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Abstract. Despite generally good performance, mutual information has
also been shown by several researchers to lack robustness for certain reg-
istration problems. A possible cause may be the absence of spatial in-
formation in the measure. The present paper proposes to include spatial
information by combining mutual information with a term based on the
image gradient of the images to be registered. The gradient term not
only seeks to align locations of high gradient magnitude, but also aims
for a similar orientation of the gradients at these locations.

Results of combining both standard mutual information as well a nor-
malized measure are presented for rigid registration of three-dimensional
clinical images (MR, CT and PET). The results indicate that the com-
bined measures yield a better registration function than mutual infor-
mation or normalized mutual information per se. The accuracy of the
combined measures is compared against a screw marker based gold stan-
dard, revealing a similar accuracy for the combined measures to that of
the standard measures. Experiments into the robustness of the measures
with respect to starting position imply a clear improvement in robustness
for the measures including spatial information.

1 Introduction

Mutual information is currently a popular registration measure, which has been
shown to form the base of accurate and robust registration methods by sev-
eral independent studies [1, 2, 3, 4, 5], and in particular by the Retrospec-
tive Registration Evaluation Project (RREP), an international study comparing
the accuracy of sixteen registration methods against a screw marker gold stan-
dard [6]. However, failure of the measure in certain situations has also been
reported [7, 8, 9, 10]. Such situations can arise when the images are of low
resolution, when the overlapping part of the images is small or as a result of
interpolation methods. A possible solution to failure of mutual information may
be to include spatial information, something that is not contained in the mea-
sure. Rueckert et al. [11] recently proposed ‘higher-order mutual information’,
which incorporates spatial information by forming four-dimensional intensity
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histograms. We propose to include spatial information by combining mutual in-
formation with gradient information. Image gradients by themselves have been
shown to be useful registration criteria [10, 12].

2 Method

2.1 Mutual Information

The mutual information of two images is the amount of information that one
image contains about the other or vice versa. When transforming one image
with respect to the other such that their mutual information is maximized, the
images are assumed to be registered.

The mutual information I of two images A and B can be defined as

I(A, B) = H(A) + H(B) − H(A, B). (1)

Here, H(A) and H(B) denote the separate entropy values of A and B re-
spectively. H(A, B) is the joint entropy, i.e. the entropy of the joint probability
distribution of the image intensities. In this paper, we use the Shannon measure
of entropy, −∑

p∈P p log p for a probability distribution P . The joint proba-
bility distribution of two images is estimated by calculating a normalized joint
histogram of the grey values. The marginal distributions are obtained by sum-
ming over the rows, resp. the columns, of the joint histogram.

Recently, it was shown that the mutual information measure is sensitive to the
amount of overlap between the images and normalized mutual information mea-
sures were introduced to alleviate this problem. Examples of such measures are
the normalized mutual information Y (A, B) introduced by Studholme et al. [7]

Y (A, B) =
H(A) + H(B)

H(A, B)

and the entropy correlation coefficient ECC(A, B) used by Maes et al. [2]

ECC(A, B) =
2 I(A, B)

H(A) + H(B)
.

These two measures have a one-to-one correspondence and we will therefore
only use Y (A, B) in this paper.

2.2 Incorporating Gradient Information

Image locations with a strong gradient are assumed to denote a transition of
tissues, which are locations of high information value. The gradient is computed
on a certain spatial scale. We have extended mutual information measures (both
standard and normalized) to include spatial information by multiplying the mu-
tual information with a gradient term. The gradient term is based not only on
the magnitude of the gradients, but also on the orientation of the gradients.
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The gradient vector is computed for each sample point x = {x1, x2, x3} in
one image and its corresponding point in the other image, x′, which is found by
geometric transformation of x. The three partial derivatives that together form
the gradient vector are calculated by convolving the image with the appropriate
first derivatives of a Gaussian kernel of scale σ. The angle αx,x′(σ) between the
gradient vectors is defined by

αx,x′(σ) = arccos
∇x(σ) · ∇x′(σ)
|∇x(σ)||∇x′(σ)| , (2)

with ∇x(σ) denoting the gradient vector at point x of scale σ and |·| denoting
magnitude.

For multimodal images, the different imaging techniques can lead to a tis-
sue having different intensities in either image. As a result, the gradients of the
images can point in different directions. However, since the images fundamen-
tally depict the same anatomical structures, gradients in two multimodal images
– at least in principle – will have the same orientation and either identical or
opposing directions. Consequently, we use the following weighting function w,
which favours both very small angles and angles that are approximately equal
to π (see figure 1(a)):

w(α) =
cos(2 α) + 1

2
. (3)

Furthermore, the different imaging processes of different modalities imply
that multimodal images do not necessarily depict the same tissue transitions.
Hence, strong gradients that emerge with a certain imaging technique may be
absent or less prominent with another technique. Since we are only interested
in including strong gradients that appear in both images, the angle function is
multiplied by the minimum of the gradient magnitudes. Summation of the re-
sulting product for all samples gives us the gradient term with which we multiply
the mutual information measure. Two examples of the gradient measure (before
summation) for different combinations of multimodal images can be found in
figure 1(b). Tissue transitions that are depicted in both modalities are empha-
sized.

The proposed registration measure becomes

Inew(A, B) = G(A, B) I(A, B) (4)

with
G(A, B) =

∑

(x,x′)∈(A∩B)

w(αx,x′(σ)) min(|∇x(σ)|, |∇x′(σ)|). (5)

Similarly, the combination of normalized mutual information and gradient
information is defined: Ynew(A, B) = G(A, B) Y (A, B).

3 Results

We illustrate the behaviour of the known and the newly proposed measures by
showing registration functions for two multimodal matching problems: MR to
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Fig. 1. (a) Weighting function for gradient angles, (b) Examples of the gradient func-
tion G per pixel for MR-T1/CT (left) and MR-T1/PET (right).

CT and PET to MR. We make use of the datasets from the aforementioned
RREP study, which consist of pairs of either CT or PET and MR (PD, T1 and
T2) images, seven pairs each. For most MR images, a rectified version is also
available, corrected for scaling and intensity inhomogeneity. Following the exam-
ples of registration functions, we evaluate the accuracy of the new measures by
comparing the registration results against a screw marker based gold standard.
Finally, we give an indication of the behaviour of the registration functions in
six dimensions, by traversing the search space from different starting positions
and comparing the number of local maxima and the errors encountered for the
different measures.

In the computation of the gradients, our choice of scale was motivated by past
research on edge based measures for image registration [12], which demonstrated
the best performance of edge based measures at smaller scales. Searching a trade-
off between small scale and image resolution, we have opted for a σ of 1.5 mm
for all images.

3.1 Registration Functions

MR-T1 and CT

Although MR images depict different anatomical details than CT images, there
generally are corresponding structures – and hence corresponding gradients – in
both images. Figure 2 shows some examples of MR-CT registration functions,
with the zero position corresponding to the gold standard solution. We first show
an example of a well-defined mutual information function (rotation around an
in-plane axis, top row) and find that the function is not significantly altered by
the inclusion of gradient information. As mutual information is sensitive to the
number of samples used, the registration function is generally less smooth for
images of lower resolution, for example, images that have been downsampled
for use in a multiresolution registration method. Indeed, when subsampling the
images by a factor of three (middle row), both standard and normalized mutual
information functions deteriorate, while the functions for the combined measures
are virtually unchanged.
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In the bottom row of figure 2 the behaviour of the measures for translation
in the slice direction is shown. The local minima in the mutual information and
normalized mutual information functions are a result of interpolation. The inter-
polation method used (linear interpolation) influences the entropy measures by
blurring noise and other small structures. Fluctuations in the registration func-
tion occur as a result of grid-aligning transformations, for which interpolation is
not applied. Here the images have equal slice thicknesses and the local minima
correspond to transformations that align the image slices (see [14] for a more
detailed explanation).
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Fig. 2. Registration functions for MR-T1 and CT matching. From top to bottom: (i)
rotation around an in-plane axis, (ii) idem, images subsampled by a factor of three in
each dimension and (iii) translation in slice direction.

MR-T1 and PET

Registration of MR and PET images is more likely to end in misregistration,
both because of the fewer similarities between the image contents and because
of the lower intrinsic resolution of PET images. The RREP PET images have a
relatively low sampling resolution in the slice direction. As a result, the registra-
tion functions are particularly ill-defined for the out-of-plane rotations, as can
be seen in the top two rows of figure 3. Since it is (at least partly) an overlap
problem, the normalized mutual information measure performs rather better.
However, for both standard and normalized mutual information, it is obvious
that optimization of such functions will not be robust. By including gradient in-
formation the registration functions for out-of-plane rotation are vastly improved
(rightmost two columns).

In the third row (in-plane rotation), the position of the global optimum for the
combined measures is closer to the gold standard solution compared to the global
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optimum of standard mutual information. The registration functions for in-plane
translations (rows four and five) are well-defined for all measures. Interpolation-
induced local minima are found in the registration functions for translation in
the slice direction (bottom row). The inclusion of gradient information reduces
the artefacts, as can be seen in the rightmost two functions.
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Fig. 3. Registration functions for PET to MR-T1 matching.

3.2 Accuracy

The accuracy of the proposed measures has been tested by comparison of the
registration results against a screw marker based gold standard. Each pair of
either CT or PET and MR (PD, T1 and T2, both rectified and nonrectified)
from the RREP study was registered using the four measures discussed in this
paper. The number of datasets for registration of CT to MR nonrectified and
rectified was 21 and 20, respectively. For PET and MR, the numbers were 21
and 14. Screw marker based solutions were available for these registration cases.
We define the accuracy measure as the averaged Cartesian distance between the
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positions of the eight corner points of the image volumes with our solution and
with the gold standard solution. The measure is in millimetres. To minimize the
dependence of the results on the optimization method (Powell’s direction set
method [13]), the starting position of all registration experiments was the gold
standard transformation. Table 1 summarizes the registration results for all four
measures. The average accuracy, standard deviation and number of mismatches
are given. To avoid distortion of the results by outliers, image pairs that resulted
in misregistration with any of the measures were excluded for all measures for
computation of the results. This was the case for two MR and CT image pairs
and two MR and PET image pairs.

From the results in table 1 can be concluded that the combined measures do
not compromise the accuracy of mutual information based methods. Moreover,
optimization of the combined measures did not result in any misregistrations.

Table 1. Registration results (in mm)

nonrectified MR (n=21/21) rectified MR (n=20/14)

average std dev failures average std dev failures

MR/ I 2.4451 1.1737 1 1.3009 0.5254 1
CT Y 2.1876 0.9485 0 1.1316 0.5410 0

Inew 2.0410 0.8599 0 1.4318 0.4313 0
Ynew 2.0737 0.7109 0 1.8048 0.7616 0

PET/ I 3.9304 1.8102 2 3.8436 1.8426 0
MR Y 3.6407 2.0821 1 3.2228 1.4035 0

Inew 3.6917 1.4735 0 2.6733 1.6286 0
Ynew 3.5443 1.4355 0 3.2845 2.0767 0

3.3 Robustness

To illustrate the behaviour of the various registration functions in six dimensions,
we have investigated the search space of a PET and an MR image. A gradient
ascent optimization was started from 64 different positions: the corner points of
a 6D hypercube with sides of 10 millimetres in length. The number of different
maxima found was counted, where two end positions were considered identical
maxima when the difference between each of the six transformation parameters
was not more than the step size of the gradient ascent method (here: 1 mm
or degree). The registration error of a maximum was identical to the measure
defined in the previous section. Figure 4(a) shows the number of maxima found
for each of the four registration measures, while (b) shows the mean (horizon-
tal line) and standard deviation (vertical line) of the registration errors of all
maxima. The number of maxima is considerably lower for normalized mutual
information compared to the standard measure, while it decreases even further
when applying the combined measures. Similar behaviour is found for the mean
and standard deviations of the registration errors.
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Fig. 4. Left: number of maxima; right: mean (horizontal line) and standard deviation
(vertical line).

4 Discussion

We have proposed the adaptation of mutual information measures, by incorpo-
rating spatial information. The measure combines either standard or normalized
mutual information with gradient information. The essence of the gradient infor-
mation is that, at registration, locations with a large gradient magnitude should
be aligned, but also that the orientation of the gradients at those locations should
be similar.

The results presented in this study indicate that the combined measures
yield registration functions outperforming both the standard mutual information
function with respect to smoothness and attraction basin as well as a normalized
mutual information measure. The functions of the combined measures are better
defined, containing fewer erroneous maxima and leading to the global maximum
from larger initial misregistrations. The measures perform better for low resolu-
tion images and can decrease interpolation induced local minima. Well-defined
mutual information registration functions are not significantly altered by the
inclusion of gradient information.

The accuracy of the combined measures was shown to be similar to that
of standard and normalized mutual information. Image pairs that yielded mis-
matches with (normalized) mutual information, were accurately registered with
either of the combined measures. The robustness of standard and normalized mu-
tual information was studied by Studholme et al. [7], showing poor robustness for
mutual information and good performance for normalized mutual information.
However, we have encountered a mismatch and ill-defined registration functions
for normalized mutual information (only for the nonrectified MR images, which
were not included in Studholme’s study). Experiments into the robustness of
the measures with respect to starting position implied that including spatial
information considerably improves robustness.

Several issues of the method can be improved upon or should be investigated
further, including the dependence of the method on the scaling parameter in
the gradient computation and the matter of differences in intrinsic resolution.
PET images have a significantly lower intrinsic resolution than MR images and
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it is possible the method can be improved upon by taking this difference into
account.
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