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This paper describes two methods which have been used to reconstruct
the soft X-ray emission profile of the PBX-M tokamak from the projected
images recorded by the PBX-M pinhole camera.! Both methods must accu-
rately represent the shape of the reconstructed profile while also providing 2
degree of immunity to noise in the data.

Thke first method is a simple least squares fit to the data. This has the
advantage of being fast and small, and thus easily implemented on the PDP-
11 computer used to control the video digitizer for the pinhole camera.

The second methed involves the application of a maximum entropy algo-
rithm to an overdetermined system. This has the advantage of allowing the
use of 2 default profile. This profile contains additional knowledge about the
plasma shape which can be obtained from equilibrium fits to the external
magnetic measurements, Additionally the reconstruction is guaranteed pos-
itive, and the fit to the data can be relaxed by specifying both the amount
and distribution of noise in the image. The algorithm described has the
advantage of being considerably faster, for an overdetermined system, than
the usual Lagrange multiplier approach?® to finding the maximum entropy
solution.
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I. Introduction

The PBX-M pinhole camera provides a toroidally integrated view from
a point on the outer midplane of the PBX-M plasma, as shown in Fig. 1.
The X-ray emission profile is generally a bean-shaped toroid and the goal of
the reconstruction procedure is to obtain the emission profile over a poloidal
section through the toroid. For this application the features of interest are
the shapes of the contours of constant X-ray emission since they can then be
used to infer the internal magnetic properties of the plasma.?

A. General features of both reconstruction methods

1. The emission profile is assumed to be toroidally symmetric.

o

. The camera supplies a 128 x 128 pixel image which is reduced to a
32 x 32 image of 1024 pixels for the subsequent analysis.

3. Each pixel samples the emission from a volume of plasma which is
determined simply by the projection of the pixel through a pinhole
aperture,

The nature of the projection provided by this geometry is such that the
the number of pixels sampling a toroidal ring of plasma with a small cross
section increases greatly as the center of the ring's cross section is moved
closer to the midplane and closer to the outer edge of the plasma. Fig. 2
shows contours of the function specifying total contribution of each region
in a poloidal section of the plasma to the projected image. This means that
the reconstructed emissic 1 profile is very well determined near the outer
midplane and is progressively more sensitive to noise in the data ic regions
which are further from the midplane and closer to the center of the torus.

B. Formulation of the problem

The emission profile is specified as a set of {E.} values assigned to NC
toroidal rings with a rectangular cross section. Each value £, is the emission
per unit volume of the source averaged over ring c¢. In order to provide
good shape resolution near the center of the plasma while maintaining an
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acceptably low sensitivity to noise in the data, the ermission profile is specified
on a dual resolution grid which has smaller cells in the outer midplane region.
In addition, cells which are in regions with no plasma or cells which are hidden
from view are eliminated. This results in the bean-shaped grid shown in Fig.
3 which shows a poloidal section through a grid of 130 rings.

The emission values {E.} are mapped linearly onto the .V P pixels of the
camera image {/,} by the usual imaging equations

NC
I, =Y S5,E. + 7, (1
e=xl
The elements S, of the VP x NC matrix S are computed from the geometry
of the system and represent the sensitivity of pixel p to the emission from
cell c. The values {n;} represent the noise in the data.

II. Least squares method

Since the problem has been formmlated as an overdetermined system with
1023 image pixels and only 130 emission cells, the emission profile can be re-
covered by a simple least squares fit® which minimizes T n3. The emission
vector E is computed from the image vector I by multiplication by the gen-
eralized inverse of S.

E = (ST8)"'sTI = ML

The inverse matrix M is computed once for a given reconstruction grid -nd
camera geometry and then saved for repeated use. Since computing the
emission profile for each image just involves multiplying a matrix bv a vector.
the algorithm can easily be implemented and is relatively fast.

A. Negative values

The most obvious problem with the method is that it allows solutions with
negative values for the emissions {E.}. Negative values are caused by noise
in the data or numerical errors in the matrix inversion and multiplication.
Since they usually occur in cells near regions in the original source with small



or zero emission, we remove them from the final solution by assigning them
to zero or to a small percentage of the average emission of the solution.

B. Smoothing

We also tested the effect of applying smoothing to the reconstructed emis-
sion profile obtained from the least squares method. The smoothing proce-
dure is described as follows.

1. Obtain the emission at any point £(r, Z) from the reconstructed {£.}
using bilinear interpolation from the centers of the surrounding cells.

2. Compute the average value E{r. Z) for each cell.
3. Set the emissions {£.} equal to the average values from step 2.

The effect of this procedure is to apply a longer scale length smoothing
in regions of the grid containing larger cells. Stronger smoothing is obtained
by applying the procedure several times.

C. Tests

Test data were constructed by specifving a set of emissions {£.} which
describe a suitable test source and then computing the corresponding image
{I,} using Eqs. (1). The noise values {n,} were simulated using a Gaus-
sian random noise generator. A global estimate of the accuracy is the RMS
deviation from the original source defined as

100 < sreconstructed original 2
Brms = ez 2 1 - BT %,
where E reconstructed jo the average reconstructed emission.

The result is shown in Fig. 1 &.r -.u~e with a standard deviation equal to
10% of the average signal apptied *.» -ach signal value. The original source is
shown in Fig. 5 and the cell grui :~ -.oovn in Fig. 3. Smoothing can improve
the appearance and RMS deviatwa: 4 the expense of spatial resolution as
shown in Fig. 6.



Even though the system is 8[x (1024 image pizels)/(130 cells)] times
overdetermined, it is still quite sensitive to noise. It is possible to obtain a
better result by giving up spatial resolution in less overdetermined regions
of the source beforehand by using a more overdetermined cell grid shown in
Fig. 7. This grid, which contains 76 cells, is 13.3 times overdetermined. The
result for the same noise and source is shown in Fig. 8.

D. Effect of smoothing

Although smoothing improves the RMS deviation and appearance of the
result, it does so because the original source is relatively smooth. The
smoothing procedure is rather arbitrary since it does not take into account
the original imaging Eqs. (1) for the system. During smoothing the noise
for each signal n, can assume any value, and the emission assigned to a cell
does not depend on the constraints imposed by the imaging equations. No
account is taken of how overdetermined the value of a particular cell may be
except for the fact that a shorter scale length smoothing is applied in the
higher resolution parts of the grid.

The maximum entropy method described next guarantees a positive def-
inite solution and also allows for smoothing, which is consistent with the
imaging equations and the statistics of the noise values {n,}.

III. Maximum entropy method

A. Introduction

As shown by Frieden® the maximum entropy method is a maximum like-
lihood estimator derived from the requirement that we select the solution
which has maximum probability for given noise and object statistics.

Pabj:::( {E:})Pﬂpi"({n,,}l{E:}) = mazimum. (2)

Pross({n,}}{ E.}) is the probability of a given set of noise values {n,}, given
a particular object { E.}. For Gaussian noise statistics
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where {o,} are the standard deviations of each signal measurement.
It is usually convenient to maximize the logarithm of Eq. (2). Thus we
arrive at the maximum entropy estimator

g E\ XN Nz-"
- E.ln (—-—) = mazimum. (3)
e=1 i e )C2 p=l

The values {g.} tepresent the emission values corresponding to the most
probable object. Equation (3) is maximized subject to the constraints im-
plied by the imaging Eqs. (1) and a constraint on the total emission from
the svstem®? which arises in the definition of P°%°=.

NC
L= Z E.. {(4)
e=1

The constant A?/C?, which represents the relative normalization of P*/¢<f
and P™%¢ is used to set the RMS noise in the final solution. Smaller values
of A?/C? produce solutions with 2 larger RMS noise. For A2/C? = 0 the
constraints provided by the imaging equations are relaxed completely and
the solution has the profile given by the default image {g.} multiplied by a
constant such that the total emission satisfies Eq. (4).

B. Connection to least squares

If Pi* = constant, Eq. (3) reduces to

NP o

i
%

2
£ = minimum
p=1

which, subject to the constraints of the imaging equations. is just a weighted
least squares fit. Thus. least squares is the maximum likeilihood estimator
when all possible objects (including negative ones) are equally probable.



The method described earlier is an unweighted least squares procedure,
but a weighted least squares procedure is easily constructed by dividing each
I, by o, and dividing each row S, by o, before calculating the inverse matrix®

M.

C. Computing the solution

Lagrange multiplier>®® and less efficient but more easily implemented
recursive® methods have been used to find the maximum of Eq. (3) subject
to the constraints from Eqs. (1) and (4). The same techniques have been
used for Poisson noise statistics®!? and the conjugate gradient methad has
been applied for the case of uniform band limited noise with an orthogonal
mapping matrix!*? S,

1. Lagrange multiplier method

Application of the Lagrange multiplier method produces a solution with
cne Lagrange multiplier for each constraint equation. The Lagrange muiti-
pliers are then computed using an iterative Newton-Raphson method which
requires the inversion of a NL x NL matrix on each iteration where NL is
the number of Lagrange multipliers.

This is quite inefficient for an overdetermined system. There are NC+.VP
free parameters from {E,}, {n,}, and NP + 1 constraints from Egs. (1) and
(4) so there are only NC — 1 degrees of freedom in the maximization; but
the Lagrange multiplier technique requires adjustment of NL > NP > NC
Lagrange multipliers.

For our application, where VP = 1024 and NC = 100 — 200, the method
is infeasible on a VAX 8600.

2. Back substitution

As an alternative to the Lagrange multiplier method, we chose to elimi-
nate the constraint Eqs. (1) and (4) from the problem by back substitution.
From Eq. (4) we see that the emission from any particular cell can be written



in terms of all the remaining cells. For notational convenience we pick cell 1.

NC
E] = In - ZE“ (5)

The imaging equations can be used to express the noise values {n,} in terms
of the measurements {I,} and the cell values {E_.}. Sc we now have to do
an unconstrained maximization of

By ¥ E) _ 2 (I—a)
“E‘ln(g;) ;E‘h(g_‘:)uzczz Up — Gp)” (6)

where a, is the noise free signal
NC
ap = lp = np =S by +ZSP°E°
=2

To obtain the solution, we set the derivatives of expression (6) with respect
to the remaining VC — 1 values E;... Eyc equal to zero.

E'gl A2 NP (f a j . ‘
Fy=ln (-E_i;;) Cz Z a,p = (5% = Sn) =0, j=2-NC. (7)
At this point we solve Eqs. (7) iteratively using a Newton-Raphson method®!3
in VC — 1 dimensions. We iterate

3F;
k= 75

Ok,
and AE is a vector containing the increments to be applied to £; ... Exc.
The eiements of D are given by

AE = -D7'F  where D; (8)

OF, i 1 1 ’\2 = (SPJ Sp1) ;
kel } , J=2-NC, (9)
3E; E B O ,,Z;: a3
and
aF; 1 + 22 8 (Sps = S S = S) L

Similar expressions for the case of Poisson noise statistics are given in the
appendix.



3. Implementation Details

The summations in Eqs. {9) and {10) are constants for a given system
and standard deviation profile so the matrix D can be quickly loaded if
these values are saved prior to beginning the iterations. D is a symmetric
positive definite matrix which can be inverted using Cholesky decomposition.
For an overdetermined system the inversion time for this (VC - 1) x
(NC — 1) matrix is much faster than the (VP + 1) x (NP + 1) matrix
required in the Lagrange multiplier method. For our case the inversion time is
= (1025/129)3[i.e. == 500 times] less than the Lagrange multiplier method
when using a 130 cell grid. Typicallv the solution converges in 10 — 20
iterations and takes 30 — 60 seconds on a VAX 8600. The starting point for
the iterations is set as follows:

1. The initial values for the {E.} are obtained from the smoothed least
squares method described earlier. Any values of E, < 0 are removed
by setting them to 1% of the average emission.

2. The value for [ is taken frorn the least squares solution. Since Iy is a
global property, the least squares value is usually quite accurate.

3. If the value of AE from Eq. (8) causes one or more of the E, to become
< 0, the size of AE is reduced by a factor 2V¥7*%%, where Vrelaz is
the smallest power of 2 which wili make all the E, > 0.

4. The value A?/C? is initialized and then adjusted periodically during the
iterations so that the final solution has a specific total noise requested
by the user. The procedure for this is described in the next section.

4. Adjustment of total noise

Since it is generally desirable ro 1 antrol the total amount of noise in the
final solution, we introduce a total niuse constraint

Ay

o

NP H
Fﬂaiae:zn;‘ / (l..l '72)‘1=0- (17}
p=1 !

u[]



where C specifies the required total noise as a multiple of the value expected
from the standard deviations. The value of X is adjusted so that Eq. {11} is
satisfied.

Wken solving for the {£.} in the main iterative loop, A is treated as
a constant. If the user picks a value for A from experience with previous
solutions and the total noise in the final solution is within acceptable limits,
no further adjustment is necessary. However, if we wish to satisfy Eq. (11)
exactly, it is necessary to adjust A after obtaining a solution for the {E.}
and then resolve for the {£.} with the new value of A\. To determine the
adjustment to A, we assume that Eqs. (7) are satisfied and that A is a
nonlinear function of {E.} which has to be adjusted iteratively using the
Newton-Raphson method. The required adjustment to X is given by

Al = *Fno{.g/(aFnui'eﬁ) , k=22 NC,

Bk, dA

where

OFine o NP NP
3E, = (S [

and we can obtain dE./d) from Eqs. (N

dF; _ OF dB
d\ _ GE, dx

p=1

+F =0

where
2A NP 2

F;=- sz (3,, (12)
The terms 8F;/OE, are just the elements of D defined earlier, so

dE

-1
Fre -D™F.

In practice we do not wait until the {E.} are fully converged and Egs.
(7) are satisfied before making an adjustment to A. [t is normally possible
to adjust A after every 3 — 4 iterations of the main loop without disrupting
the convergence to a solution.
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To estimate an initial value for A we take the solution from the smoothed
least squares method {EL5}, {nf;s} and find the value Ag which minimizes
¥ F2. This is given by

NC E
Ag:CgZajlu(rJ g‘) o (13)
=12 gi
where
NP nLS
a; = Z _(Sp_y So1)
p=l P
and e 2 /NP
=X (%) /Lo
p=1 r=l

The variance of this estimate can be large but it is useful in providing an
initial value for A if there are no other estimates available from previously
computed solutions under similar conditions.

5. Additional points

The algorithm may have difficulty converging if the dynamic range in
the values {g.} and {o,} is too large. Care should be taken to ensure that
maz ({g.})/min ({g:}) and maz ({0, })/min ({o,}) are within ihe numerical
accuracy of the computations. Typically we do not use a dynamic range
greater than 103. It is also sometimes necessary to compute a solution with
a larger total noise than is desired and then continue the computation with’
a smaller requested noise value using the larger noise solution as a starting
point.

D. Tests of the maximum entropy method

The algorithm was tested using the method described in section C. For
comparison with the least squares method we used the same source and cell
grid shown in Figs. 5 and 3 and the same input signals used to produce
the least squares result in Fig. +{. For a default image we removed the
asymmetrical component of the original source and took the square root of
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the remaining profile. The default image is shown in Fig. 9. The standard
deviations o, were all set equal to the standard deviation of the Gaussian
noise generator. The result for C = 0.95 is shown in Fig. 10. The result
for a flat default image is shown in Fig. 11.

Both maximum entropy cases are better than the unsmoothed least squares
result. The maximum entropy result with a flat default image is slightly
worse on average than the smoothed least squares result, but the accuracy
in the central region is basically as good as the maximum entropy result us-
ing the better default image. The effect of the maximum entropy procedure
is to pull the result towards the default image in the least well-determined
regions. For the case of a flat default image, the effect in these regions is
roughly equivalent to the smoothing applied to the least squares result.

An interesting example of the stability of the maximum entropy method is
demonstrated by the reconstruction in Fig. 12. The default image is the same
one used previously, see Fig. 9. The standard deviation used for each pixel
was 3.5% of the signal with an overriding minimum standard deviation of
0.01% of the maximum signal. The corresponding unsmoothed least squares
result is shown in Fig. 13. The original source is shown in Fig. 14. The
erroneous structure on the inside edge of the bean is a series of ripples. See
the 3D plot in Fig. 15. The 228 cell reconstruction grid is shown in Fig. 16.
The errors in the least squares reconstruction occurred even though there
was no noise in the original image supplied to the algorithm.

The main peculiarity of the original source is that it has a large gradient
on the inside edge of the bean. The projection of the original source was

" computed using a slightly higher resolution grid than that used for the re-
construction. This 252 cell grid is shown in Fig. 17. The ripples in the least
squares reconstruction can be shown to be due to the fact that the original
source contains gradients which cannot be represented on the 22§ cell grid
used for the reconstruction. If we use the least squares method to recon-
struct the image using the same 252 cell grid used for the projection, we get
a perfect result as shown in Fig. 18. The maximum enttopy method avoids
the rip;le error by allowing a larger RM3 noise in the solution, 5.25% vs.
1.13% for the least squares result. This additional noise reflects the errors
introduced by representing the source on the 228 cell grid.



E. Application to real data

The default image used for the reconstruction of real data is the set of
magnetic flux surfaces produced by 2 MHD equilibrium fit to the external
magnetic measurements of the plasma. The results of the reconstruction for
two discharges are shown in figures 16 through 24. The reconstructions were
done using the grid shown in Fig. 16. Figure 19 shows a reconstructed X-
ray profile and Fig. 20 shows the flux surfaces used for the default image.
Figure 21 shows a comparison between the actual camera image and the
signal values obtained from the backprojection of the reconstruction.

The plot shows signal vs. camera pixel number for the actual and recon-
structed image. The camera pixels are numbered 1 through 1024 and are
scanped in 32 vertical columns of 32 pixels starting from the bottom right of
the camera image.

Figure 22 shows the reconstructed X-ray profile for another discharge,
Fig. 23 shows the default image, and Fig. 24 shows the comparison of actual
and reconstructed data.

The RMS noise in these fits is guite high, but the reconstructed images
are quite smooth. Examination of the comparison between the backprojected
reconstructed image and the actual data seems to indicate that the devia-
tions are caused by some type of systematic error. This could be caused by
systematic errors in the camera data or in the mapping function or it could be
a consequence of the finite resolution of the reconstruction grid if the source
profile contains steep gradients. Further investigation will be necessary to
determine the cause and possibly imprave the fits.

IV. Conclusions

The maximum entropy algorithm has been implemented for an overde-
termined system in a form which permits the computation of the result in a
reasonable time on 2 VAX 8600. Comparison with the least squares algorithm
shows that the maximum entropy is superior if a good default image can be
constructed from additional informaticn about the system. The algorithm
perrmits the external magnetic information from MHD equilibrium fits to be
combined with the X-ray pinhole camera data to produce an X-ray emission
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profile which can be used to determine the internal magnetic structure of the
plasma.
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Appendix

For the case of Poisson noise statistics, the equations in section Il are
replaced by the equations below.

NP g(ly/a1)g=ap

PR ({n JIE.}) = (L7ant

=1

where AJ is the quanturn size of the signals {f,}. Equation (7) is replaced
by

E;q X ye I, ‘
. = —_——] = I _ L _ —5NC.
fi=h (Eagj) CzAI,E a, 1] (S5 a)=0, ;=2 C

Equations (9) and (10) are replaced by

oF, _ 1 .1 N J%y .
9E;, E, ' E, sy - =92 o N
3E; “E TE tTmI L g om S i=2-ANC

and

aF; _ 1 R oL .
5E =B ORI S~ e ) kA kj=2-NC

Equation (11) remains the same exiept that Za§ is replaced by a suitable
value for the expected total noi~+ 1 ::ation (12) is replaced with

Cn
20 - e
=-——=) =1 = Fa )

J (58] = uan

i1



Equation (13) remains the same with a; given by

a~—L§ é—-l (S
J—AI‘, vz"-pl)-

=] aP
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Figures

FIG. 1. Pinhole camera’s view of the plasma.

FIG. 2. Function showing relative contribution of each point in the source
to the camera image.

FIG. 3. 130 cell grid used in reconstructions.

FIG. 4. Unsmoothed least squares reconstruction of source in Fig. 3. Ay =
21.4%.

FIG. 5. Original source for tests.

FIG. 6. Least squares reconstruction with one smoothing pass. A,n, =

16.6%.

FIG. 7. 76 cell grid used in reconstructions.

1

FIG. 8. Unsmoothed least squares reconstruction using 76 cell grid. A,
12.9%.

FIG. 9. Default image used for maximum entropy reconstruction tests. A, =
42.7%.

FIG. 10. Maximum entropy reconstruction using bean-shaped default image.
A, = 10.8%.

FIG. 11. Maximum entropy reconstruction using flat default image. Arm, =
18.1%.

FIG. 12. Maximum entropy reconstruction of source in Fig. 14 using default
image in Fig. 9 and 228 cell grid in Fig. 16. A, = 10%.

FIG. 13. Unsmoothed least squares reconstruction of source in Fig. 14 using
228 cell grid. Arms = 20.7%.

FIG. 14. Source used to demonstrate errors caused by large gradients.

FIG. 13. 3D plot of resuit in Fig. 13.
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FIG. 16. 228 cell grid used for reconstruction of source in Fig. 14.
FIG. 17. 252 cell grid used to specify source in Fig. 14.

FIG. 18. Unsmoothed least squares reconstruction of source in Fig. 14 using
252 cell grid. A,y = 0%.

FIG. 19. Maximum entropy reconstruction of a real plasma source using the
default image in Fig. 20. Apm, = 16.9%.

FIG. 20. Equilibrium magnetic flux surfaces used as a default image for the
reconstruction in Fig. 19.

FIG. 21. Comparison of the signals on each pixel in the camera image pro-
duced by the reai data and the backprojection of the reconstructed X-ray
profile for the reconstruction in Fig. 19.

FIG. 22. Maximum entropy reconstruction of another discharge using the
default image in Fig. 23. A, = 27.7%.

FIG. 23. Equilibrium magnetic flux surfaces used as a default image for the
reconstruction in Fig. 22.

FIG. 24. Comparison of the signals on each pixel in the camera image pro-
duced by the real data and the backprojection of the reconstructed X-ray
profile for the reconstruction ir. Fig. 22,
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Detector configuration for datafile
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Detector coniiguration for datafile
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Reconstructed -numerical phantom. File :- 3MS3P.E

1024 active channe{s

RHS reconstruction error 21.4 L
RKS resolution error 0.000E+0D %
Average error 1.32 1

RHS shape error 21.3 %
Sirulated rms projection error 10.0 LY
Actual res projection error 9.93 Y
Simulated nolse type = 3

Gaussian simulated noise.

Number of random numbar cycles = o
Processing Linear

Emission contour leveis

Level | = 0.00DE+00

Increment = 0.100

Emission range

Hinimum = 0.000E+00

Hazimum -« 0.965

Average -~ 0.286203

RHS noise = 9.43 L)

Blind nolse = 6.18 -

Number of celis = 130

Reconstruotion time = 0.00DE+00 s.
Hatrix inversion algorithm.

Datafile HSIP.R

Reconstruotion using matrix inversion.

Hunber of emissions t¢= 0.0 vas 12
Emissions «= 0.0 set to 0.000E+00 % average.
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Cel} size

R = 7.438 cm

2 - 9.083 cm

-560.0 -26.0 0.0 * 25.0

Figure &



Best possible phantom reconstruction. Flle :— 3MS3P.E

1024 active channels

RMS reconstruction error 0.000E+00 %
RHS resolution error 0.00QE+00 %
Average error 1.32 -

RHS shape error 16.8 L3
Processing Linear

Emlssion contour levels

Level 1 = O.000E+00

Inorement = 0.100

Enisslon range

Hinimum - 1.382E-04

Haximum - 0.977

Average - 0.266203

Datafile MSIP.R

Reconstruction using matrix inversion.

Number of emissions «= G.0 vas 12
Emissions <= 0.0 5ot to O.000E+00 % average.
Number of bllinear smoothing passes = 1

Veight file MS3P.R
Matrixz origin

R - -80.28}1 om

2 = -87.969 om
Cell size

R = 7.438 cn

2 - 9.083 cm

LANRERLENLAN B LB B I L B [Trvreyp v



Reconstructed numerjcal phantom. File :~ 3MS3P.E

1024 active channels

RHMS reoonstruection error 16.6 %
rus resolution error 0.000E+00 %
Average error 1.32 13
- RMS gaape error 18.8 L
] Simulated rms projection error 10.0 -
] Actual rms projection error 9.93 %
| Simulated noise type = 1
Gaussian simulated noise.
Number of random number cycles = o
Processing Linear
Enis  lon contour levels
Lave 1 = 0,.000E+00
1nererant = 0.100
Emisclon range
Hinitum - ©.000E+00
Maxigum = 0,894
Aversge = 0.266203
RHS noise = 10.4 *
Blind noise - 4.30 L]
Number of oells - 130
Recorstruction time = 0.000E400 &.
Hetrix inversion algorithm.
Datafile HS3IP.R

Reoonstructlon using matrix inversion.

Kumber of emissions «= 0.0 was 12
Emic:tions «= 0.0 set to 0.000E+00 % average.
Number of bjlinear smoothing parses =

Weight [ile MSSP.R

Hatrix origin

R = -80.281 cm

2 - .87.969 cm

Cell size

R = 7.438 om

2 - 9.083 wvin

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
]
!
|
|
|
!

-78.0o T Bttt

llll'Fll‘Tl'!lTlillj_rlll'l—'l

-60.0 -&5.0 0.0 ° 25.0

Figure 6
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Detector configuration for datafile

75.

50.

k5.

-35.

-50.

~-76.

1024 actvive channels

—_————

cm

P N I S J

llll‘llll‘lll('l_rll'll
-60.0 -25.0 0.0 25.0

Figure 7

0O deleted channels

Welight file name
MS2P.R
Matvrix origin

R = -80.28 cm

2 - -68.38 cm

Cell size

R = 7.438 cm

Z = 9.063 cm
76 Normal cells
0 0dd cells

-1 Matsrlix cells
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Reconstructed numerical phantom. File :— 3MB3P.E

1024 active channels

RMS recaonstruotion error 12.9 *
RMS resolutlon error 0.000E+00 %
Average arror 1.14 £

RHS shape error 12.8 %
Sinulated ruc projection error 10.Q kY
Actual rms projection error 9.82 %
Simulated noise type = 1

Gaussian simulated noise.

Number of random number oyoles = 1]
Prooessing Linear

Emigsion contour levels

Level 1 - 0.000E+C0

Increpent = 0.100

Emnlssion range

Minimuw = O.000E+00

Haximug = 1.01

Average - 0.2087413

RAHS noise « 10.7 *

Blind nojse - 4.06 L]

Number of cells = 76

Reconstruction time - 0.000E+00 s.
Matrix Inversion algorithm.

Datafile MSSIP.R

Rooonstruction uslng matrix inversion.

Number of emissions ¢- 0,0 vas 8
Enissions «= 0.0 set to O.000E+00 % everege.
Welght flle MS2P.R

Hetrix origin

R - -80.281 om

2 = -68.375 on

Cel}) size
R = 7.438 om
2 - 9.083 om

LNNLUL L L S LB LA SR N St A B B B B B N

-60.0 -26.0 0.0 - 25.0

Figure 8



Distorted a priori estimate of phantom. File :- 3MS3P.E

10249 active channels

RMS reconstruction error 42.7 %
RHS resolution error 0.000E+Q0 %
Average error 0.000E+00 %

- RHS shape error 40.8 %

Processing Linear

Enission contour levels

Level 1 = ©O.000E:+00

Increment = 0.100

Emission range

Hinixum « 1.086E-03

Haximum = 0,555

Average - 0.262691

76.

80.

|

|

!

|

]

|

!

|
25 . | patafile NS3P.R
| Default iwage file JMF3P.D
| Velght file MSIP.R
| Matrix origin
| R = -80.281 con
| 2 = -67.969 om
i Cel! sizae
1 R = 7.438 om
| 2 - 9.083 om
|
]
{
|
|
|
!
|
|
|
|

-50.

Illﬁl‘rlvlllﬁllllli|||ll

Figure Y



Reconstructed numerical phantom.

File :— 3MS3P.E

1024 active channels

LANLAN T L L LD B B D L L LI BB

~60.0 -236.0 0.0 " 256.0

Figure 11

RMS reconstruction error 10.8
RMS resolution error O0.00DE+00 %
Average error 1.32 =

RHMS shape error 10.8 %
Sipulated rms projection error

10.0

Actual rms projection error 9.93

Simulated nolse type = 1
Gaussian simulated noise.
Number of random number cyclet =
Processing Linear

Emisslon contour levels
Level 1 = O.DODE+00
Increment = 0.100

Enission rangs

Hinimum = 3.799E-09
Haximum = 0.980

Average = 0,266203
Gaussian nolse statistics.
Noise level - 0.950
Sharpness = 1.143E+09

AHS Std. dev. = 9.99 £
Std. dev. type = O

RHS noise = B9.49 %
Blind nolse = 8.11 %
Number of cells = 130
Humber of jteratiomns = B
Reconstructjon time = 41.2
Fast HE algorithm.

Dataflile HS3IP.R

Default image file JIHF3IP.D
Weight file MS3IP.R

Hatrix origin

R « -80.28]1 am

2 - -67.969 om

Cell size

R = 7.4938 cm

2 - 9.083 om

o

%

%



Reconstructed numerical phantom.

File :- BMSGP.E

-~
E]

1024 active channels

e e e e e e — ————— - —— — —— — —

LA I B

Fyrrrrr e

-26.0 0.0 ' 25.0

RMS reconstruction error 18.1 L3
RMS resolulion error 0.000E:+00 %
Average error 1.32 L3

RHS shape error 18.1 %
Simulated rms projeotion error 10.0
Aotual rms projection error 9.93 -
Simulated nolse type - 1

Gaussian simulated noise.

Number of random number cycles = Q
Processing Linear

Emission contour levels

Level 1 = 0.000E+00

Increment - 0.100

Emission range

Minimum -~ 7,SS7E 04

Maximum - 0.96%7

Avarage - 0.286203

Gaussisn noise statistios.

Noise level - 0.950

Sharpness =« 32,B28E+00

RHS Std. dev. « 9.99 *
Std. dev. type = D]

RMS nolse - 9.50 L]
Blind noise -~ 5.]0 %

Humber of cells - 130

Number of iterations -~ 9
Reconstruction time = 35.4 5.
Fast ME algorithm.

Datafile HS3IP.R

Default image is flat.
Weoight flle HS3IP.R
Matrixz origin

R - -80.28) cm
2 - -B7.969 cm
Cell size

R = 7.438 om

2 - 9.083 om
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Reconstructed numerical phantom. File :— EDBEANSP4R.E

1024 active channels

8MS reconstruction error 10.0 %
RMS resolution errer 0,000E+Q0 %
75.04 Average error 0.528 -

RNS shape error 9.55 L3
Sinulated rms projection ecrror O.000E+Q0 %
Actual rms projeotion error 0.ODDE+00 %
Simulated noige type - 0

Uniform slmulated noisae.

Number of random number cyoles = Q
Processing Linear

Emissian cantour levels

Level 1 -« 0.J00E+00

Increment - 15.0

Enission range

Hinimum - 3.451E-13

Haximum = 253 .

Average = 83.490!}

Gaussian naise statistics.

Neise level - 0.350

Sharpness = B.T10E+0Q

RHS Std. dev. « 15.0 %

§td. dev. type = )

Std. dev. min = 2.00DE-03

Std. dev. min = 4.236E-02 % of max signal
Btd. dev. = (.00DE+00 % of signal.
RHS noise = $.2% *

Blind noise = O.000E+00 %

Numbar of cells - 228

Number of jterations - 62
Reoconstruction tiwe = €3.0 5.
Faet ME algerithnm.

Datafile HF4P.R

Default image file 3HF4P.D
Weight file MF4P.R
n Hatrix origin
e O e | R = -82.141 om
—'?'5-0‘-j 2 - -70.234 om
T T l T T 17T l v T 7 l_r T T I T T :91] uiga'ng
- . om

-50.0 -26.0 0.0 °25.0 Z -  4.531 om

IS

¥inure 12



Reconstructed numerical phantom. File :— EDBEANSP4R.E

1024 active channels

RHS reocomnstruction arror 20.7 L]
RMS resolution errcr 0.0DDE+00 %
Average error 0.528 %

RMS shape érror 20.4 LY
Gimulated r®s projection error 0.000£+00 %
Actual rms prajection errar 0.000E+O0 %
Simulated nolse type = [}

Uniforn simulated noise.

Number of random number cycles = o]
Prooessing Linear

Enigslon gontour levels

tevel 1 = O0.000E+0D

Increment = 15.0

Ewlssion range

Hinimum « O.00DE+D0

Hoximuo = 295.

Average = 83.4901

RMS noise = 1.13 »

Blind noise = 0.ODOE+00 %

Number of cells = 228
Reconstruatian time - 23.9 6.
HMatrix inverslan algorithm.

Datafile HF4P.R

Reconstructlon uslag matrix inversion,

Number of emissions <= 0.0 vas 52
Emissions ¢~ 0,0 et to O.00DE+DD % averags.
Velght file HF4P.R

Matrix origin

R - -82.14! on

2 = -70.234 om

Cell size
R = 3.719 cm
2 - 4.53]1 cn
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75.

50.

5.

-26.

-80.

o

Distorted a priori estimate of phantom. File :-

1024 active channels

LALANL N R A B Y (LA B B B R B LA B R

-50.0 -25.0 0.0 'R8.0

Figure 14

Time 5.500 msec
Processing Linear
Emission contour levels
Level ) = O.000E+00
Inorement = 15.0
Emission range

Hinfmum = O.000E+00
Haxjmun « 2%4.
Average « ©0,0000DDE+DD

Datafile HFSP.R

Default imnge file EDBEANSP.D
Veight fille MFG6P.R

Matrix origin

R = -82.141 cm

2 = -70.234 cm

Cell size

R = 3.718 cn

2 - 4.531 on



PBX Soft X-ray Emission Cross-section. Shot % 0

1024 active channels
Time 0.000 msec Hinimum emission= 0.000E+00 Mazximum emissione 295. Average~ 83.4980)
Processing Linear Datafile HF4P.R Weight file HF4P.R
Roconstruction using matrix inversion. Emissions - 0.0 set to O.000E+00 % average.
Number of emissjons <= 0.0 was 52
Hatrix origin R = -82.]141 cm 2 = -70.234 on Cell size R = 3.719 cm 2 = 4.831 om

RMS noise - 1.13 % Blind nojse - D.000E+00 % Std. dev. type = 1
Number of cells = 328 Number of iterations = 81 Reconstruotion time = 23.9 8. Matrix inverslon algarithm.

|-
— 250.
X
- 200,
— 150.
L
n - 100,
.....-\-.... [:
—~ NN s
3 N —  sQ.
_* \—\ E
‘—__‘I T 0-
20.0
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Detector configuration for datafile

75.

50.

25.

-25.

~50.

1024 active channels

o
1

(o}
S I BT R S

o
I

0 deleted channels

—_—

—

g

‘l—ll‘rl_lflT‘rllllllll|‘l|

-50.0

-25.0

0.0

25.0

Figure 16

Welght file name
MF4P.R
Matrix origin

R = -82.14
Z = -70.23
Cell size

R = 3.719
Z = 4.631

228 Normal cell
0 0dd cells
-1 Matrix cell

cm

cm

cm

cm

S
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Detector configuration for datafile

MFSP.R

75.

50.

25.

-25.

-60.

-75.

.
o
PYRT IR NN N ST S B

1024 active channels

o

o o
LIJ 1 Il

L0

———— e

—

d

(@)

llﬁ[llll‘lfl_lllfll‘l_r

-50.0

-25.0

0.0 26.0

0O deleted channels

Weight file name

MFSP.R
Matrix origin
R = -82.14

2 = -70.23
Cell size

R = 3.719

Z = 4.5631

CIn

cm

cm

cm

252 Normal cells

C 0dd cells

-1 Matrix cells
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Reconstructed numerical phantom. File :-~ EDBEANSP4R.E

1024 active channels

RNS reconstructlion error 0.000E+00 %
RMS resolution error O.000E+00 %
5.0 Average error 7.163E-05 &

j | T T T T RHS shape error 0.000E+00 %

Sinulated rms projeotion error 0.000E+Q00 %

Actual rms projection error 0.000E+00 %
Simulated nojse type - D
Uniform simulated noise.
Number of random number cycles = O
Prooessing Linear
Emission contour levels
Leval | = 0.000E+00
Inorepent - 16.0
Emission range
Hinimum - O.CCOE+D0
Hazinum - %54,
Average =~ 82.3024
RMS nolse -« 1.682E-04 %
Blind noise = 0.000E+D0 %
Number of cells = 252
Reconstruotion time = (.000E+00 5.
Matrix inversion algorithnm.
Datafile HF4P.R

Reconstruotion using matrix inverslon.

Number of emissions «= 0.0 vas 66
Emissions «= 0.0 set ta 0.000E+00 % average.
Weight file UFSPDP.R

Hatrix origin

R = -82.141 em

2 - -70.234 cm

Cell size

R = 3.719 ¢m

2 - 4.531 em

-w5.04 "7~

reryrrryrrrrrrr T o rprr

-60.0 -286.0 0.0 ‘26.0

Flgure 18
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PBX Soft X-ray Emission Cross—-section. _ Shot % 269084

1024 active channels

Time 430.000 mseo
Processlng Linear
Enisgion contour levels
Leval 1 = 1.000E+O5
Increment = 4.000E+05
Emission range

Hinimum = 212.

Haximum = 4.212E+08
Average = 1.246878E+06
Gaussian nolse statisties.
Noige level - 1.00
Sharpness = 26.0

RMS Std. dev. = 4.51 LY
Std. dev. type =~ O

RHS noisa = 18.9 LY
Blind noise - 4.81 L)
Nurber of cells - 218
Number of iterations - 12
Reconstruotion time = 12.0 5.
Fast HE algorithm.
Datafile CNTR_PERP.LATE

Default image file W:289084_430Q070.D
Weight (1le HMF4R.R

Hatriz origin

R - -87.000 cm

2 - 86.000 om

Cell size

R = 4.000 cm

2= 4.00U cn

LANLERLESY L ANUEN BNE R B B 741 LA AL L B

-60.0 -26.0 0.

o
bx]
s/}
=}
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76.

60.

25 .

-85

-60

.0':

] {
~0: . \\\ ~ I'
R " /

-

Distorted a priori estimate of phantom. File :-

1024 active channels

|

7

IIIlTIIIllIIIrllllr—l—T

-50.0 -25.0 0.0 26.0

Figure 20

Tine $.500 mseo
Processing Linear
Emission oontour levals
Level | -  500.
inerement =~ 23.000E+03
Emicsion range

Hininum - 11.8
Haximum - 3,264E4Q4
Avorage - 0.000000E+00

Datafile

Dofuult image file W:289084_430Q070.D
Weight [1le HF4R.R

HMatrix origin

R - -67.000 om

g = 66.000 om

Cell size

R = 4.000 om

2 - 4.000 cm



—————- Computed signal Measured signal
1000 ~
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PBX Soft X-ray Emission Cross-section.

Shgot & 260601

1024 active channels

-60.0

l‘l‘ll

-25.0

T

Figure 22

Time $520.000 msec
Processing Linear
Erissian contour levels
Level I = |.DOOE+05
Inorement = 4.000E+05
Emission range

Hininum = 802.

Maximum = 4.833E+08
Average = 1.206690E+06
Gaussian noise statistios.
Nolse iquel = 2.00
Sharpness = 19.8

RHS Sta. dev. - 4.89 %
Std. dev. type ~ L]

RHMS noise ~ 27.7 “
Blind noise - 0.590 -
Humber of cells = 218
Number of iterationy - 9
Reoonstruation time - 61.9 5.
Fast HE algorithm.
Datafile CO_PARA2.LATE

Default jmage file W:26050)_520Q040.D
Veight file HF4R.R

Hatrix origin

R = -B7.000 cm

2 - -66.000 cm

Cell size
R 4.000 cn
2 - 4.000 om



A

Distorted a priori estimate of phantom. File :-

10284 active channels

Time 440.000 meseo
Processing Linear
Emission contour levels
Level | = $00.
Increment - 2.000E+03
Emission range

Hinlmum - 9.74
Haximum - 3.341E+04
Average - 783608.

Duatafile CHNTR_PARA.LATE

Default image file W:260501_620Q040 ©
Velight file HF4R.R

Hatrix origin

R - -67.000 am

Z = -66.000 om

Cell size

R = 4.000 am

2 - 4.000 cm

lllllllﬁ’lllll‘[ll_flil_ll'
-60.0 -25.0 0.0 25.0
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Figure 24




NOQTICE

Available from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
7Q03-487-4650

Use the foilowing price codes when ordering:

Price: Printed Copy AC3
Microfiche  AM1

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of Ihe United States
Goverameat.  Neither the United States Government rof any agency thereof, nor any of their
employces, makes any warranty, express or implied. or assumes any legal hability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, er
process disclosed. or represents that its use would not infringe privately uwned rights Refer-
ence herein (o any specific commercial product, process, or service by trade namc, trademark,
manufacturer, or otherwise does nol nccessarily constitute or imply its cndorsement, recom-
mendation, or favoring by the United States Goverament or any agency thereof The views
and opinions of authors expressed hercin do not necessarily state or reflect those of the
United States (Government or any ageacy thereof.



