δϕm , (10)

where ̺m and ϕm are the measured amplitude and phase of the
mth measure, Vm the corresponding complex visibility computed
from the true object brightness distribution, and δ̺m and δϕm are
additive noise terms. In our simulations, the noise terms have
independent Gaussian statistics such that

Var(δ̺m) = 〈̺m〉2 Var(δϕm) , (11)

where 〈̺m〉 = |Vm| is the expected value of the amplitude that can
be computed from the complex visibility of the true image. This
particular choice follows approximately the model of Goodman
(1985).

In this context, to define the likelihood term we use the local
approximation (Meimon et al. 2005)

fdata(x) =
∑

m

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

r//,m(x)

σ//,m

)2

+

(

r⊥,m(x)

σ⊥,m

)2
⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (12)

where r//,m(x) and r⊥,m(x) are the two components of the com-

plex residuals, rm(x) = ̺m eiϕm − (A · x)m, respectively, along
and orthogonally to the measured complex visibility. Given the
error bars σ̺,m and σϕ,m of the amplitude and the phase of the
complex visibility, the standard deviations in the components of
the complex residuals are (Pauls et al. 2005)

σ//,m = σ̺,m and σ⊥,m = ̺m σϕ,m . (13)

2.3.2. The regularization term fprior

In our simulations, we test 11 different regularization terms that
are commonly used in image reconstruction methods and are im-
plemented in MiRA (see Appendix A for detailed expressions).

1. Quadratic smoothness, which most closely describes a
smooth image and helps us to avoid unmeasured high fre-
quencies.

2–3. Compactness, which describes compactness in the im-
age plane and hence smoothness in the Fourier plane (Le
Besnerais et al. 2008). Two different cases were studied in
the simulations, with penalties of the second and third orders
with respect to the distance of the center of the field of view
(FOV).

4. Total variation (TV), which minimizes the total gradient of
the image and helps us to describe uniform areas in the
sought image with steep but localized changes (Strong &
Chan 2003).

5. ℓ1 smoothness, which is useful for an extended object with
sharp edges since it is linear for strong gradients.

6–8. ℓp-norm with p = 1.5, p = 2 and p = 3. For p > 1, the
ℓp-norm regularization tends to produce a smooth image as
it reduces the variance in the pixels.

9–11. Maximum entropy methods (MEM) aims to identify the
least informative image consistent with the data (Gull &
Skilling 1984; Narayan & Nityananda 1986). We try three
types of entropies MEM-sqrt, MEM-log, and MEM-prior, re-
spectively. The first two tend to reproduce an image with a
flux spread across a minimum number of pixels. The last one
is minimum when the image is as close as possible to a prior
image. This prior image is the Gaussian that most closely
reproduces the amplitude visibility data.

The different regularization terms are expected to behave as fol-
lows. The positivity and the normalization imposed in all the
reconstructions are an ℓ1 norm and lead to the sparsity of the
solution, i.e. to a minimum number of bright pixels to explain
the data. As most astrophysical images are smooth and compact,
we expect that the regularizations that can describe these images
will behave well, i.e. smoothness (quadratic or ℓ1), compactness,
and TV. The ℓp-norm regularization with p = 2 (and by exten-
sion for p > 1 as the regularization has the same behavior) has
the tendency to force to zero the spatial frequencies that have
not been measured (according to the Parseval theorem). Since
the regularization has to interpolate correctly between the data,
which is closer to the reality, it is not expected to give good re-
sults. Finally, the MEM-prior is expected to yield more reliable
results than the other type of entropy because our choice of the
a priori image can closely describe a compact object.

3. Description of the simulations

We now describe all the various simulated data that we compute
for different objects, (u, v) coverages, and signal-to-noise ratios
(SNR), as well as the parameters used for the image reconstruc-
tions.

3.1. Simulated data

Our simulated data sets are saved as OI-Fits files (Pauls et al.
2005) and depend on several setting of the object type, the (u, v)
coverage, and the SNR. The 90 data files are available on the
JMMC website1.

3.1.1. Astrophysical objects

For our simulations, we consider ten astrophysical objects (see
Fig. 1) that differ in term of their morphology and the typical
length scales of their structures.

1. LkHα: the model of LkHα describes a compact object with a
peak of intensity and a smooth envelope. The model comes
from the 2004 International Imaging Beauty Contest orga-
nized by Lawson for the IAU (Lawson et al. 2004).

1 http://apps.jmmc.fr/oidata/shared/srenard/
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Fig. 1. Astrophysical objects used in the simulations.

Fig. 2. (u, v) coverage. From left to right: rich (245 sampled frequen-
cies), medium (88 sampled frequencies), and poor (31 sampled frequen-
cies).

2. A stellar surface: this is a model of the supergiant α Ori that
presents some convective cells, producing small scales on a
smooth background. This model was produced by Chiavassa
for the 2009 Workshop on Interferometry Imaging (WII09)
organized by Berger and Malbet (Berger et al., in prep.).

3. A stellar cluster: the model consists of a hundred point
sources. The position and the brightness of the sources fol-
low a normal law.

4. Eta Carinae: the image of Eta Carinae presents many dif-
ferent scales and structures, such as the extended gas and
the stars. This image was retrieved from the Hubble Space
Telescope’s website2. Some treatments have been applied to
the image, i.e. a mean of the three different color channels to
produce a grayscale image and a cut of the low intensities to
produce a null background.

5. A protoplanetary disk: the model represents an Herbig Ae/Be
star with a point source (the star) and an extended structure
(the disk). This model was computed by J.-P. Berger for the
phase A science case of the VLTI-Spectro Imager instrument
(Filho et al. 2008).

6. A limb-darkened star: we used the power-law model of
Hestroffer (1997) with an exponent α = 0.3. The image has
a very smooth core with steep edges.

7. The galaxy system M 51: this image of M 51 consists of as
many different scales and structures as Eta Carinae (gas,
stars, spiral arms). This image was retrieved from the Hubble
Space Telescope’s website and was processed in a way sim-
ilar to the image of Eta Carinae.

2 http://hubblesite.org/

8. The AGN M 87: this AGN has a jet that consists of a narrow
structure surrounded by a smooth background due to the gas.
The image was retrieved from the Hubble Space Telescope’s
website and the same treatments as the Eta Carinae’s image
have been applied.

9. A gravitational microlensing image: gravitational microlens-
ing is an astronomical phenomenon due to the gravitational
lens effect. When a distant star or quasar becomes suffi-
ciently aligned with a massive compact foreground object,
the bending of light due to its gravitational field leads to
two distorted unresolved images resulting in an observable
magnification. The image shows four very compact struc-
tures. This model was developed by J. Surdej for the phase A
science case of the VLTI-Spectro Imager instrument (Filho
et al. 2008).

10. A rapid rotator: the rapid rotation of a star affects the stel-
lar shape and the local emitted flux. We used the model of
Domiciano de Souza et al. (2002), with parameters D = 0.78
and Tp = 35 000 K. The resulting light distribution was pro-
jected onto a plane with an inclination of 45◦.

Since the goal of our tests is to determine the influence of the
object’s type on the image reconstruction, all the considered ob-
jects have a similar angular size of ∼34 mas, which is consis-
tent with the typical size of the FOV of an optical interferometer
such as Amber/VLTI. To generalize our results, we expect the
most important figure for a given object and instrument to be the
number of resolved elements, which is equal to the ratio of the
angular size of the object support to the effective resolution of
the imaging system. Estimated by this ratio, the complexity of
the objects that we have considered is in the range of 200–600
resolved elements.

3.1.2. (u,v) coverage

To study the influence of the instrumental configuration and an-
alyze the capability of the regularization to interpolate the avail-
able data and thus fill the voids in the (u, v) plane, we consider
several sparse (u, v) coverages (see Fig. 2). To remain general,
our different (u, v) coverages were constructed to be uniformly
spread. Each (u, v) coverage consists of concentric rings modu-
lated by a sinusoid along the ring and with phases of the modu-
lations chosen to maximize the distance between the points of
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two adjacent rings. This also avoids symmetries in the (u, v)
coverage. The concentration of the rings is more important on
small baselines than on the largest ones to insure a good sam-
pling of low spatial frequencies. In this paper, we consider three
(u, v) coverages which differ in terms of the number of sam-
ples, called hereafter rich (245 sampled frequencies), medium
(88 sampled frequencies), and poor (31 sampled frequencies)
coverages. The chosen (u, v) configurations could be considered
as very good by the standards of existing data, but the goal of the
paper is not to cover all possible cases but to show the general
trend.

3.1.3. Signal-to-noise ratio

To investigate the effects of varying the SNR, we use a SNR
factor γ in the standard deviations given by

σ̺,m = γ 〈̺m〉 and σϕ,m = γ . (14)

Therefore with these settings, the error bars become

σ//,m = σ⊥,m = γ 〈̺m〉. (15)

To analyze the influence of the SNR on the reconstructed images,
three values of γ are tested: high SNR (1%) , intermediate SNR
(5%), and low SNR (10%). We limit our study to these SNR
values to maintain a small amount of results. Therefore, there
is no systematic attempt to search for the limit of SNR and we
realize that our worst case (10%) might be considered moderate
noise in real data.

3.2. Parameters of the synthesized image

The resolution and the FOV of the reconstructed image have to
be chosen with care. On the one hand, the pixel size ∆θ must
be small enough to properly account for the highest spatial fre-
quencies available in the data. Using Shannon’s rule, we find that
∆θ � λ/(2 Bmax), where Bmax is the maximum length of the ob-
served baselines and λ the wavelength. In our reconstructions,
the pixel size is one third of the limit set by Shannon’s rule. This
oversampling allows us to check whether image reconstruction
can achieve some level of super-resolution. For instance, this
yields ∆θ = 0.4 mas at λ = 2.2 µm with Bmax = 190 m. On
the other hand, the FOV has to be large enough to avoid field
aliasing and therefore we take an image three times larger than
the object itself. As all our objects have a size of 34 mas and thus
approximately fit into 85 × 85 pixels, the reconstructed images
have 256 × 256 pixels.

3.3. Reconstruction strategy

Given the data (determined by the object, the (u, v) coverage,
and the noise realization) and the regularization, we conduct a
sequence of image reconstructions for different values of the reg-
ularization weight µ. Since the problems solved are convex (as
explained in Sect. 2.3.1), their solutions do not depend on the
starting point. To reduce the calculation time, we therefore try to
use a starting point that is as close as possible to the final solu-
tion. We begin the sequences of reconstructions with the highest
value of µ and use the true image as the starting point for this first
reconstruction. We then reduce µ and use the image previously
obtained as the starting point. This latter step is repeated until
we reach the lowest value of µ. Each reconstruction is an itera-
tive process that is stopped when the norm of the gradient of the

penalty function f (x) is below a preset threshold. This threshold
is derived from the true image according to

∥

∥

∥∇ f (x
rec)
∥

∥

∥ ≤ η

∣

∣

∣

∣

fµ
(

x
ref
)

∣

∣

∣

∣

∥

∥

∥xref
∥

∥

∥

= 10−5
∣

∣

∣

∣
fµ
(

x
ref
)

∣

∣

∣

∣
, (16)

where η > 0 is a small value and fµ(xref) the penalty computed
for the true image and for each value of µ. The ℓ2 norm of the
true image is normalized and we assume that η = 10−5.

3.4. Image quality criterion: the mean-squared error

To assess the quality of the reconstructed images, we consider
the mean-squared error (MSE) of the reconstructed images. In
our simulations, we use normalized input images with the same
pixel size as for the reconstructed image. Hence, to compare the
reconstructed image x

rec and the true image x
ref, we can simply

use the MSE defined as

MSE =
1

N

∑

n

(

xrec
n − xref

n

)2
=

1

N

∥

∥

∥x
rec − x

ref
∥

∥

∥

2
, (17)

where N is the total number of pixels. We note that, since we use
complex visibilities and our priors, apart from the FOV one, are
shift-invariant, the reconstructed image is correctly centered and
there is no need to compensate for registration errors.

4. Results and discussion

We performed a total of ∼24 000 simulations corresponding to
the reconstruction of all cases described in Sect. 3 with different
values of the hyperparameter µ. We present here the results of
these simulations and analyze the consequences for the image
reconstruction process in order to draw general conclusions.

We begin by discussing the optimal value of the hyperpa-
rameter and determining whether the MSE is a good quality cri-
terion. We then discuss the effects of the following parameters:

– the regularization: what are the good and bad regulariza-
tions?

– the limits: what are the minimal (u, v) coverage and SNR
value?

– the hyperparameter µ: what is the optimal value? With which
parameters does it vary?

– the likelihood term: how does it vary? Can it be used to tune
the regularization term instead of the hyperparameter µ?

– the effective resolution: what degree of super-resolution can
be achieved? How does it vary?

4.1. Optimal regularization weight µ+

We first investigate whether there is an optimal regularization
weight µ for a given situation. Therefore, for each object, config-
uration, SNR level, and regularization, we reconstruct an image
for different values of the hyperparameter µ.

The top row of the right panel of Fig. 3 shows the effects of
different values of µ, whereas the left panel displays the obtained
MSE (see Sect. 3.4) for each values of µ. For too small a value of
µ, the under-regularized image (labeled with an A) has plenty of
artifacts. In contrast, for too large a µ, the over-regularized image
(labeled with a C) is blurred, and many fine features are lost.
These two extreme situations correspond to high values of the
MSE (A and C), but there is a situation where the MSE reaches
a minimum and the image appears to have far fewer artifacts (B).
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Fig. 3. Left panel shows a plot of the MSE as a function of the hyperparameter µ. The different colors correspond to different levels of SNR (red
high, blue intermediate, green poor). For each curve, the optimal value µ+ is labeled by a number (1, 2, and 3). The corresponding images are
shown in the bottom row of the right panel. The top row of the right panel shows three reconstructed images with different values of µ, labeled by
a letter on the red curve of the left part (A an under-regularized image, B the best image, and C an over-regularized image). This example is made
for the galaxy object and the medium (u, v) coverage. The regularization is the MEM-prior one.

Visual comparison of the A and C images with the one obtained
for B confirms that the MSE is a good criterion to correctly set
the regularization weight.

We conclude that there is indeed an optimal value of µ, the
one that gives the smallest MSE

µ+ = arg min
µ

∥

∥

∥x
rec
µ − x

ref
∥

∥

∥

2
, (18)

where x
rec
µ is the image reconstructed with a regularization

weight set to µ. As the minimum of the curve is quite flat, the
optimal value of µ is not precisely defined but may vary by a
factor as large as either two or three with a negligible influence
on the result.

This procedure cannot be used in practice because the true
image is obviously unknown. Nevertheless, this procedure al-
lows us to define the most accurate image that can be recon-
structed given the data and the type of regularization. In the fol-
lowing analysis, the reconstructed images are always obtained
with µ = µ+.

4.2. Dependence of µ+ on the MSE quality criterion

We wish to determine the type of relationship that links the op-
timized regularization factor µ+ to the MSE in order to detect
any trends. The scatter plot in Fig. 4 reports the values of µ+

and MSE obtained for each simulation. In the left panel, the dif-
ferent colors and symbols correspond to different objects. In the
right panel, the different colors and symbols correspond to differ-
ent regularizations. In the bottom row, we present our computed
histograms of MSE (left) and µ+ (right). As in the rest of the
paper, the plotted histograms are approximations of the proba-
bility density functions (PDF) of our results. These curves were
computed from our samples following the optimal method de-
scribed in Scott (1992).

In the left part of Fig. 4, the different colors representing the
objects seem to be aligned vertically. We therefore conclude that
the MSE depends mostly on the structure of the observed object.

More precisely, two classes of objects can be distinguished
in the distribution of MSE in the left panel of Fig. 4. We there-
fore grouped together the objects with similar behaviors in the
top panels of Fig. 5: (i) the objects with very compact sources,
i.e. the star cluster, the protoplanetary disk and the microlensing

(curve in blue labeled B); and (ii) the other objects with extended
structures (curve in red labeled C). The MSE is systematically
higher for objects of the first class.

Following these observations, we try to find a way of renor-
malizing the MSE as a function of the object. To join the curves
together, we define a new MSE criterion, called MSE+, by di-
viding each MSE by the smallest MSE for each object sepa-
rately. As expected, this normalization cancels the different ob-
ject classes, as seen in the right part of Fig. 5. Two peaks clearly
appear on the graph, distinguishing the good reconstructions
(left peak) from the bad ones (right peak). An example of each
case is shown on the bottom part of Fig. 5. The low quality re-
constructions are caused by bad configurations (not enough (u, v)
points, low SNR) and/or bad regularizations as it can be seen in
the right part of Fig. 6 and will be described in the next sections.
To be sure that the peaks represent the good and bad reconstruc-
tions and do not come from different object’s types, we verify
that each object is represented in each peak, as shown in the left
part of Fig. 6.

By visual inspection, we assess that the value of the MSE+

leads to a correct ordering of the images reconstructed for a
given object when the other settings change (data quality, type
of regularization, etc.): the lower the MSE+, the higher the qual-
ity of the image is. Other attempts at the renormalization of the
MSE are explained in Appendix B.

Now that a good quality criterion has been defined and that
the optimal value of µ have been obtained, we can study the other
parameters.

4.3. Limits due to the (u,v) coverage and the SNR

In this section, we classify the observational configurations
((u, v) coverage and SNR) on the basis of the MSE+. For each
data set (unique combination of object and regularization), we
order the pair [(u, v) coverage, SNR] according to the value of
MSE+ they reach, giving them a rank from 1 for the best con-
figuration (lowest MSE+) to 9 for the worst (highest MSE+). In
the left panel of Fig. 7, we display the cumulative distributions
of the ranks reached by every configuration, determining how
many times a given configuration reaches at least the first rank,
the second rank, etc. The highest quality configurations are the
ones in the upper-left part of the plot.
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Fig. 4. Top row: scatter plots representing the optimal value of the hyperparameter µ+ as a function of the MSE of the images. Bottom row: the
corresponding histograms of MSE and µ+. Left column: the colors and symbols indicate the different classes of objects. Right column: the colors
and symbols indicate the different regularization classes.

Fig. 5. Upper row: distribution of the MSE (left) and the MSE+ (right).
The colors and letters represent the two classes of objects: blue/B for
the objects with very compact structures, red/C for the others. The to-
tal distribution is shown in the black/A curve. Bottom row: example of
reconstructed images for the good (left) and bad (right) MSE+ peak.

Fig. 6. Distribution of MSE+. Left: histograms of MSE+ for different
objects in different colors; the gray zone corresponds to the total distri-
bution, all objects confounded. Right: solid line, all the configurations
and regularizations are kept; dashed line, with the sparsest (u, v) cov-
erage removed; dot-dashed line, with the bad regularizations removed;
in gray zone, with the sparsest (u, v) coverage and bad regularizations
removed.

The poor (u, v) coverage combined with any value of SNR is
clearly too sparse to reconstruct good images. While acceptable
reconstruction is possible for any considered SNR when there
are enough samples in the (u, v) coverage. We deduce that there
is a minimal (u, v) coverage needed to perform image recon-
struction, whereas there is no such limit set by the tested SNR.
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Fig. 7. Left: cumulative distributions of the ranks reached by the different configurations of (u, v) coverage and SNR. Right: the histograms of the
MSE+ for different configurations of (u, v) coverage and SNR represented by different colors.

Fig. 8. Cumulative distributions of the ranks reached by the regularizations. Left: all objects; Middle: objects with very small structures; Right:
other objects.

However, when the (u, v) coverage is sufficient, the higher the
SNR or the more filled the (u, v) coverage, the higher the quality
of the reconstructed image is. The bottom row of the right panel
of Fig. 3 shows how the visual quality of the optimal image de-
pends on the SNR. As expected, the higher the SNR, the better
the reconstructed image is.

Figure 7 (right) shows the histogram of the MSE+ for dif-
ferent configurations of (u, v) coverage and SNR. It indicates
that the success image reconstruction is more influenced by the
amount of data than by the SNR: the MSE+ is lower for a rich
(u, v) coverage with a poor SNR than for a medium (u, v) cover-
age with an intermediate SNR. We note that all the tested (u, v)
coverage are uniform, but we expect that the amount of data has
to be sufficient and also homogeneously spread in the (u, v) plan.

After the removal of the sparsest coverage, the MSE+ dis-
tribution is shown in Fig. 6 in dashed line. There is still a little
bump of bad MSE+ caused by bad regularizations, as discussed
in the next section.

4.4. Quality of the regularizations

Using the same principles as in the previous section, we clas-
sify the regularizations as a function of the MSE+ for different
realizations. Figure 8 shows the corresponding cumulative dis-
tributions. Isotropic TV appears to be the most successful regu-
larization for the two classes of objects. The compactness prior

with w
prior
n = |θn|2 is the second highest quality choice for the

very compact objects. The worst regularizations are the ℓp-norm,

the MEM-sqrt, and the MEM-log, as expected and explained in
Sect. 2.3.2. Reconstructions for good and bad regularizations are
illustrated in Fig. 9.

In the MSE+ distribution after the elimination of the bad reg-
ularizations (see Fig. 6 in dot-dashed line), there is still much ev-
idence of lower quality MSE+. We conclude that the bad MSE+

are mainly caused by the sparsest (u, v) coverage. However, both
have to be eliminated to obtain a cleaned sample of reconstructed
images.

In what follows, we made a selection and only retained
the regularizations (quadratic and ℓ1 smoothness, compactness,
isotropic TV and MEM with a Gaussian prior) and the (u, v) cov-
erages (rich and medium) that lead to correct reconstructed im-
ages. We kept data for all values of SNR.

4.5. Predetermined value of the hyperparameter µ+?

In a fully Bayesian framework, the data noise and the variabil-
ity of the object are independent. We therefore expect that µ fprior

does not depend on the data (Tarantola 2005). As a result, for a
given type of object, the optimal value for µ should be the same
regardless of the SNR or the (u, v) coverage. However, we are not
in a truly Bayesian framework because the regularizations are
derived from general considerations that must help us to solve
for the degeneracies of the problem and are not really derived
from the statistics of the brightness distributions of the observed
objects. Since the degeneracies of the problem are mostly due to
the sparsity of the (u, v) coverage, this observational parameter
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Fig. 9. Example of reconstructed images of the galaxy image with the medium (u, v) coverage and the intermediate SNR for different regulariza-
tions. From left to right, TV, compactness θ2, ℓp norm with p = 2, MEM-log.

Table 1. Table of the mean values of µ for each regularization.

Regularizations µ+

Quadratic smoothness 109

Compactness r2 107

Compactness r3 107

TV isotropic 103

ℓ1 smoothness 1013

MEM with prior 102

may have some influence on the tuning of the regularization
weight. Our expectation is thus that, for a given type of object,
a quasi optimal value of µ+ can be derived from simulations and
from simple considerations to scale this parameter if different
image reconstruction settings are used.

The hyperparameter µ+ depends mostly on the regulariza-
tions, as seen in the right part of Fig. 4, where the colors, repre-
senting the regularizations, appear aligned horizontally and the
pre-eminent peaks of the histograms are separated. Moreover,
the hyperparameter µ appears to be quasi independent of the
SNR and the (u, v) coverage, as expected. As seen in Fig. 10
for the TV regularization, if there is still a variation in the value
of µ, it depends on the object morphology but not on the (u, v)
plane and the SNR value.

This finding allows us to link each regularization to a mean
value of the hyperparameter µ. This mean value gives a useful
start point for the user (see Table 1). The equations to rescale
this value in the case of different image settings are given in
Appendix C.

4.6. How different noise realizations affect the MSE and the
optimal µ?

In all simulations, in order not to influence the classification of
the results, the same random seed is used to compute the noisy
data. Therefore, we test 100 noise realizations for each regular-
ization in the case of the galaxy with a medium (u, v) coverage
and an intermediate SNR to study its impact on the curves com-
puted from a single realization. From Fig. 11, we conclude that
the MSE is not very different, thus the image reconstruction does
not depend on the particular noise realization (as shown for ex-
ample in Fig. 12). Moreover, the optimal value of µ varies by
less than an order of magnitude.

4.7. The effective spatial resolution

To investigate whether super-resolution is achievable and to
quantify the amount of trustable super-resolution, we estimate
the effective resolution of the reconstructed images. We define

the effective resolution as the full width at half maximum (here-
after FWHM) of the Gaussian that yields the smallest value
of MSE between the reconstructed image and the true image
smoothed by that Gaussian

FWHM = arg min
w

∥

∥

∥x
rec −G(w) · xref

∥

∥

∥

2
, (19)

where G(w) is a linear smoothing filter that convolves its argu-
ment by a Gaussian of FWHM equal to w.

As shown in the left part of Fig. 13, the effective resolution
varies with both the amount of data and the SNR: the more ex-
tensively the (u, v) parameter space is filled and the higher the
SNR, the higher the effective resolution is. As for the MSE (cf.
Sect. 4.3), the effective resolution is more influenced by the (u, v)
coverage than by the SNR. Super-resolution can be achieved in
only the best cases.

The bottom-right part of Fig. 13 shows the expected behavior
of the effective resolution: the higher the hyperparameter µ, the
lower the effective resolution is. In order words, the more the
image is regularized, the fewer the details that are visible.

An interesting question is why this super-resolution exists.
Although we do not have a definitive answer, we can speculate
that it is due to the role of the positivity in the image reconstruc-
tion (Biraud 1969). This is confirmed by our simulations (cf. the
upper right part of Fig. 13): without the positivity constraints,
the distribution of the FWHMs has a peak higher than when us-
ing the positivity constraints.

4.8. Other methods for tuning the regularization?

For fully Gaussian statistics (i.e. all the likelihood and prior
penalties are quadratic and there are no constraints such as the
normalization and the positivity), the expected values of the to-
tal penalty function f (x

+) and the likelihood term fdata(x
+) at

the optimal solution x
+ is given by (Tarantola 2005)

E
{

f (x
+)
}

= Ndata , (20)

E
{

fdata(x
+)
}

= Ndata − Nedf, (21)

where Ndata is the number of data points (for both visibility am-
plitudes and phases), and Nedf is the number of equivalent de-
grees of freedom. Despite our being unable to use fully Gaussian
statistics, the left panel of Fig. 14 shows that the distribution of
f (x
+) peaks approximatively at the value of Ndata. The spread

of this distribution however prevents us to be able to tune the
regularization level according to the criterion that f (x

+) ≈ Ndata.
The value of fdata(x

+)/Ndata is around 0.1, which means that
Nedf/Ndata ≈ 90% of the data information is resolved. The image
reconstruction is able to estimate almost as many parameters as
data points. Since the fdata(x

+)/Ndata ratio has a smaller range
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Fig. 10. Histogram of µ+ for the TV regularization. Left: the colors correspond to different objects. Right: the colors correspond to different pair
[(u, v) coverage–SNR].

Fig. 11. Variation in MSE and µ with different noise realizations. Blue,
the quartile curve of the realizations (25% in dash line, 50% in solid
line, and 75% in dot line). Red, the mean optimal µ (cross) and its vari-
ance.

Fig. 12. Reconstructed images for the best (left) and the worst (right)
noise realization in the TV case.

(from ∼0.3 to ∼0.003) than the possible value of the hyperpa-
rameter µ (from 100 to 1013), it may be easier to tune the bal-
ance between the terms in the penalty function thanks to the
fdata(x

+)/Ndata value instead of µ. However, this criterion may
be really variable with the noise statistics and a study of the
variation in fdata(x

+)/Ndata with different noise statistics should
be done before using it as a tune factor (Gull 1988; Pichon &
Thiebaut 1998).

Another way of determining the value of µ is the so-called
L-curve. The L-curve is a log-log plot of the regularization term
fprior versus the likelihood term fdata for a range of the hyperpa-
rameter µ. In the L-curve criterion, the regularization parameter
µ is such that the corresponding point on the L-curve lies in the
corner. This choice is motivated by the corner being the sepa-
ration between the flat part where the solution is dominated by
regularization errors and the vertical part where it is dominated
by the perturbation errors (Hansen 2000). The correct behavior
of the L-curve is confirmed by the simulations, as seen in Fig. 15
(right): since the curves are plotted as a function of the highest
quality image, they should cross in their corner, which is glob-
ally the case. We note that the shape of the L-curve seems more
complicated as there are at least two corners and not only one
(see Fig. 15 left). The L-curve appears to be an appropriate tool
for finding the optimal value of µ but a more general study has
to be done to confirm its suitability (see comparison with GCV)
and its practical implementation in an image reconstruction al-
gorithm.

5. Conclusions

Thanks to the use of a flexible algorithm devoted to image re-
construction in optical interferometry, we have performed a de-
tailed study of the regularization terms. This study is the first one
to compare such a number of regularizations on an equal foot-
ing, i.e. with the same algorithm and using the same data type.
Performing these systematic tests has allowed us to discuss the
different parameters and terms in the image reconstruction and
to extract some practical rules, which are summarized in the fol-
lowing:

1. A minimal (u, v) coverage is necessary to reconstruct an im-
age. Even if the image quality improves with the SNR, such
a limit does not exist for the SNR. In other words, in the im-
age reconstruction technique, increasing the number of tele-
scopes is more interesting than constructing larger ones. The
homogeneity of the (u, v) coverage is probably also critical
but has not been tested.

2. Some regularizations are suitable for the optical image re-
construction and others not, regardless of the object being
targeted. The holes in the (u, v) plane are the major issue in
optical interferometry and the main role of the regularization
is the correct interpolation of the missing data, regardless
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Fig. 13. Left: FWHM of the Gaussian computed for the effective resolution in units of the interferometric resolution of the data. Up-right: com-
parison between the FWHM with (green) and without (magenta) the constraint of positivity. Bottom-right: variation in the effective resolution as a
function of the hyperparameter µ for three different SNR (red high, blue intermediate, green poor). The regularization used is the TV one.

Fig. 14. Histograms of f /Ndata and fdata/Ndata. Solid line: all configurations and regularizations are kept. Dashed line: with the sparsest (u, v)
coverage removed. Dot-dashed line: with the bad regularizations removed. In gray zone: with the sparsest (u, v) coverage and bad regularizations
removed.

of the object. The highest quality regularization among the
tested ones is the isotropic total variation.

3. The hyperparameter µ does not depend on the (u, v) cov-
erage and the SNR as theoretically expected and depends
mostly on the type of regularization. An optimal value for
each regularization tested in this paper is given in Table 1.

This optimal value may vary by a factor of 2–3 without there
being any major changes in the images. A slight dependence
on both the object structures and pixel size is also discernible
and the equation to rescale the optimal values are computed.
It should be interesting to implement regularizations inde-
pendent of the pixel size.
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Fig. 15. An example of the L-curve in the simulations for the TV regularization with a zoom on the right part.

4. Super-resolution can be achieved in the image reconstruction
process and its level rises with the (u, v) coverage filling.

5. There are various possible ways of tuning the regularization
level:

– The visual tuning is enough as the µ value can slightly
vary without causing any large changes in the recon-
structed image.

– Setting the likelihood term fdata seems to be a more effec-
tive way of fixing the balance between the regularization
and the likelihood terms. However, the variation in the
likelihood term with noise statistics needs to be investi-
gated.

– The L-curve criterion could give correct results.
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Appendix A: The regularization expressions

In our simulations, we test 11 different regularization terms com-
monly used in image reconstruction methods and implemented
in MiRA:

1. Quadratic smoothness:

fprior(x) = ‖x − S · x‖2 , (A.1)

where S is a smoothing operator implemented via finite dif-
ferences.

2–3. Compactness (Le Besnerais et al. 2008):

fprior(x) =
∑

n

w
prior
n x

2
n , (A.2)

which is a separable quadratic regularization. To enforce

compactness, the weights w
prior
n > 0 have to increase with

the distance from the center of the image. Two different

cases were studied in the simulations: w
prior
n = ‖θn/∆θ‖2 and

w
prior
n = ‖θn/∆θ‖3, where ‖θn/∆θ‖ is the distance in pixels of

the nth pixel from the center of the FOV.
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4. Total variation (Strong & Chan 2003):

fprior(x) =
∑

n1,n2

√

‖∇xn1,n2
‖2 + ǫ2, (A.3)

where

‖∇xn1 ,n2
‖2 = (xn1+1,n2 − xn1,n2

)2 + (xn1,n2+1 − xn1,n2
)2

is the squared magnitude of the spatial gradient in the image,
ǫ > 0 is a small number inserted to avoid the discontinuity in
zero, and (n1, n2) ∼ n are the two dimensional indices of the
nth pixel. In our reconstructions, ǫ has always been chosen
so as to be negligible compared to the gradient of significant
structures.

5. ℓ2 − ℓ1 smoothness (Charbonnier et al. 1997):

fprior(x) = τ2
∑

n

ψ
(

‖(D · x)n‖/τ
)

, (A.4)

where ψ(z) = z− log(1+ z) is a ℓ2-ℓ1 norm, τ > 0 is a thresh-
old level, and D is a finite difference operator approximating
the qth spatial derivatives of its argument. When ‖(D · x)n‖
is much smaller than the threshold, τ2 ψ

(

‖(D · x)n‖/τ
)

≈
1/2 ‖(D · x)n‖2, while, for ‖(D · x)n‖ it is much larger than the
threshold, τ2 ψ

(

‖(D · x)n‖/τ
)

≈ τ ‖(D · x)n‖. This regulariza-
tion attempts to strongly smooth the weak spatial gradients
and slightly smooth the strong gradients. In our simulations,
we take D to approximate the spatial Laplacian and choose a
threshold small enough such that the regularization behaved
mostly like a linear smoothness.

6–8. ℓp-norm:

fprior(x) =
∑

n

(

x2
n + ǫ

2
)p/2
≈
∑

n
|xn|p , (A.5)

where ǫ > 0 is a small value introduced to avoid the singular-
ity in zero when p ≤ 1. For p > 1, the ℓp-norm regularization
tends to produce a smooth image as it reduces the variance
of the pixels. For p < 1, the ℓp-norm regularization tends
to promote sparsity in the image. This is interesting mostly
for objects consisting of point sources. True sparsity con-
straints would be obtained for p = 0, although when p < 1
the regularization is no longer convex and the optimization
problem becomes extremely difficult to solve as p gets closer
to 0. Results in compress sensing (Candes et al. 2006) have
proven that choosing p = 1 yields the most sparse solution,
like p = 0 for a large class of problems. However, taking
p = 1 yields a non-smooth but convex problem that is much
easier to solve than the combinatorial problem resulting from
the choice p = 0. With positivity and normalization con-
straints, the ℓ1-norm of x is constant. Hence, taking p = 1 is
meaningless in our framework and we consider only p = 1.5,
p = 2 and p = 3.

9–11. Maximum entropy methods (Narayan & Nityananda
1986):

fprior(x) = −
∑

n
h(xn; x̄n) . (A.6)

Here the prior is to assume that the image is drawn towards a
prior model x̄ according to a non-quadratic potential h, called
the entropy. We try three entropies:

MEM-sqrt: h(x; x̄) =
√

x ; (A.7)

MEM-log: h(x; x̄) = log(x) ; (A.8)

MEM-prior: h(x; x̄) = x − x̄ − x log (x/x̄) . (A.9)

Fig. B.1. Attempt to renormalize the MSE. Distribution of the first nor-
malized MSE (left) and of the second normalized MSE (right). The col-
ors and letters represent the two classes of objects: blue/B for the objects
with very compact structures, red/C for the others. The total distribution
is shown in black/A curve.

MEM was first introduced in radioastronomy and is useful
for images made of bright point-like sources on a smooth
background. In our simulations, we took the prior image x̄

to be the isotropic 2D Gaussian that most accurately fits the
amplitude visibility data.

Appendix B: Renormalization of MSE

We attempted to normalize the MSE with two additional
methods:

1. Since the squared difference between the real image and a
smoothed version of the real image is higher for images with
sharp or point-like structures, we computed a first normal-
ized MSE as

MSEnorm.,1 =

∑

n

(

xrec
n − xref

n

)2

∑

n

(

(S · xref)n − x
ref
n

)2
, (B.1)

where S is a smoothing operator. The distribution of this nor-
malized MSE is shown in the right panel of Fig. B.1: the dis-
tribution is narrower but the two classes remain, despite the
normalization.

2. In the second normalization, the MSE is compared to the
norm of the reference image

MSEnorm.,2 =

∑

n

(

xrec
n − xref

n

)2

∑

n

(

x
ref
n

)2
· (B.2)

This normalization is more effective than the previous one,
as it joins the curves together. However, the distribution is
unimodal and does not enable us to distinguish the good and
the bad reconstructions. It is thus not a useful normalization.

Appendix C: Scaling the hyperparameter µ

In a Bayesian framework, the prior penalty µ fprior(x) should only
depend on both the sought after brightness distribution I(θ) and
the image parametrization. In this appendix and from these sim-
ple principles, we derive a method to adapt the value of the hy-
perparameter µwhen the image parameters such as the pixel size
are modified.

Using the sampled image model in Eq. (4), the normalization
of x implies that

1 =
∑

n
xn = α

∑

n
I(θn) ≈ α

(∆θ)L

∫

I(θ) dLθ ,
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where we have used the Riemann approximation of integrals,
∆θ is the pixel size, and L = 2 is the number of dimensions in θ.
Without any loss of generality, we can assume that the sought af-

ter brightness distribution is normalized such that
∫

I(θ)dLθ = 1;
hence

α ≈ (∆θ)L, (C.1)

and Eq. (4) becomes

xn ≈ (∆θ)L I(θn). (C.2)

C.1. Separable ℓp norm

Using Eq. (4) and then, the Riemann approximation, the prior
penalty for a separable ℓp norm regularization, after substituting
in Eq. (A.5), becomes

µ fprior(x) = µ
∑

n

|xn|p ≈ µαp
∑

n

|I(θn)|p

≈ µ α
p

∆θL

∫

|I(θ)|p dθ , (C.3)

which shows that for a regularization by a separable ℓp norm

µ ∝
{

∆θL/αp in general;

∆θL (1−p) with the normalization constraint.
(C.4)

Hence, with the normalization constraint, the optimal value of µ
should be the same regardless of the pixel size for a regulariza-
tion given by a separable ℓ1 norm.

C.2. ℓp norm on the gradient

Using 1D notation to simplify the equations, the prior penalty
for a regularization by the ℓp norm on the gradient is given by

µ fprior(x) = µ
∑

n

|xn+1 − xn|p

≈ µαp
∑

n

|I(θn + ∆θ) − I(θn)|p

≈ µαp ∆θp
∑

n

|∂θI(θn)|p ,

where ∂θI(θ) denotes the partial derivative of the brightness dis-
tribution along the angular direction. In L dimensions and using
the Riemann approximation, this gives

µ fprior(x) ≈ µαp ∆θp−L

∫

|∂θI(θ)|p dθ ,

which shows that

µ ∝
{

∆θL−p/αp in general;

∆θL−p (L+1) with the normalization constraint.
(C.5)

Applying this result for a regularization by quadratic smooth-
ness in 2D, e.g. Eq. (A.1), we found that, with a normalization
constraint, µ ∝ ∆θ−4.

C.3. Total variation

The preceding result, with p = 1, readily applies to regulariza-
tion by the total variation, that is

µ ∝
{

∆θL−1/α in general;

∆θ−1 with the normalization constraint.
(C.6)

We can also deduce that, if a relaxed version of TV is used, as
in Eq. (A.3), the relaxation parameter ǫ must scale as the pixel
size ∆θ to have the prior penalty approximately insensitive to the
pixel size.

We note that, with our particular choice of the threshold τ
for the ℓ2 − ℓ1 smoothness regularization defined in Eq. (A.4),
we expect this regularization to behave mostly like TV.

C.4. Quadratic compactness

The quadratic compactness we used in MiRA is given by
Eq. (A.2)

µ fprior(x) = µ
∑

n

∥

∥

∥

∥

∥

θn

∆θ

∥

∥

∥

∥

∥

q

x2
n ≈ µ

α2

∆θq

∑

n

‖θn‖q I(θn)2

≈ µα
2

∆θq+L

∫

‖θ‖q I(θ)2 dθ ,

with q = 2 or 3. From this last approximation, we derive the
scaling of µ with the pixel size

µ ∝
{

∆θq+L/α2 in general;

∆θq−L with the normalization constraint.
(C.7)

Hence, in 2D (L = 2) and for a normalized image, µ does not
depend on the pixel size for q = 2, while it scales as ∆θ for
q = 3.

C.5. Maximum entropy

For maximum entropy methods, we have

µ
∑

n

√
xn ≈ µ

α1/2

∆θL

∫

I(θ)1/2 dθ ,

and

µ
∑

n

h(xn; x̄n) ≈ µ
α

∆θL

∫

h
(

I(θ); Ī(θ)
)

dθ ,

with h(x; x̄) = x− x̄− x log(x/x̄) as in Eq. (A.9). from which
we deduce that

µ ∝
{

∆θL/α1/2 for MEM-sqrt;

∆θL/α for MEM-prior.
(C.8)

Hence, for a normalized image, µ does not depend on the pixel
size in a MEM-prior regularization.
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