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a b s t r a c t

Sparse representation based modeling has been successfully used in many image-related

inverse problems such as deblurring, super-resolution and compressive sensing. The heart

of sparse representations lies on how to find a space (spanned by a dictionary of atoms)

where the local image patch exhibits high sparsity and how to determine the image local

sparsity. To identify the locally varying sparsity, it is necessary to locally adapt the

dictionary learning process and the sparsity-regularization parameters. However, spatial

adaptation alone runs into the risk of over-fitting the data because variation and

invariance are two sides of the same coin. In this work, we propose two sets of

complementary ideas for regularizing image reconstruction process: (1) the sparsity

regularization parameters are locally estimated for each coefficient and updated along

with adaptive learning of PCA-based dictionaries; (2) a nonlocal self-similarity constraint

is introduced into the overall cost functional to improve the robustness of the model.

An efficient alternative minimization algorithm is present to solve the proposed objective

function and then an effective image reconstruction algorithm is presented. The experi-

mental results on image deblurring, super-resolution and compressive sensing demon-

strate that the proposed image reconstruct method outperforms many existing image

reconstruction methods in both PSNR and visual quality assessment.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Reconstructing a high-quality image from a degraded

measurement is a typical inverse problem, which has been

extensively studied in the past decades [1–3,5,7,13,22]. The

image reconstruction (IR) problem is generally modeled by

a linear system [1]: y¼Hxþv, where xARN is the unknown

high-quality image, HARP�N is the degradation matrix,

vAR
N is the additive noise, and yARP is the observed

measurement. When H is specified by a blurring kernel

(P¼N), then the IR problem is image deblurring; when H

is a composite operator of blurring and regular sampling

(PoN), then the IR problem is single image super-resolu-

tion; when H is a random sampling matrix (PoN), then the

IR problem becomes compressive sensing reconstruction.

The challenge of recovering x from y is due to its ill-posed

nature of the inverse problem. To make the problem

solvable, additional prior knowledge of the image x has

to be incorporated into the reconstruction process. The prior

knowledge is often incorporated by a regularization term

J(x), leading to the following energy minimization problem:

x̂¼ arg min
x

:y�Hx:2
2
þlUJðxÞ

n o

, ð1Þ

where l is the Lagrangian multiplier balancing the tradeoff

between the ‘‘prior term’’ J(x) and ‘‘likelihood term’’

:y�Hx:2
2
. The ‘‘prior term’’ J(x) plays a key role in the
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reconstruction process and has been extensively studied in

the past decades. The classic ‘‘smoothing’’ regularization

terms, such as the quadratic Tikhonov regularization [2]

and the total-variation (TV) regularization [3,4], are widely

used. However, these prior terms are known to cause over-

smoothed results. Other improved regularization terms,

including adaptive TV regularization [5–7], nonlocal TV

regularization [8,9], have also been proposed.

An alternative approach to incorporating the prior knowl-

edge about images is via sparse representation, which has led

to a highly competent class of sparsity-based image recon-

struction methods for various applications, such as denoising

[10,11], compressive sensing [12–14], deblurring [15,16],

and super-resolution [17–19]. Sparsity-based IR methods

assume that the natural image is sparse in some domain

spanned by a set of bases or a dictionary of atoms. Here the

sparsity means that the signal x can be well approximated

by a small set of selected atoms {dj}jAL from the dictionary

DARN�M(MZN), i.e., x�
P

j2Lajdj. Thus, the recovery of

x can be casted as an estimation problem of sparse repre-

sentation using the observed y over a specific D, which

amounts to minimize the following cost functional:

â¼ arg min
a

:y�HDa:2
2
þl:a:

0

n o

, ð2Þ

where the l0-norm denotes the number of nonzero entries in

vector aAR
M. The problem of l0-norm optimization is a

notoriously difficult (NP-hard) problem in combinatorics,

and it is often suboptimally solved by greedy algorithms,

e.g., matching pursuit [20]. Alternatively, the l0-norm can

be replaced by the l1-norm, which leads to a convex

minimization problem that can be efficiently solved by

recently-developed large-scale solvers, such as the basis

pursuit [21], iterative shrinkage algorithms [22,23], and the

split Bregman algorithm [8].

At the heart of sparse representations lies the following

tantalizing question: How should we choose the dictionary

D? In other words, which is the best domain for sparsifying

a given signal x? The construction and comparison of various

dictionaries for sparsifying natural images has been exten-

sively studied, ranging from the analytically-designed dic-

tionaries (e.g., discrete-cosine-transform, wavelet, curvelet

[24], contourlet [25], bandelet [26]) to the learning-based

dictionaries [27–29]. The former class attempts to approx-

imate the patches in natural images using basis functions

with good localization properties in the Hilbert space. How-

ever, these dictionaries are often insufficient to characterize

the formidable complexity of natural images, resulting in

suboptimal sparse representations. The later class directly

learns the image structures from a training dataset and has

shown impressive performance improvement over the for-

mer on various image restoration tasks [10,11,15,17,18,29].

It should be noted that the learned dictionary DARN�M

consists of various prototype signal structures, and is highly

redundant, i.e., McN. For a K-sparse signal xARN (NcK),

the total number of sparse representations for x over D

amounts to CK
M . Hence, the sparse representation over the

redundant dictionary is potentially unstable—e.g., greedy

algorithms might not find the sparsest solution but slightly

inferior ones (due to the nonconvexity of l0-norm optimiza-

tion). Indeed, some attempts have been made to improve

the stability of the sparse approximation by mixing a

collection of competitive sparse representations [30], which

is equivalent to lettingM-N. In addition to the prohibitive

complexity, we argue that the fundamental problem with

this line of reasoning lies on the fact that linear tools such

as subspace projections are inefficient in exploiting the

nonlinear image manifold.

A more promising approach toward learning the mani-

fold structure of natural images is to combine redundancy

with adaptation. Considering the fact that the image

content can vary significantly even within a single image,

it is important to have dictionaries locally adapted for

each patch (in addition to the redundancy introduced by

overlapping patches). In this paper, we propose to adap-

tively learn the dictionary for each patch using nonlocal

similar patches both within the same scale and across

different scales. The effectiveness of exploiting nonlocal

similarity has been validated in the applications of image

denoising [31,11,29] and resolution enhancement [32,19].

The local dictionary learning using nonlocal similar

patches has been recently addressed in our previous work

[19], which can be viewed as the extension of local

principle component analysis (PCA) [33] and locally linear

embedding [34] from dimensionality reduction to regres-

sion analysis. Considering that there is often rich multi-

scale visual information in natural images, it is desirable

to extend the single-scale local dictionaries to multiscale

versions. Here for each local patch, several sub-

dictionaries associated with different scales are learned

using the nonlocal information. These sub-dictionaries are

then used to form an overall multiscale dictionary that

will be used for sparse coding.

It has also been shown that varying the sparsity-

regularization parameters according to the actual local

sparsity can significantly improve the quality of sparsity-

based signal reconstruction [35]. In this paper, we formu-

late the measuring of actual sparsity as a Maximum

a Posterior (MAP) estimation problem and locally update

the estimate of sparsity parameter for each pixel in an

iterative fashion. The balance between spatial adaptation

and nonlocal regularization is also discussed. The benefit

of introducing nonlocal regularization can be understood

from inspecting the tradeoff between the adaptation

and the robustness of an image model. Considering

similar patches along a regular edge, pixelwise spatial

adaptation might cause inconsistency among local patches

(i.e., robustness is sacrificed). Nonlocal regularization

addresses this issue by introducing a nonlocal means

(NLM) based penalty term into the cost functional of image

reconstruction solution. As will be seen in Section 4, this

NLM-based regularization term can be easily integrated

into the proposed adaptive sparse representation frame-

work. In fact, the estimation accuracy of actual sparsity for

local patches can be improved by incorporating the coeffi-

cients from nonlocal similar patches. In this work, by using

a variable splitting and penalty technique we proposed an

efficient alternative minimization algorithm to solve the

resulted optimization problem. The experimental results of

image deblurring, super-resolution and compressive sen-

sing clearly demonstrate that the proposed adaptive sparse

representation based IR method significantly outperforms
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many existing IR methods in both PSNR values and visual

quality.

The rest of this paper is organized as follows. Section 2

presents the proposed adaptive sparse representation with

locally computed dictionaries. The local sparsity adaptation

and NLM-based nonlocal regularization are studied in

Section 3. Section 4 presents the alternative minimization

algorithm for solving the resulting optimization problems.

Section 5 presents the experimental results, and Section 6

concludes the paper.

2. Sparse representation with locally adaptive

dictionaries

In this section, we present an adaptive sparse representa-

tion with locally computed dictionaries aiming at improving

the flexibility of adapting to the diverse image structures

within an image. Conceptually it is related to the idea of local

PCA for dimensionality reduction [33], but unlike local PCA,

our objective is to obtain a sparse representation and we

have to deal with degraded observation data.

2.1. Sparse representation over local dictionaries

Let us consider the image patch of size
ffiffiffi

n
p

�
ffiffiffi

n
p

.

Denote by xiAR
n, i¼1,2,yN, the local patch vector

extracted at position i, i.e., xi¼Rix, where RiAR
n�N is a

matrix operator that extracts patch xi from x. Suppose

that xi can be sparsely represented over a dictionary

DiAR
n�m(mZn), i.e., the solution to

âi ¼ arg min
ai

:xi�Diai:
2

2
þl:ai:1

n o

ð3Þ

is very sparse, where aiAR
m. Since the local content of an

image can vary significantly from region to region, the

optimal dictionary for each local patch can also vary

across the image. Hence, it is desirable to locally deter-

mine the best Di for each xi. Temporarily, we assume that

Di is known for each xi (details of deriving them will be

elaborated in the next subsection). The whole image x can

be sparsely represented by a set of coefficient vectors fâig
and the associated locally adaptive dictionaries {Di}.

Mathematically, this can be written as:

x̂¼
X

N

i ¼ 1

RT
i Ri

 !�1
X

N

i ¼ 1

ðRT
i DiâiÞ, ð4Þ

where the matrix to be inverted is a diagonal one and

matrix inversion can be carried out in a pixel-by-pixel

manner [10]. It follows from Eq. (4) that the whole image

x can be approximated by first sparsely coding each patch xi
and then averaging over all reconstructed patches x̂i. For

the convenience of expression, let D denote the concatena-

tion of the local dictionaries {Di} and â the concatenation of

fâig. Then the formula of image reconstruction from sparse

representation in Eq. (4) can be rewritten as follows:

x̂¼D3â¼
X

N

i ¼ 1

RT
i Ri

 !�1
X

N

i ¼ 1

ðRT
i DiâiÞ: ð5Þ

Now, consider the degraded version of x: y¼Hxþt. We

are interested in recovering the set of sparse codes fâig

from the observation y. This recovery problem can be

formulated as follows:

â¼ arg min
a

:y�HD3a:2
2
þl

X

N

i ¼ 1

:ai:1

( )

, ð6Þ

where l is the regularization parameter. Then x can be

recovered by x̂¼D3â. When compared with universal

dictionary learning [27], we can achieve a sparser repre-

sentation by adapting the dictionary Di to each local

patch. In next subsection, we will show how to adaptively

learn the local dictionaries {Di} by exploiting the nonlocal

redundancies among patches of both the same scale and

across different scales.

2.2. Adaptive dictionary learning by iterative PCA

In our previous works [36,37], principal component

analysis (PCA) was successfully used to de-correlate the

local image structure for noise removal. More specifically,

a collection of patches similar to the current one are

grouped and the PCA transformation matrix is computed

over a set of training data. Since the local patch can

be well approximated by a small number of significant

principal components, the PCA transformation (also-

called Karhunen–Loeve Transform) matrix naturally

defines a dictionary for the given image structure. Here

we propose to extend this idea of PCA-based computation

of locally adaptive dictionaries into image deblurring,

super-resolution and compressive sensing recovery.

We will first consider the problem of learning a local

dictionary for image x (temporarily ignoring the inter-

ference from noise, blur, etc). One way to construct such

a training set for an image patch xi is to collect similar

patches from many training images. However, in many

practical situations training images are simply not avail-

able (let alone the selection of training images, which is

an open issue on itself). Based on the observation that

natural images often contain a rich amount of repetitive

structures, we propose to construct the training dataset

by searching for similar patches both within the same

scale and across different scales. For image x, we first

generate a set of images {xs} by scaling down x with scale

factors 0.8s, s¼0,1,y,6. A similar method was also

adopted in [32] for image set generation. Then we can

search for the similar patches across the image set {xs} for

each xi. All image patches (mean value removed) whose

Euclid distances to xi are smaller than a threshold are

selected as similar patches:

Si ¼ fxsj 9:xi�xsj:rt,s¼ 0,. . .,6g, ð7Þ

where xi and xsj are the mean-removed versions of xi and

xsj , respectively, and xsj is the patch extracted from xs, and t

is the pre-defined threshold. Alternatively, we can select

those image patches xsj such that xsj is within the Jth

closest patches to xi. By concatenating similar patches

together, we can obtain a 2D data matrix for xi:

xi ¼ ½xi,xi,1,. . .,xi,J�1�, where each column is a similar patch

vector extracted from {xs}. Then standard PCA computa-

tion can be applied to the covariance of Xi given by: (Xi is

W. Dong et al. / Signal Processing: Image Communication 27 (2012) 1109–1122 1111



the mean-removed version of Xi)

Xi ¼
1

J
XiX

T

i : ð8Þ

Some learned local PCA dictionaries corresponding

to the local patches of image Barbara are shown in

Fig. 1. As shown in Fig. 1, we can see that the local PCA

dictionaries can well represent the local image patterns.

Now the question is how to train the dictionary when

we only have access to the degraded version of y¼Hxþt?

The peer relationship between x and D (in fact it is the

sparse coefficient â) suggests that we can treat the

dictionary as a latent variable just like the centroids in

k-means clustering. Such a problem with chicken-and-egg

flavor calls for an iterative solution in which we alternate

our estimates of x and D. Specifically, we propose to first

obtain an initial estimate of x using a fixed dictionary

(e.g., DCT or wavelet), denoted by x̂, and calculate the

locally adaptive dictionaries {Di} using x̂. With the

updated dictionaries {Di}, we can achieve better IR results

by Eqs. (5) and (6), which provide an updated estimate for

x. Then the procedure of updating {Di} and x can be

iterated. Such a successive refinement of local dictionaries

and reconstructed image shares conceptual similarity to

many iterative estimation techniques such as the

expectation-maximization (EM) algorithm.

2.3. Multiscale adaptive dictionaries

By adapting the dictionaries to the local image structure,

the sparsity-based IR method can lead to better IR results

than most existing methods. Nevertheless, the single-scale

dictionaries are not able to effectively exploit the multiscale

information that is commonly contained in natural images.

For instance, dictionaries of small atom size (e.g., 5�5) are

suitable for representing fine edge structures but are unable

to accurately characterize large-scale image structures or

flat image regions, and vice visa. To address this issue, we

extend the single-scale adaptive dictionary learning to

multi-scale versions using a quad-tree structure model.

As a common tool, the quad-tree structure model is widely

used in image/video coding as well as in image representa-

tion (e.g., wedgelet [38] and multiscale K-SVD [28]).

The basic idea of the proposedmulti-scale adaptive sparse

representation is to partition a large root patch of size
ffiffiffi

n
p

�
ffiffiffi

n
p

into four
ffiffiffi

n
p

=2�
ffiffiffi

n
p

=2 sub-patches, each of which

can further be partitioned to generate more scales, as shown

in Fig. 2. Supposing that L different scales are generated, for

scale l there are totally 4l�1
, l¼ 1,2,. . .,L sub-patches of size

ffiffiffi

n
p

=2l�1 �
ffiffiffi

n
p

=2l�1. To jointly exploit the structural informa-

tion among the different scales, for each patch xi we propose

to learn a joint dictionary ~Di that consists of totally
PL

l ¼ 1 4
l�1 sub-dictionaries corresponding to each sub-patch.

We use the above described iterative PCA approach to learn

the sub-dictionaries to exploit the multi-scale nonlocal

redundancies. Since those sub-dictionaries are of different

sizes, we use the zero padding to embed the atoms into

bigger atoms of size n, resulting in the multiscale dictionary
~D i ¼ ½Di,0,Di,l1 ,. . .,Di,Lq � 2 R

n�nL, where q¼ 1,2,. . .,4l�1. Simi-

lar consideration was also adopted in [28].

For each local patch xi (called root patch), we solve the

problem of Eq. (3) with ~Di using the iterative shrinkage

algorithm [22]. Since each local patch xi is coded with

multi-scale dictionaries, it will be reconstructed by aver-

aging the results from multi-scales. And the whole image

will be reconstructed by averaging all the reconstructed

root patches using Eq. (5).

The objective function of Eq. (6) can be solved by the

iterative shrinkage (IS) algorithm [22]. However, the

major drawback of the IS algorithm is its low convergence

speed. In this paper we present a variable-splitting based

minimization algorithm [46] to solve Eq. (6), which allows

faster convergence speed, and thus can significantly

reduce the computational complexity. Specifically, we

introduce an auxiliary variable z for the reconstructed

image x into Eq. (6) and obtain the following equation

ðâ,ẑÞ ¼ arg min
a,z

:y�Hz:2
2
þg:z�D3a:2

2
þl

X

N

i ¼ 1

:ai:1

( )

,

ð9Þ

where g is a penalty parameter. It can be seen that when g
becomes large enough, Eq. (9) is equal to Eq. (6). Eq. (9)

can be solved by alternatively solving the following two

sub-problems, i.e.,

ẑ¼ arg min
z

:y�Hz:2
2
þg:z�D3a:2

2

n o

, ð10Þ

â¼ arg min
a

:z�D3a:2
2
þl=g

X

N

i ¼ 1

:ai:1

( )

: ð11Þ

Note that both of the two sub-problems have closed-

form solutions and thus can be solved efficiently. Eq. (10)

is a quadratic minimization problem and thus can be

solved in a closed-form, i.e.,

z¼ gD3aþHTy

HTHþgI
: ð12Þ

where I is an identity matrix. In our implementation, we

Fig. 1. Examples of the learned local PCA dictionaries. The left image

shows the selected local patches of part of the image Barbara, and the

right image shows the corresponding learned PCA dictionaries. Note that

only the first 8 atoms of the learned PCA dictionaries are shown.

Fig. 2. Patch partition with quad-tree structure model for the multi-

scale representation.
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use the conjugate gradients (CG) algorithm to compute

Eq. (12) for an estimated z. For a fixed z, the optimization

of the sparse code a by solving Eq. (11) is a typical

denoising problem that can be solved by soft threshold-

ing. The overall algorithm for solving Eq. (6) is outlined in

Algorithm 1.

Algorithm 1.

1. Initialization:

(a). Initializing the local dictionaries {Di} as DCT basis, we can

compute an initial estimate x̂ of x by solving Eq. (6) using the IS

algorithm [22];

(b). With the initial estimate x̂, we locally compute the multi-scale

{ ~D i};

(c). Set the initial sparse codes a(0)¼0, k¼0, and preset a small

constant D, the maximal iteration number, denoted by Max_Iter,

and T as an integer;

2. Iterate on k until :x̂ðkÞ�x̂
ðkþ1Þ:2

2
=NrD or kZMax_Iter is satisfied.

(a). Solve for ẑ
ðkþ1Þ

for a given set of vectors a(k) by solving Eq. (12)

using a CG algorithm;

(b). Compute the PCA transformation coefficients

a
ðkþ1=2Þ ¼ ½ ~DT

1R1 ẑ
ðkþ1Þ

,. . ., ~D
T

NRN ẑ
ðkþ1Þ�;

(c). Threshold each coefficient aðkþ1Þ
i,j

¼ softðaðkþ1=2Þ
i,j

, tÞ, where

softðU,tÞ is a soft thresholding function with threshold t;
(d). Compute x̂

ðkþ1Þ ¼D3aðkþ1Þ using Eq. (5), which can be calculated

by first reconstructing each root patch with x̂
ðkþ1Þ
i ¼ ~D ia

ðkþ1Þ
i

and then averaging all the reconstructed image patches;

(e). If mod(k, T)¼0, update the adaptive sparse domain { ~D i} using

the improved x̂
ðkþ1Þ

.

In Algorithm 1, D is a pre-specified constant control-

ling the convergence of the iterative process, and Max_Iter

is the allowed maximum number of iterations. We only

update the adaptive sparse domain {Di} in every T itera-

tions to save computational complexity. The threshold

t in step 2 (c) is given by t¼cl/g, where c is a pre-selected

scalar parameter. As will be shown in the next section, by

adapting the parameter l in Eq. (6) to each coefficient, we

can further improve the performance of Algorithm 1.

3. Local sparsity adaptation and nonlocal regularization

In this section, we extend Algorithm 1 by incorporat-

ing two complementary ideas: spatial adaptation and

nonlocal regularization. Spatial adaptation is to adjust

the local sparsity to better match the spatially-varying

structures (e.g., from smooth regions to edges or texture

regions). Such an objective can be met by locally varying

the local dictionaries and the regularization parameter l

in Eq. (6). However, the risk of doing spatial adaptation on

a pixel-by-pixel basis is the lack of consistency across

patches of similar structures. Therefore, nonlocal regular-

ization is introduced as an effective countermeasure to

improve the robustness of adaptive sparse representations.

3.1. Locally adaptive estimation of sparsity regularization

parameter

Eq. (6) employs a global regularization parameter l for all

patches. It has been shown that better image reconstruction

results can be obtained by varying the sparsity-regularization

parameters [35]. Assume that the observation y is contami-

nated with additive Gaussian noise with standard deviation

sn. Under the Bayesian framework, the estimation of sparsity

vector â can be modeled as the following MAP problem:

â¼ arg max
a

flog Pða9yÞg ¼ arg min
a

f�logPðy9aÞ�log PðaÞg,

ð13Þ

where

Pðy9aÞ ¼ 1

sn

ffiffiffiffiffiffi

2p
p exp � 1

2s2
n

:y�HDa:2
2

� �

: ð14Þ

The prior distribution of a is often characterized by an

independent and identically distributed (i.i.d.) zero-mean

Laplacian probability model:

PðaÞ ¼
YN

i ¼ 1

Yn

j ¼ 1

1
ffiffiffi

2
p

s
exp � 1

s

ffiffiffi

2
p

9ai,j9
� �

, ð15Þ

where s is the standard deviation of the Laplacian model.

By plugging P(y9a) and P(a) into Eq. (13), we can obtain

the l1-norm sparse representation model of Eq. (6) with

l¼ 2
ffiffiffi

2
p

s2
n=s.

By varying the parameter s according to the local

statistics, the Laplacian model becomes more accurate for

characterizing the distribution of a. Therefore, we could

improve the sparsity-based image model by tuning l for

each element of a, i.e.,

â¼ arg min
a

:y�HD3a:2
2
þ
X

N

i ¼ 1

X

n

j ¼ 1

li,j9ai,j9

8

<

:

9

=

;

, ð16Þ

where ai,j is the jth coefficient associated with the jth

atom of ~Di, li,j ¼ 2
ffiffiffi

2
p

s2
n=si,j and si,j is the standard

deviation of ai,j. For numerical stability, we let:

li,j ¼
2
ffiffiffi

2
p

s2
n

ŝi,jþe
, ð17Þ

where e is a constant (e¼0.1 in our implementation) and

ŝi,j is the estimate of si,j. To estimate si,j, we can first

obtain an initial estimate of the image x by solving Eq. (6),

denoted by x̂, and then estimate si,j using the PCA

transformed dataset Ŷi ¼ ~D
T

i x̂i ¼ ½âi,âi,1,. . .,âi,J �, where

x̂i is the training data set extracted from x̂ using the

method described in Section 2. In the scenario of image

restoration, s2
n is often assumed to be known, or it can be

estimated.

Such a local regularization parameter adjustment strat-

egy has been used in [35] by letting li,j ¼ 1=ð9âi,j9þeÞ. Here,
by using the coefficients âi,j from nonlocal similar patches,

li,j can be more accurately estimated. On the other hand,

the nonlocal redundancy can be used to improve the

robustness of adaptive sparse representation in Eq. (16)

by using the strategy of nonlocal regularization, which is

introduced next.
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3.2. Enforcing self-similarity constraint via nonlocal

regularization

Local adaptation of dictionaries and local estimation of

regularization parameter li,j both contribute to improving

the characterization of spatially varying structures in nat-

ural images. However, spatial adaption alone runs into the

risk of overfitting the data. Considering similar patches

along an edge, the pixel-wise spatial adaption may cause

non-consistence among local patches. To address this issue,

we further introduce a nonlocal self-similarity constraint

into the proposed sparse model. The nonlocal self-similarity

constraint enforces that the pixels of the reconstructed

images should be well predicted with the nonlocal similar

neighbors. Such nonlocal self-similarity constraint has been

proved to be effective on preserving edge and texture

structures for various tasks, such as denoising [31,11] and

super-resolution [32]. In the above PCA-based local dic-

tionary learning process, nonlocal redundancy information

has been partially exploited by the training set (i.e., through

search of similar patches) but its role has been limited to

promoting local adaptation in the previous section. In this

subsection, we show how to more effectively exploit the

nonlocal redundancy information to improve the robust-

ness of our sparsity-based model.

In PCA-based dictionary learning, we have grouped a

set of similar patches for each patch xi. Suppose that there

is a set of L patches, fx̂lg, l¼1,2,y,L, from the same scale

that are within the Lth (L¼10 in our experiments) closest

patches to x̂i, where x̂i and x̂l are the current estimates of

xi and xl, respectively. Let x(i) be the central pixel of patch

xi (i.e., the pixel located at position i) and x(l) be the

central pixel of patch xl. Then a prediction of x(i) can be

formed as
PL

l ¼ 1 bi,lxðlÞ. The weights assigned to x(l) are

set as

bi,l ¼ exp ð�:x̂i�x̂l:=hÞ=ci, ð18Þ

where h is a controlling factor of the weight and ci is the

normalization factor. Considering the nonlocal self-

similarity property, we expect that the prediction error

:xðiÞ�
PL

l ¼ 1 bi,lxðlÞ:
2

2
should be small. Therefore, it is

natural to introduce the following energy function:

f NLMðxÞ ¼
X

N

i ¼ 1

:xðiÞ�
XL

l ¼ 1
bi,lxðlÞ:

2

2
: ð19Þ

The above formula can be more compactly written in

a matrix form:

f NLMðxÞ ¼ :ðI�BÞx:2
2

,, ð20Þ

where BARN�N and I is the identity matrix and

Bði,jÞ ¼
bi,j, if xðjÞ is the selected similar pixel to xðiÞ
0, otherwise

,

(

ð21Þ

where bi,j is computed using Eq. (18). By incorporating

this nonlocal self-similarity regularization into Eq. (16),

we obtain a balanced objective functional as follows:

â¼ arg min
a

:y�HD3a:2
2
þZ:ðI�BÞD3a:2

2
þ
X

N

i ¼ 1

X

n

j ¼ 1

li,j9ai,j9

8

<

:

9

=

;

,

ð22Þ

where the first l2-norm term is the likelihood term,

guaranteeing that the reconstructed image x̂¼D3â should

fit the observation model y¼Hxþv, the second l2-norm

term is the nonlocal self-similarity regularization term,

enforcing that the reconstructed image pixels should be

well predicted by the nonlocal similar neighbors, and the

third weighted l1-norm term is the sparsity penalty term,

requiring that the reconstructed image should exhibit

sparsity in the local sparse domain.

4. Numerical algorithm and implementation

After incorporating the nonlocal similarity regulariza-

tion term, the minimization of Eq. (22) is still convex and

can be solved efficiently using existing l1-norm minimiza-

tion algorithms. For high speed convergence, we also

present an alternative minimization algorithm for solving

Eq. (22) using the variable-splitting and penalty techni-

ques [46]. By introducing an auxiliary variable z for the

reconstructed image x into Eq. (22), we obtain the

following equation

ðâ,ẑÞ ¼ arg min
a,z

:y�Hz:2
2
þZ:ðI�BÞz:2

2
þg:z�D3a:2

2

n

þ
X

N

i ¼ 1

X

n

j ¼ 1

li,j9ai,j9

9

=

;

, ð23Þ

where g is a penalty parameter. Eq. (23) can be solved by

alternatively solving the following two sub-problems, i.e.,

ẑ¼ arg min
z

f:y�Hz:2
2
þZ:ðI�BÞz:2

2
þg:z�D3a:2

2
g, ð24Þ

â¼ arg min
a

:z�D3a:2
2
þ 1

g

X

N

i ¼ 1

X

n

j ¼ 1

li,j9ai,j9

8

<

:

9

=

;

: ð25Þ

Both of the two sub-problems admit closed-form

solutions and thus can be solved with low computational

complexity. For a fixed sparse code a and dictionary D,

Eq. (24) is a quadratic minimization problem and can be

solved in a closed-form, i.e.,

z¼ gD3aþHTy

HTHþZðI�BÞT ðI�BÞþgI
: ð26Þ

In our implementation, we use the conjugate gradients

(CG) algorithm to compute Eq. (26) for an estimated z. For

a fixed z, the optimization of the sparse code a by solving

Eq. (25) is a typical denoising problem, i.e., first the image

patches were extracted and then sparsely coded with

respect to the local dictionary Di and the sparsity regular-

ization parameter li,j/g. In general, the alternative opti-

mization of z and a will converge to a local minima after

several iterations (typically 40–50 iterations in our

deblurring experiments). Compared to the IS algorithm

that typically converges after 1000 iterations in our

deblurring experiments, the alternative minimization

W. Dong et al. / Signal Processing: Image Communication 27 (2012) 1109–11221114



algorithm has a much faster convergence speed. We

outline the details of the algorithm for solving Eq. (23)

in Algorithm 2.

In Algorithm 2, the threshold ti,j is locally computed

as ti,j¼cli,j/g, where c is introduced to control the

denoising effects in each iteration. After we obtain a

reconstructed image, { ~Di}, B and li,j can be recomputed

and then Algorithm 2 can be iterated to improve the

quality of the reconstructed image. Our experiments show

that two iterations of Algorithm 2 are enough for good

results.

Algorithm 2.

1. Initialization:

a. Initializing the local dictionaries {Di} as DCT basis, we can

compute an initial estimate x̂ of x by solving Eq. (6) using the IS

algorithm [22];

b. Using the initial estimatex̂, we locally compute { ~D i}, the local

sparsity regularization parameters li,j for each coefficient using

Eq. (17), and the non-local weight matrix B;

c. Set the initial sparse codes a(0)¼0, k¼0, and preset a small

constant D, the maximal iteration number, denoted by Max_Iter,

and T as an integer;

2. Iterate on k until :x̂ðkÞ�x̂
ðkþ1Þ:2

2
=NrD or kZMax_Iter is satisfied.

a. Solve for ẑ
ðkþ1Þ

for a given set of sparse vector a(k) by solving Eq.

(26) using a CG algorithm;

b. Compute the PCA transformation coefficients

a
ðkþ1=2Þ ¼ ½ ~DT

1R1 ẑ
ðkþ1Þ

,. . ., ~D
T

NRN ẑ
ðkþ1Þ�;

c. Threshold each coefficient aðkþ1Þ
i,j

¼ softðaðkþ1=2Þ
i,j

,ti,jÞ, where

softðU,ti,jÞ is a soft thresholding function with threshold ti,j;

d. Compute x̂
ðkþ1Þ ¼D3aðkþ1Þ using Eq. (5), which can be calculated

by first reconstructing each image patch with x̂
ðkþ1Þ
i ¼ ~D ia

ðkþ1Þ
i

and then averaging all the reconstructed image patches;

e. If mod(k, T)¼0, update the adaptive sparse domain { ~D i} and B

using the improved x̂
ðkþ1Þ

.

It has been widely observed that PCA suffers from high

computational complexity especially when it is applied for

each extracted patch such as in Algorithm 2. To reduce the

computational complexity, we propose to only apply PCA

to the class of edge and texture patches. A local patch is

declared to be an edge or texture patch if its pixel intensity

variance is above a threshold Th (Th¼16 in our implemen-

tation). For all smooth image patches, we use a DCT

dictionary. Since the class of edge and texture patches often

consists of only a small fraction of the whole, the computa-

tional complexity can be significantly reduced.

5. Experimental results

In this section, we conduct extensive experiments to

verify the performance of the proposed adaptive sparse

representation (ASR) method for image deblurring, super-

resolution and compressive sensing with comparisons to

state-of-the-art image restoration methods. In the pro-

posed method, for simplicity the scale number is set to be

two and the root patches of size 10�10 (with 3 pixels

overlapping between adjacent patches) are extracted and

sparsely coded with locally computed multiscale diction-

aries. The parameters of Algorithms 1 and 2 will be

discussed separately in each experiment. We empirically

found that the performance of the proposed Algorithms 1

and 2 are non-sensitive to the selection of the l and g,
though different pairs of l and g will lead to slightly

different convergence rate of the proposed algorithms.

Due to the limitation of space, only part of the experi-

mental results can be shown in the paper.

5.1. Image deblurring

The deblurring performance of the proposed ASR

approach is verified on both simulated blurred images

and real motion blurred images. The simulated blurred

and noisy images are generated by first applying a blur

kernel and adding the additive Gaussian noises with

different noise levels sn ¼
ffiffiffi

2
p

and 2. Two blur kernels, i.e.,

9�9 uniform blur and 2D Gaussian function with standard

deviation of 3, are applied for simulations. For real motion

blurred images, we borrowed the kernel estimation method

from [39] to estimate the blur kernel. The estimated blur

kernel is then fed into the ASR approach to deblur the real

motion blurred images. For simplicity, we only apply

deblurring to the luminance component for color images.

In the experiments of image deblurring, we empirically

found that the proposed Algorithms 1 and 2 usually con-

verged after 50 iterations. Thus we simply set Max_Iter¼50

in the proposed Algorithms 1 and 2. In Algorithm 1, we

empirically set l¼0.022s2
n , and l¼0.011s2

n for uniform blur

kernel and Gaussian blur kernel, respectively, where sn

denotes the standard deviation of Gaussian noise. While in

Algorithm 2, we set the threshold ti,j¼0.15li,j/g, Z¼0.012,

and ti,j¼0.15li,j/g, Z¼0.012 for uniform blur and Gaussian

blur, respectively, wherein li,j is computed using Eq. (17). In

both Algorithms 1 and 2, we empirically set g¼0.02 and

g¼0.007 for uniform blur kernel and Gaussian blur kernel,

respectively.

Fig. 3 shows the deblurred Parrots images by the

proposed methods. We can see that Algorithm 1 is very

effective in removing the blurring effect and reconstructing

the edges and textures. However, artifacts can still be

observed around the edges. Through spatial adaption of

the sparsity parameters and nonlocal regularization,

Algorithm 2 can much better suppress the artifacts and

produce much cleaner and sharper edges than Algorithm 1.

We also compared the proposed Algorithm 2 with

several recently developed deblurring methods: the con-

strained TV deblurring (denoted by FISTA) method [40],

and the BM3D method [41] 1, and our recently developed

adaptive sparse domain selection method (denoted by

ASDS-Reg) [15]. Note that the BM3D is a very effective

image restoration method and the ASDS-Reg is the cur-

rent state-of-the-art image restoration methods.

The PSNR comparison results are listed in Table 1, from

which we can see that Algorithm 2 produces the highest

1 We thank the authors of [40,41,39,17,44,45] for providing their

source codes or executable programs.
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PSNR results in average. The visual comparisons of the

deblurred images by the test methods are shown through

Figs. 4 and 5, from which we can see that proposed

method produces the best visual perception results with

clearer and sharper edges and fewer artifacts.

We also test the deblurring approaches on real motion

blurred images. Since the blur kernel estimation is a non-

trivial task and out of the scope of this paper, we borrowed

the kernel estimation method of [39] to estimate the kernel.

The estimated blur kernel is then fed into the proposed

Algorithm 2 to deblur the real motion blurred images.

As shown in Fig. 6, we can see that the proposed Algorithm 2

produced much clearer and sharper image than [39].

5.2. Image super-resolution

In image super-resolution, the observed low-resolution

(LR) image is generated by first applying a blurring kernel

Fig. 3. The deblurred Parrot image by the proposed methods (9�9 uniform blur with sn ¼
ffiffiffi

2
p

). From left to right: original image; blurred and noisy;

deblurred by Algorithm 1; deblurred by Algorithm 2.

Table 1

The PSNR (dB) results of the deblurred images.

Images 9�9 uniform blur, sn¼
ffiffiffi

2
p

Butterfly Tower C. Man Starfish Parrots Barbara Leaves Average

FISTA [40] 28.37 29.83 26.82 27.75 29.11 25.75 26.49 27.73

BM3D [41] 27.21 29.38 27.30 28.61 30.50 27.99 27.45 28.35

ASDS-Reg [15] 28.70 30.48 28.02 29.69 31.22 27.79 28.55 29.21

Algorithm 1 28.63 30.47 27.07 29.66 31.22 27.34 28.51 28.98

Algorithm 2 29.09 30.47 27.92 30.10 31.46 28.10 29.18 29.47

9�9 uniform blur, sn¼2

FISTA [40] 27.73 29.55 26.13 27.50 28.88 25.24 26.03 27.29

BM3D [41] 26.56 28.83 26.60 27.96 29.74 27.26 26.60 27.65

ASDS-Reg [15] 27.91 29.61 27.35 28.77 30.37 27.03 27.55 28.37

Algorithm 1 27.79 29.53 26.48 28.75 30.31 26.74 27.58 28.17

Algorithm 2 28.37 29.67 27.07 29.25 30.70 27.17 28.33 28.65

Images Gaussian blur, sn¼
ffiffiffi

2
p

FISTA [40] 28.31 28.91 25.99 27.84 29.70 24.27 26.82 27.40

BM3D [41] 29.01 29.90 27.46 30.77 32.23 28.19 29.69 29.61

ASDS-Reg [15] 29.82 30.44 27.28 31.91 32.93 26.91 30.78 29.93

Algorithm 1 29.72 29.72 27.78 31.51 32.33 27.37 30.41 29.69

Algorithm 2 30.13 30.13 27.42 31.93 32.82 28.10 30.93 30.21

Gaussian blur, sn¼2

FISTA [40] 28.20 28.88 25.92 27.79 29.61 24.20 26.71 27.33

BM3D [41] 28.56 29.52 27.08 30.27 31.73 27.02 29.12 29.04

ASDS-Reg [15] 29.56 30.20 26.71 31.39 32.67 26.09 30.22 29.55

Algorithm 1 29.27 29.18 26.48 30.99 31.58 26.48 29.75 29.11

Algorithm 2 29.62 29.26 27.16 31.29 32.09 26.97 30.24 29.52

Fig. 4. Image deblurring performance comparison on Starfish image (9�9 uniform blur, sn¼
ffiffiffi

2
p

). From left to right: blurred and noisy; FISTA [40]

(PSNR¼27.75 dB); BM3D [41] (PSNR¼28.61 dB); ASDS-Reg [15] (PSNR¼29.59 dB); Algorithm 2 (PSNR¼30.10 dB).
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(i.e., the 7�7 Gaussian blurring kernel of standard devia-

tion 1.6) and then downsampling by scale factor 3 in both

horizontal and vertical directions. The Gaussian noises with

standard deviation of 5 are also added to the simulated

noisy LR images. Since the human visual system is more

sensitive to luminance changes, we only apply the recon-

struction methods to the luminance channel and use the

bicubic interpolator for other chromatic channels.

In the experiments of image super-resolution, we

empirically found that the proposed Algorithms 1 and 2

usually converged after 80 iterations. Thus we simply set

Max_Iter¼80 in the proposed Algorithms 1 and 2. In the

proposed Algorithm 1, we empirically set l¼0.035, and

l¼0.008 s2
n for noiseless and noisy low-resolution images,

respectively. While in the proposed Algorithm 2, we set the

threshold ti,j¼0.11/((ŝi,jþ0.1)g), Z¼0.015, and ti,j¼0.15

li,j/g, Z¼0.015 for noiseless and noisy low-resolution images,

respectively, where ŝi,j denotes the standard deviation of the

sparse coefficients ai,j, and li,j is computed with Eq. (17).

In both Algorithms 1 and 2, we set g¼0.015.

Fig. 7 shows the reconstructed Butterfly images by the

proposed Algorithms 1 and 2 methods. It can be seen that

Algorithm 1 can well reconstruct the fine local image

structures, while there are still some small artifacts

around the edges. By locally adjusting the sparsity para-

meters and incorporating the nonlocal regularization,

Algorithm 2 can better suppress the artifacts leading to

more visually pleasant results.

We then compare the proposed IR methods to several

latest developed image super-resolution methods, includ-

ing the TV-based super-resolution method [42], and the

sparse-based method [17], and the recently developed

ASDS-Reg method [15]. As suggested in [17], we used the

iterative back-projection to remove the blur of the recon-

structed HR images. The PSNR results of the reconstructed

images are listed in Table 2. From the table, we can see

that the proposed Algorithm 2 significantly outperforms

TV [42] method and sparsity-based method [17] and it

slightly outperforms the ASDS-Reg method that incorpo-

rates the prior statistics learned from a training set.

Fig. 5. Image deblurring performance comparison on Parrots image (9�9 uniform blur, sn¼2). From left to right: blurred and noisy; FISTA [40]

(PSNR¼28.88 dB); BM3D [41] (PSNR¼29.74 dB); ASDS-Reg [15] (PSNR¼30.17 dB); Algorithm 2 (PSNR¼30.70 dB).

Fig. 6. Deblurring performance comparison for a real blurred image. From left to right: input blurred image and the estimated blur kernel by method in

[39]; deblurred image by [39]; the deblurred image by Algorithm 2 with blurring kernel estimated using [39]; close-up views.

Fig. 7. The reconstructed HR Butterfly images by the proposed methods. From left to right: original image; the LR image; reconstructed by Algorithm 1;

reconstructed by Algorithm 2.
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The visual comparison of the reconstructed HR images by

the test methods are shown in Figs. 8–10. From these

figures, we can see that the proposed Algorithm 2 enjoys

significant advantages over competing methods in recon-

structing sharp and clear image edges and textures.

5.3. Compressive sensing

In compressive sensing (CS), the observed measure-

ment data y is generated by random projection of the

original images. Specifically, we generated the random

Table 2

PSNR (dB) results (luminance components) of the reconstructed HR images.

Noiseless, sn¼0

Images Butterfly flower Girl Pathenon Parrot Leaves Plants Average

TV [42] 26.56 27.51 31.24 26.00 27.85 24.51 31.34 27.86

Sparsity [17] 24.70 27.87 32.87 26.27 28.70 24.14 31.55 28.01

ASDS-Reg [15] 27.14 29.32 33.55 26.95 30.37 26.65 33.42 29.63

Algorithm 1 26.85 28.87 33.32 26.88 30.14 26.20 32.93 29.31

Algorithm 2 27.13 29.23 33.37 26.99 30.44 26.64 33.44 29.61

Noisy, sn¼5

TV [42] 25.49 26.57 29.86 25.35 27.01 23.75 29.70 26.82

Sparsity [17] 23.61 26.60 30.71 25.40 27.15 22.94 29.57 26.57

ASDS-Reg [15] 25.91 27.66 31.70 26.07 28.86 25.23 30.91 28.05

Algorithm 1 25.86 27.66 31.70 26.25 29.06 25.20 30.99 28.10

Algorithm 2 26.06 27.76 31.73 26.29 29.28 25.48 31.26 28.27

Fig. 8. Reconstructed HR Parrots images (sn¼0). From left to right: input LR image; TV [42] (PSNR¼27.85 dB); Sparsity [17] (PSNR¼28.70 dB); ASDS-Reg

[15] (PSNR¼30.37 dB); Algorithm 2 (PSNR¼30.44 dB).

Fig. 9. Reconstructed HR Plants images (sn¼0). From left to right: input LR image; TV [42] (PSNR¼31.34 dB); Sparsity [17] (PSNR¼31.55 dB); ASDS-Reg

[15] (PSNR¼33.42 dB); Algorithm 2 (PSNR¼33.44 dB).

Fig. 10. Reconstructed HR Girl images (sn¼5). From left to right: input LR image; TV [42] (PSNR¼29.86 dB); Sparsity [17] (PSNR¼30.71 dB); ASDS-Reg

[15] (PSNR¼31.70 dB); Algorithm 2 (PSNR¼31.73 dB).
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measurements by randomly sampling the Fourier trans-

form coefficients of the input image x [43]. We then use

the proposed IR based methods for CS recovery and

compared them to some recently developed CS recovery

methods, i.e., the well-known l1-magic method [44] that

assumes the sparsity in gradient space; the iterative

reweighted l1-minimization method [35]; and the auto-

regressive model based method [45]. Four photographic

images and two biomedical images (i.e., Mic. image1 and

Mic. image 2) are used in our comparison study. The

number of measurements is presented as the percentage

of the total number of the pixels N.

In the experiments of image compressive sensing, the

proposed Algorithm 1 and 2 usually converged after 160

iterations. Thus we empirically set Max_Iter¼160 in the

proposed Algorithms 1 and 2. In the proposed Algorithm 1,

the l is set to 0.018, 0.014, 0.009, and 0.006 for sensing rates

10–40%, respectively. While in the proposed Algorithm 2,

the threshold ti,j is set to 0.2/((ŝi,jþ0.1)g), 0.14/((ŝi,jþ0.1)g),
0.08/((ŝi,jþ0.1)g), and 0.03/((ŝi,jþ0.1)g) for sensing rates

10–40%, respectively, where ŝi,j denotes the standard devia-

tion of the sparse coefficients ai,j, and Z is set to 0.005.

In both Algorithms 1 and 2, g is set to 0.01.

Again, we first presented the results obtained with the

proposed methods. As shown in Fig. 11, Algorithm 1 can

recover the large image structures, while there are still many

artifacts around the edges. Algorithm 2 can better recover

fine image details and greatly suppress the artifacts. The

PSNR results of the competing CS recovery approaches are

listed in Table 3. From this table, we can see that the

proposed Algorithm 2 significantly outperforms other com-

peting methods. The average PSNR gain of Algorithm 2 over

the second best method, i.e., MARX, can be up to 3.04 dB

(at M¼0.3N). In many cases, the proposed Algorithm 2 can

achieve comparable or even higher PSNR than other meth-

ods using only 0.1N measurements.

For visual comparison, Figs. 12–14 show some cropped

images reconstructed by the competing methods for

various measurement rates. From these figures, we can

see that Algorithm 2 can reproduce much sharper and

clearer images than other competing methods. Such a

large difference in visual quality demonstrates the effec-

tiveness of the locally adaptive sparse model and nonlocal

self-similarity constraint.

An important issue of the proposed algorithms is the

number of scales of the learned multi-scale dictionaries.

Fig. 11. The reconstructed Barbara images by the proposed methods (using M¼0.2N measurements). From left to right: Original image; reconstructed

image by Algorithm 1; reconstructed image by Algorithm 2.

Table 3

The PSNR (dB) values of the reconstructed images by different methods.

Sensing Rate Recovery methods Barbara House Monarch Boats Mic. Image 1 Mic. Image 2 Average

M¼0.1N TV [44] 22.82 30.58 24.27 25.64 20.08 19.03 23.74

Reweighted l1 [35] 22.59 30.91 24.39 25.57 19.83 18.80 23.68

MARX [45] 22.64 29.92 24.72 25.79 21.16 19.59 23.97

Algorithm 1 24.16 30.50 22.95 25.65 19.71 19.01 23.66

Algorithm 2 26.06 33.01 26.26 28.18 21.98 20.69 26.03

M¼0.2N TV [44] 24.80 33.72 28.88 29.08 22.72 21.20 26.73

Reweighted l1 [35] 24.74 33.78 29.17 28.95 22.42 20.96 26.67

MARX [45] 26.98 33.39 29.20 29.60 24.65 22.72 27.76

Algorithm 1 27.82 34.01 27.72 29.56 22.63 21.24 27.16

Algorithm 2 32.11 35.61 31.45 32.70 26.03 24.02 30.32

M¼0.3N TV [44] 26.79 35.63 32.01 31.59 24.79 23.14 28.99

Reweighted l1 [35] 26.87 35.75 32.51 31.79 24.56 22.99 29.08

MARX [45] 30.77 35.10 32.20 32.24 27.39 24.86 30.43

Algorithm 1 31.15 36.47 31.29 32.74 25.18 23.39 30.04

Algorithm 2 35.84 37.99 35.09 36.28 28.87 26.76 33.47

M¼0.4N TV [44] 28.93 37.29 34.91 33.84 26.66 25.05 31.11

Reweighted l1 [35] 29.32 37.27 35.36 34.29 26.42 25.11 31.29

MARX [45] 33.61 36.79 34.94 34.62 29.58 26.88 32.73

Algorithm 1 34.08 38.66 34.38 35.41 27.36 25.24 32.52

Algorithm 2 38.72 40.98 38.39 39.25 31.00 28.78 36.19
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Clearly, the number of scales cannot be too big; otherwise

the size of the root patch will be too large such that the

learned dictionary cannot well represent the micro-

structure of natural images. Also, more scales will much

increase the computational complexity of the propose

algorithms. To evaluate the effects of the number of scales

of Algorithm 2, we set the number of scales to 3 and the

root patch size to 12�12, and apply Algorithm 2 for

image deblurring, super-resolution (SR), and compressive

sensing (CS). The average PSNR results are shown in

Table 4, from which we can see that 2 and 3 scales lead

to similar PSNR results.

Fig. 12. The reconstructed Boats images (using M¼0.2N measurements). (a) Original image; (b) TV [44] (PSNR¼29.08 dB); (c) Reweighted l1 [35]

(PSNR¼28.95 dB); (d) MARX [45] (PSNR¼29.60 dB); (e) the proposed Algorithm 1 (PSNR¼29.56 dB); (f) the proposed Algorithm 2 (PSNR¼32.70 dB).

Fig. 13. The reconstructed Barbara images (using M¼0.2N measurements). (a) Original image; (b) TV [44] (PSNR¼24.80 dB); (c) Reweighted l1 [35]

(PSNR¼24.74 dB); (d) MARX [45] (PSNR¼26.98 dB); (e) the proposed Algorithm 1 (PSNR¼27.82 dB); (f) the proposed Algorithm 2 (PSNR¼32.11 dB).
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5.4. Computational complexity

In Algorithms 1 and 2, the computation of local

dictionaries requires N� L operations of K-nearest neigh-

bor search and PCA, where N and L denotes the number of

extracted patches and the number of scales, respectively.

The computational complexity of PCA dictionaries is then

O(N� L�m�n2/2), where m and n denote the number of

samples collected for PCA and the size of the patch vector,

respectively. In Step 2(a), the dominating operation in an

iteration of the conjugate gradient (CG) solver is the matrix-

vector multiplication, i.e., multiplying A with vector z,

where A denotes HTHþgI and HTHþZ(I�B)T(I�B)þgI in

Algorithms 1 and 2, respectively. Since both H and B are

sparse, the matrix-vector multiplication can be executed

fast. Moreover, for image deblurring, the multiplication

with HTH can be implemented by fast FFT, which is much

faster than direct matrix calculation. In general, the CG

solver converges in k iterations, where k denotes the

condition number of matrix A. Hence, the computation

complexity of the CG algorithm is O(4Mk), where M

denotes the number of total pixels of the image. The Steps

2(b) and (d) require L�N�n multiplications. Since each

patch is coded individually, Steps 2(b) and (d) can be

executed in parallel to speed up the algorithm. To save

the computational complexity, we update the dictionaries

in every T (T¼40 in our implementation) iterations. For a

256�256 image, Algorithm 1 requires about

2–3 min for image deblurring and SR and 3–4 min for CS

on an Intel Core2 Duo 2.79 G PC under Matlab R2010a

environment. While Algorithm 2 requires 5–6 min for

image deblurring and SR and 9–10 min for CS.

6. Conclusion

A novel image reconstruction (IR) method using local

adaptive sparsity and nonlocal regularization was pre-

sented. Considering the fact that the image content can

vary significantly across the image, it is necessary to adapt

the dictionary to each local patch. In this paper, we

proposed to learn the dictionaries using similar patches

both within the same scale and across different scales.

Along with the local learning of the dictionary, we also

adaptively estimate the sparsity-regularization para-

meters using those coefficients from similar patches.

To balance the tradeoff between adaptation and robust-

ness, we further introduced a nonlocal self-similarity

constraint to suppress the inconsistency that may be

caused by the pixel-wise adaptation. A new iterative

sparsity-based IR algorithm was then presented.

Fig. 14. The reconstructed Mic Image 2 images (using M¼0.3N measurements). (a) Original image; (b) TV [44] (PSNR¼23.14 dB); (c) Reweighted l1 [35]

(PSNR¼22.99 dB); (d) MARX [45] (PSNR¼24.86 dB); (e) the proposed Algorithm 1 (PSNR¼23.39 dB); (f) the proposed Algorithm 2 (PSNR¼26.76 dB).

Table 4

Average PSNR (dB) results of Algorithm 2 with different number of scales.

Number of scales Deblurring (9�9 uniform blur, sn¼
ffiffiffi

2
p

) SR (sn¼0) CS, rate¼0.1N CS, rate¼0.2N CS, rate¼0.3N CS, rate¼0.4N

2 scales 29.47 29.61 26.03 30.32 33.47 36.19

3 scales 29.61 29.68 26.05 30.36 33.51 36.24

W. Dong et al. / Signal Processing: Image Communication 27 (2012) 1109–1122 1121



Experimental results demonstrated that the proposed

method outperforms many state-of-the-arts IR methods

in terms of PSNR and subject evaluation.
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