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Abstract—In clinical practice, digital subtraction angiography (DSA) is a powerful technique for
the visualization of blood vessels in the human body. The diagnostic relevance of the images is often
reduced by artifacts which arise from the misalignment of successive images in the sequence, due
to patient motion. In order to improve the quality of the subtraction images, several registration
techniques have been proposed. However, because of the required computation times, it has never
led to algorithms that are fast enough so as to be acceptable for integration in clinical applications.
In this paper, a new approach to the registration of digital angiographic images is proposed. It
involves an edge-based selection of control points for which the displacement is computed by means
of template matching, and from which the complete displacement vector field is constructed by
means of interpolation. The final warping of the images according to the calculated displacement
vector field is performed real-time by graphics hardware. Experimental results with several clinical
data sets show that the proposed algorithm is both effective and very fast.

Keywords—Digital subtraction angiography, motion correction, registration, matching, warping.

1 Introduction

In clinical practice, digital subtraction angiography (DSA) is a powerful technique for the
visualization of blood vessels in the human body [6, 60]. In ordinary X-ray projection
images, blood vessels are hardly visible due to the very low contrast between vessels and
the surrounding tissue. This contrast is enhanced by injection of a radiopaque contrast
medium (a iodinated solution) into the vessels to be diagnosed. However, without any
further processing the contrast between vessels and surrounding tissue is still significantly
smaller than that between bone and surrounding tissue. This may introduce severe dis-
tortions and, hence, a reduction in the amount of diagnostic information that can be
extracted from the images.

In DSA imaging, a sequence of images is taken to show the passage of a bolus of
injected contrast material through one or more vessels of interest. The contrast distortions
in these live or contrast images are largely removed by subtracting an image taken prior
to the arrival of the contrast medium (referred to as the mask image). The relatively high
image quality, the low patient load as compared to e.g. computed tomography angiography
(CTA) and the possibility to extract both spatial and temporal information (the dynamic
behavior of organs) will likely ensure DSA to remain an important technique.

The subtraction technique is based on the assumption that the tissues surrounding the
vessels do not change in position or density during exposure. Clinical evaluations following
the introduction of DSA in the early eighties [7, 14, 29] revealed that this assumption is
not valid for a substantial number of examinations. Patient motion almost always occurs,
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which causes the subtraction images to show artifacts that may hamper proper inter-
pretation of the images. Since then, several techniques have been developed and applied
in order to reduce the artifacts and to improve the diagnostic value of DSA images. These
include tomographic [6, 34] and tomosynthetic [35] imaging techniques, as well as dual
(K-edge) energy subtraction [33,41], hybrid subtraction [5] and automatic remasking [43].
However, these methods have never been introduced on a large scale in clinical practice,
mainly because they require materials and devices which are either very expensive, or
difficult to produce, or both.

Alternatively, the artifacts in the subtraction images could be corrected for retrospec-
tively by means of image processing techniques. This is done by calculating the corre-
spondence between pixels in the successive images in the sequence and by warping the
images with respect to each other according to this correspondence. This is often referred
to as image registration and is applied in many other situations where image sequences
need to be analyzed. Overviews of registration techniques have been given by Aggerwal
& Nandhakumar [1] and Brown [8], and in the field of medical imaging by Van den Elsen
et al. [55] and Maintz & Viergever [38].

Although many studies have been carried out on this subject over the past fifteen
years, they have not led to algorithms which are sufficiently fast so as to be acceptable for
integration in clinical applications. In this paper, a new approach to the registration of
digital angiographic image sequences is proposed. After a theoretical consideration of the
limitations when dealing with projection images, in Section 2, the proposed registration
approach and some implementation aspects are described in detail in, respectively, Sec-
tions 3 and 4, followed by an overview of the complete algorithm in Section 5. Results of
experiments on real angiographic image sequences are presented in Section 6 and discussed
in Section 7. Concluding remarks are made in Section 8.

2 Theoretical Considerations

Before presenting the method for registration of digital angiographic images, it must be
pointed out that these images are in fact two-dimensional representations of a three-
dimensional scene. Because of this, it is often believed that registration techniques that
try to recover a complete correspondence (in terms of a displacement vector field d : R

2 →
R

2) between two such images are not likely to be succesful [32]. In this section we will
investigate the extent to which such a statement holds.

In contrast to e.g. range images or images acquired by ordinary photography, in which
the grey-values are determined by the (distance to) surfaces of objects in the three-
dimensional scene (so called surface images), the grey-values in X-ray projection images
are determined by the intensity Φ of the X-rays incident on the detector which is, in prin-
ciple, constituted by the contributions of all particles in the three-dimensional scene. In
the case of mono-energetic X-rays, Φ is determined by Lambert-Beer’s law:

Φ(x, y) = Φ0(x, y)e−L(x,y), (1)

where L(x, y) is the line integral
∫

µ(λx,y(ξ))dξ of the linear attenuation coefficient µ along
the path traversed by the ray (from the source to the element (x, y) on the detector matrix),
of which λx,y : [0, 1] → R

3, [0, 1] ⊂ R is a parametric representation, and Φ0(x, y) is the
intensity of the X-rays that is measured when the traversed path is completely in vacuum.
In the case of proper calibration with respect to Φ0, and logarithmic post-processing of
the detected signal, the intensity I of the resulting image at position (x, y) becomes
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I(x, y) ∝ L(x, y). (2)

Given this knowledge, the question arises whether there exists a two-dimensional ge-
ometrical transformation that completely describes the changes in the images caused by
three-dimensional object motion. This problem has been studied by Fitzpatrick [18],
whose main findings are summarized here. First, the concept of projected density images
is introduced.

Definition 1 Let I(x, y) be a two-dimensional grey-value image. If the grey-value at each
point (x, y) in the image is proportional to the line-integral projection of the density of a
three-dimensional conserved quantity, then I(x, y) is called a projected density image.

In this definition, a conserved quantity is a quantity whose value within a region can
be changed only by transport of particles across the boundary of that region. It is known
that the X-ray attenuation coefficient µ(x, y, z) is proportional to the density ρ of the
encountered material in the three-dimensional scene at position (x, y, z). Then, from (2)
it is concluded that Definition 1 applies to X-ray images. The answer to the previously
stated question is now provided by the following theorem.

Theorem 1 Let I(x, y, t1) and I(x, y, t2) be two-dimensional projected density images of
a three-dimensional scene, acquired at time t1 and t2 > t1, respectively, using a device that
has a differentiable point-spread function. If the two images are assumed to differ only
as a result of the motion of particles in the three-dimensional scene, then there exists a
one-to-one two-dimensional mapping d : R

2 → R
2 that transforms points x1 = (x1, y1)

in I(x, y, t1) to their corresponding points x2 = (x2, y2) = d(x1, y1) in I(x, y, t2), and the
associated change in intensity (grey-value) is given by the relation

I(x2, y2, t2) = Jr(x2, y2)I(x1, y1, t1), (3)

where Jr is the Jacobian of the reverse mapping dr : R
2 → R

2 that maps points x2 =
(x2, y2) in I(x, y, t2) back to x1 = (x1, y1) in I(x, y, t1).

It should be stressed that the theorem (and its proof [18]) shows only that there exists
a two-dimensional transformation corresponding to object motion in the original three-
dimensional scene. It does not yield any recipe for retrieving this transformation, given
the two images. In fact, it is impossible to uniquely retrieve this transformation from the
two images only. There are three main reasons for this. (i) Since we are dealing with
discrete images, the retrieval of any (analytical) function or its derivatives from the image
always requires neighborhood operations. In the case of obtaining a displacement vector
in a certain point in one image in a sequence, this implies that if the neighborhood that is
involved in the calculation contains several objects that move independently of each other,
the result can be expected to be unreliable and inaccurate. Especially in projected density
images, these situations are very likely to occur. (ii) At points that lie on isophotes in the
image, it is impossible to retrieve the tangential component of the displacement vector.
This is generally known as the aperture problem. (iii) The assumption of the two images
to differ only as a result of the motion of particles in the three-dimensional scene, does
not apply to angiography, since in this case new particles (viz., the contrast medium) are
introduced in certain parts of the scene. These three problems will limit the accuracy of
any registration algorithm for this type of images.
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3 Registration Approach

Given a two-dimensional discrete image sequence I(x, y, t) of size M × M × N , the regis-
tration of one of the images, I(x, y, t1), t1 ∈ [0, N − 1] ⊂ N with respect to a successive
image I(x, y, t2), t1 < t2 < N −1 in the sequence, involves two operations: (i) the compu-
tation of the correspondence between the pixels in the two images, and (ii) performing the
correction according to this correspondence by warping one of the images with respect to
the other. In this section, the proposed approach to perform these operations is presented.

3.1 Control Points Selection

To obtain the correspondence between two images, a possible approach would be to ex-
plicitly compute the correspondence for every pixel. However, this is computationally
very expensive and will not lead to clinically acceptable algorithms. Even with modern
workstations this will still take several hours for images of size 512 × 512 or 1024 × 1024
(the usual sizes for angiographic images), not to mention the required computation time
for a complete image sequence which usually consists of 15 to 20 of such images.

In order to reduce the computation time to a clinically acceptable level (several sec-
onds), assumptions have to be made concerning the nature of the underlying motion. One
possibility would be to assume rigidity of the parts that were imaged and to calculate the
correspondence of the two images in terms of only global translation and rotation. Current
DSA imaging systems are equipped with a so-called pixel-shifting mode, by which it is
possible to correct for gross translational motion only. Although this may locally improve
the subtraction in some cases, this will, in general, not yield an overall registration.

The alternative is to assume a certain amount of coherence between neighboring pixels
and to calculate the correspondence only for a selected set of so-called control points, pi =
(xi, yi), in the image. The overall correspondence can then be obtained by interpolation.
The control points can be chosen manually by selection of a region of interest [39,58,64] or
can be taken on a regular grid [2, 16,53,56,65]. More sophisticated algorithms use image
features such as lines [4] or line intersections [51], centers of gravity of closed boundary
regions [25], high curvature points (corners) [17], zero crossings of the Laplacian [28], or
highly structured regions [50,54].

Since in DSA images artifacts appear only in those regions where strong object edges
are present in the individual images in the case of a misalignment between mask and live
image, and because edges can be matched better than more homogeneous regions, the
selection of control points should be based on an edge-detection scheme. By selecting
control points from important edges in the image, the implicit assumption is made that
the displacement of points in between edges can be described by the displacements of
points on these edges. Physically, this means that the displacement of tissue in between
objects with a very different density (usually bone/soft-tissue transitions), is dictated by
the displacement at these transitions, which indeed seems a valid assumption. Compared
to the rubber sheet masking approach of Zuiderveld et al. [65], in which control points were
taken on a regular grid, this approach has three major advantages: (i) the control points
are chosen at those positions where the artifacts can be expected to be the largest, (ii)
since the neighborhoods of those points are known to be structured, the reliability of the
displacement estimates will be higher, and (iii) the number of control points is reduced,
thereby reducing the required computation time.

The location of edges can easily be computed by detecting local maxima of the grey-
level gradient magnitude. It should be noted that edges are scale-dependent image features
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and therefore can be detected properly only by using derivatives calculated at the proper
scale. The commonly used scale-dependent detector for this purpose is the derivative of
the Gaussian [12,27,40]. Using this approach, the two-dimensional (regularized) gradient
magnitude is calculated as

‖∇L(x, y)‖ =

√

(

∂xL(x, y)
)2

+
(

∂yL(x, y)
)2

, (4)

with
∂iL(x, y) = (I ∗ ∂iG)(x, y), (5)

where ∂i denotes the first derivative in the i-th direction and G the bivariate Gaussian.
Note that this edge-detection approach cannot be applied to the contrast images,

since in that case the boundaries of vessels would also be detected. The same argument
holds for the application of edge detection to the subtraction images. In addition, in the
latter case, regions that are already registered but in which there are very strong edges in
the underlying mask and live images, will not be identified as potential problem regions.
This means that in these regions the interpolation operation may even introduce motion
artifacts. Therefore, the gradient-magnitude computations should be applied to the mask
image. This has the additional advantage that the detection of regions that may give
rise to motion artifacts in the subtraction image needs to be carried out only once (as a
preprocessing step), instead of repeatedly for every new contrast image.

In principle, the severeness of a motion artifact is directly related to the strength of
the underlying edge (i.e., the gradient magnitude ‖∇L‖). In order to be able to extract
adequate control points from the gradient-magnitude image, it is required to indicate
which edges are important enough to be considered further. This is done by thresholding
the gradient magnitude at a value Θe, resulting in a binary image in which there are
complete regions (contiguous pixels) that are of interest. It is obvious that it is neither
manageable (because of the unacceptably large number of points involved) nor necessary
(because of the assumed coherence between neighboring pixels) to take all of these edge
points as control points for the construction of the warp transformation. Therefore, an
additional selection mechanism is required, which will be described hereafter. In order to
preserve a sufficient amount of detail prior to this final selection, the scale σ at which the
gradient magnitude is calculated should be taken small.1

Under the assumption of coherence between neighboring pixels in an image, the control
points can be constrained to have a minimum distance with respect to each other, say
Dmin. This minimum distance is related to the image size2 according to Dmin = φminM ,
in which the minimum distance factor φmin is a parameter of the algorithm. In order to
avoid the complete absence of control points in very large regions in which no important
edges are detected, the control points should also be constrained to have a maximum
possible distance, Dmax = φmaxM .

In usual angiographic images, certain regions in the image (at the borders) are of
constant grey-value. This is caused by the physical properties of the acquisition system:
the X-rays are detected by an image intensifier which has a circular shape. That part

1It should be noted that taking σ = σ0 for M = 512, implies that σ must be 2σ0 for M = 1024 in order
to have the same amount of regularization. However, even when σ is taken twice as large for M = 1024,
the actual grey-values in the resulting gradient-magnitude image will still be twice as small with respect
to those of a 512 × 512 image of the exact same scene. This should be accounted for in Θe.

2The reason for relating Dmin and Dmax to the image size is that the distance (expressed in pixels) be-
tween coherent structures in an image of size 1024×1024 pixels is indeed twice as large as the corresponding
distance in an image of size 512 × 512 pixels of the same scene.
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of the image in which the grey-values are due to exposure of X-rays will be called the
exposure region, RE, in the sequel:

RE = {x | (x − xC)2 + (y − yC)2 6 R2 ∧
x > Xmin ∧ x 6 Xmax ∧
y > Ymin ∧ y 6 Ymax},

(6)

where (xC , yC) is the center of the image intensifier of the DSA system which, in the case
of proper calibration, is also the center of the image, R is the radius of the image intensifier
and Xmin, Xmax, Ymin and Ymax are the left, right, upper and lower borders respectively.3

Since the parts of the image outside RE do not contain any information that could be used
in the registration, the control points should be positioned inside this exposure region, at
a minimum distance Dexp = φexpM from the border ∂RE of the region. An example of
control point selection based on this approach is shown in Figure 1. More details will be
given in Section 4.

3.2 Displacement Calculation

Techniques for the calculation of the displacement (or motion) of certain structures in
one image with respect to another can be divided into two categories: (i) gradient-based
optic-flow techniques, and (ii) template-matching based techniques. In this section, both
techniques will be discussed with respect to their applicability to the computation of
displacements in digital angiographic images.

3.2.1 Optic-Flow Based Approach

Optic-flow techniques are explicitly based on the assumption that motion of objects in the
images cause a change only in position of the corresponding grey-level patterns, while the
patterns themselves remain unchanged. For a two-dimensional image sequence I(x, y, t)
this implies that I(x, y, t) = I(x + δx, y + δy, t + δt), where δx, δy and δt denote small
changes in position and time, respectively. Expanding the right-hand side of this equation,
dividing by δt and taking the limit δt → 0, we arrive at:

dI

dt
=

∂I

∂t
+ ∇I · u = 0 (7)

where ∇I denotes the two-dimensional gradient of the grey-level image I, and u = (u, v)
denotes the velocity in the image plane. Equation (7) is generally known as the optic-flow
constraint equation [30].

It is well known that the optic-flow problem defined in this way is ill-posed, by the fact
that the solution to this problem is not unique (one equation in two unknown variables

3The grey-values outside RE are of a constant value which is often much larger than those inside the
region. This makes it very easy to extract the five parameters, by evaluating scan-lines from the border to
the center (xC , yC) of the image. For example, in order to extract the radius R, scanning starts at pixel
(0, 0). During scanning, the grey-level at the next position along the scan-line is compared to the value at
the previous position. As soon as a difference is detected, say at position (xi, yi), scanning is terminated
and the radius is computed as R =

√

(xC − xi)2 + (yC − yi)2. (Of course, it would also be possible to
scan in the reverse direction (from the center to the border), which will immediately yield R. However,
this would be computationally more expensive since in usual X-ray images the path length from (xC , yC)
to (xi, yi) is far larger than that from (0, 0) to (xi, yi), and the additional scanning time does not outweigh
the time required to compute the squares and the square root.) The remaining four parameters Xmin,
Xmax, Ymin and Ymax are found in a similar way, using the starting points: (0, 1

2
M), (M, 1

2
M), ( 1

2
M, 0)

and ( 1
2
M, M), respectively.
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Figure 1. An example of control points selection. Top-left: the mask image I(x, y, 0)
of a 1024 × 1024 × 18 digital angiographic image sequence (data set CER in Table 1).
Top-right: the subtraction of the mask and one live images under contrast enhancement,
showing motion artifacts. Bottom-left: the thresholded gradient-magnitude image of the
mask image as a prediction of the location of motion artifacts in the subtraction image
(white pixels correspond to pixels whose grey-value is above the threshold in the original
grey-value gradient-magnitude image). Bottom-right: the set of selected control points P

(white dots), with the thresholded gradient-magnitude image of the mask (now shown in
50% grey) superimposed.

u and v). Only the component of u in the gradient direction ∇I can be calculated since
a displacement in the tangential direction will never lead to a change in the grey-level
distribution. This is often referred to as the aperture problem. In order to be able to
obtain a unique solution for u and v, additional constraints need to be imposed, e.g. by
requiring the displacements (or velocities) u(x, y) and v(x, y) to vary smoothly within the
image. Several approaches have been described in the literature [21,28,30].
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However, the just described optic-flow technique cannot simply be applied to X-ray
projection images. As mentioned in Section 2, these images are two-dimensional projec-
tions of three-dimensional scenes. A thorough analysis by Fitzpatrick [18] has indicated
that for these images, the total time-derivative is

dI

dt
= −I∇ · ū, (8)

where ∇· denotes the divergence operator and ū the weighted average (along the rays), of
the velocities perpendicular to the rays. This contradicts the assumption made in (7). In
addition, it has to be noted that in the particular case of angiographic image sequences,
the optic-flow approach suffers from all of the three problems mentioned at the end of
Section 2. Taking into account these considerations it can be expected that the optic-flow
technique will not yield accurate results when applied to these images. This was confirmed
by pilot experiments carried out in our group.

3.2.2 Template-Matching Based Approach

Template-matching techniques are based on the assumption that the displacement d of
every pixel in an image I(x, y, t1) can be approximated by taking a small window (or
neighborhood) W of W ×W pixels around the pixel and finding the corresponding window
in a successive image I(x, y, t2), t2 > t1 in the sequence by optimization of the measure
of match (according to a certain similarity criterion) under translation. In principle,
these approaches also suffer from the first two problems mentioned in Section 2 (viz.,
independently moving structures and the aperture problem). However, they can be made
more robust against the inflow of contrast than optic-flow techniques, by a proper choice
for the similarity criterion.

Similarity Criterion A crucial aspect of any template-matching method is the simi-
larity criterion that is used to determine the amount of correspondence between regions
in successive frames. Many criteria have been devised for this purpose, including normal-
ized cross-correlation [3, 64], the correlation coefficient [3, 45], statistical correlation [47],
stochastic and deterministic sign change [31, 57, 65], the sum (or mean) of absolute val-
ued differences [19, 39, 56], coincident bit counting [13, 59] and the variance of (squared)
differences [15, 16]. However, most of these criteria are based on the same assumption as
optic-flow techniques, viz., that the structures in the image change only in position and
not in intensity (i.e., ∇ · ū is zero). As mentioned before, this is not a valid assumption
when dealing with angiographic image sequences. In addition to that, these criteria are
quite sensitive to the inflow of contrast.

Criteria that are very robust against this phenomenon are those based on the histogram
of differences [10, 11]. With these criteria, advantage is taken of the fact that in the case
of optimal alignment, only a small number of difference grey-levels have a high relative
frequency while the majority of grey-levels have a low relative frequency, which results in
a sharply peaked histogram. This is true whether or not the window W contains opacified
vessels, the former case resulting in two peaks and the latter in only one peak. In the case
of misalignment, the histogram will have a larger dispersion in both cases (Figure 2).

For every pixel in an image and for every displacement d of a window W around
that pixel, the amount of dispersion of the histogram H(δ) of differences δ in W can be
computed by a weighted summation over the bins (which are assumed to have size 1 here,
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Figure 2. Normalized histograms for two different regions of interest (indicated by the
white boxes, 75×75 pixels in size). Left column: a region without (top) and with (bottom)
contrasted vessels. Middle column: the corresponding normalized histograms in the case
of alignment of mask and contrast image. Right column: the corresponding normalized
histograms in the case of misalignment of mask and contrast image.

i.e., δ ∈ Z and H : Z → R
+
0 ), which is expressed in the measure

E(d) =

δmax
∑

δ=δmin

f(H(δ)), (9)

where [δmin, δmax] ⊂ Z is the range of all possible difference values, H(δ) is the fraction
(or relative frequency) of pixels in the window W that have a difference value of δ, f :
R → R is the weight function and

∑δmax

δ=δmin
H(δ) = 1 because the histogram must be

normalized in order to have a fair comparison between the values of this measure for
different displacements d. The constraints that should be imposed on the weight function
f are given by the following axiom.

Axiom 1 Let H(δ) be a normalized histogram, i.e.,
∑

δ H(δ) = 1, of all possible difference
values δ ∈ [δmin, δmax] ⊂ Z in a window W around a certain pixel in an image, and let
E(d) =

∑

δ f(H(δ)) be a measure expressing the amount of dispersion of the histogram
for a displacement of d. In order for E(d) to be an adequate similarity measure for the
purpose of registration, the following constraints must be imposed:

1. the weight function f must be such that the measure E assumes its minimum value
if and only if for all δ ∈ [δmin, δmax] we have H(δ) = (δmax − δmin + 1)−1,

2. the weight function f must be generalized super-additive, which means that for all
ai ∈ R, i = 1, 2, 3 with 0 < a1 6 a2 < a3 we have

f(a2 − a1) + f(a3 + a1) > f(a2) + f(a3). (10)

When the difference values in the window W behave like white noise (i.e., the grey-values in
the successive images in the sequence are completely uncorrelated), the similarity measure
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should assume its smallest value. This is expressed in the first constraint. The second
constraint is necessary in order to let the measure of match increase when the histogram
becomes more clustered. As proven by Buzug et al. [11], these requirements are met by
the class of differentiable, strictly convex functions, which are defined as follows.4

Definition 2 A function f : R → R is called strictly convex if for all x, y ∈ R, x 6= y and
for all α ∈ (0, 1), the following relation holds:

f(αx + (1 − α)y) < αf(x) + (1 − α)f(y). (11)

Subpixel Accuracy The just described matching approach determines displacements
only up to integer accuracy. However, as indicated by a clinical evaluation in the early
1980s [7], subpixel misalignments often produce significant artifacts in the subtraction
image. To obtain subpixel accuracy, an obvious approach would be to use the measures
of match at integer displacements in an interpolation scheme in order to construct a
continuous bivariate function M(d) (referred to as the match surface), and to calculate
the global maximum of this function analytically. Of course, bilinear interpolation cannot
be used for this purpose since a bilinearly interpolated surface still has its maximum at the
integer maximum position. For higher order surfaces, the position of this extreme must
be determined by solving ∇M(d) = 0. However, it can easily be seen that this will lead
to the problem of solving an algebraic equation of degree n > 5 (in either x or y and with
symbolic coefficients that are functions of the measures of match at integer displacements),
which cannot be done. Therefore, several authors [16, 58, 65] simplified the problem into
constructing two separate mono-variate functions M(di) and solving ∂xM(dx) = 0 and
∂yM(dy) = 0 to obtain the x and y coordinates of the maximum.

Although these analytical methods lead to an estimation of the displacement with
subpixel accuracy, they differ fundamentally from the approaches in which the measures of
match for subpixel displacements are calculated explicitly, such as the algorithms described
by e.g. Yanagisawa et al. [64] and Van Tran & Sklansky [56]. In that case, one of the two
images needs to be reconstructed and the calculations are carried out using a resampled
version of this image, where the resampling is done on a corresponding subpixel displaced
grid. Yanagisawa et al. [64] and Van Tran & Sklansky [56] reported that an accuracy of 0.1
pixel is sufficient for angiographic images. From our experiments it was concluded that
in all cases this image-interpolation approach (even with an accuracy of no more than
0.1 pixel) leads to better registrations compared to the analytical match-interpolation
methods (see Figure 3 for examples).

3.3 Displacement Interpolation

In order to be able to carry out the warping of the mask image with respect to the con-
trast image, it is required to have a complete description of the displacement vector field
d : R

2 → R
2, i.e., the displacement d must be known for every point p in the image. So

far, the displacements have been calculated only for a selected amount of control points, pi,

4It should be mentioned that in Axiom 1, the first constraint, viz., that E must assume its minimum value
in the case of a uniform histogram, may be replaced by the requirement that E must assume its maximum
value in that case. This can only be done if at the same time the requirement of super-additivity is replaced
by sub-additivity (which is obtained by replacing the < sign by > in (10)). These new requirements are
met by the class of differentiable, strictly concave functions (which are obtained by replacing < by > in
(11)). In this case, E should be referred to as a measure of mismatch since it assume its maximum value
when the windows are most dissimilar.
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Figure 3. Two examples of registrations with subpixel accuracy in a critical region of
interest, using both the image-interpolation and match-interpolation method. Left col-
umn: the original subtractions of unregistered digital angiograms. Middle column: the
subtractions after registration using the match-interpolation method (quadratic interpo-
lation). Right column: the subtractions after registration using the image-interpolation
method (bilinear interpolation) with an accuracy of 0.1 pixel.

under the assumption that the remainder of the field could be obtained by interpolation.
In order to reduce the required computation time for this operation to a minimum, the
parameters φmin, φmax and φexp, as introduced in Section 3.1, should be chosen in such a
way that it is allowed to use linear interpolation.

Given the set P = {pi} of control points as extracted by the feature detection and
selection algorithm (Section 3.1), a suitable tessellation is required in order to be able to
carry out the linear interpolation of the displacements in between these control points. In
the case of a regular grid of data points, quadrilaterals are the commonly used polygons
[16,20,56,65]. However, in the case of irregularly distributed (or scattered) control points,
such a mesh is not guaranteed to exist. The only possible polygons that can be used for
this purpose are triangles, so that the control points become the vertices of an irregular
triangular mesh. Although triangular meshes are well-known geometric constructions and
have been studied and applied by several authors in image registration [23, 24], warping
and morphing [48, 49, 63], computer graphics and scientific visualization [22], they have,
to our knowledge, never been applied to digital angiographic image sequences.

In constructing the triangulation of a set of data points it should be noted that the
solution to this problem is not unique, as can easily be observed from the fact that any
quadruple of vertices can always be triangulated in two ways (there are two possible
diagonals in the quadrilateral). In order to obtain a unique triangulation that is consistent



PP-12 Image Registration for Digital Subtraction Angiography

Figure 4. An example of mesh generation. Left: the Delaunay triangulation D(P ) of
the set P of control points as shown in Figure 1, with the thresholded gradient-magnitude
image of the mask (shown in 50% grey) superimposed. Right: the same triangulation
superimposed on the original mask image.

with the choice for an interpolation scheme, additional constraints need to be imposed. As
stated by Watson & Philip [62], triangles with highly acute interior vertex angles should
be avoided in the tessellation since the vertices of these elongated triangles are not capable
of reflecting the local variation of the interior points in the dependent variables.

A suitable tessellation for this purpose is the so-called Delaunay triangulation D(P ).
It guarantees the smallest of the three angles of a triangle to be as large as possible [36,37]
and is unique, except in the degenerate case where four or more points are co-circular [61].
In that case, the Delaunay triangulation is locally non-unique. In our implementation, we
used the incremental algorithm described by Watson [61]. An example of the Delaunay
triangulation of a set of control points is presented in Figure 4. Additional remarks will
be made in Section 4.2.

3.4 Inter-Image Displacement Prediction

So far, the discussion has mainly been focused on the registration of only two images
I(x, y, t1) and I(x, y, t2), t2 > t1 with respect to each other. However, as indicated at
the beginning of Section 3, digital angiographic data sets are complete discrete image
sequences of size M × M × N , where N is usually 10 to 20. The successive images in the
sequences are highly correlated since they are projections of the same scene.

Under the assumption that the velocity of patient motion is small with respect to the
frequency at which the images are recorded (i.e., the changes from one image I(x, y, n), n ∈
[0, N −2] ⊂ N to a successive image I(x, y, n+1) are small with respect to the total motion
from I(x, y, 0) to I(x, y,N − 1)), it is reasonable to assume that the displacement vector
fields d(p, n) and d(p, n + 1) of successive images are highly correlated as well. This can
be taken advantage of when computing the correspondence of all images in the sequence
with respect to a single image (the mask), or the correspondence of all images with respect
to their predecessor in the sequence. In our implementation, the displacements d(pi, n)
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were used as an estimate for the calculation of d(pi, n+1). More (implementation related)
details are provided in Section 4.4.

4 Implementation Aspects

In the previous section, the several components of the registration algorithm have been
presented. In this section, several aspects concerning the implementation of these compo-
nents will be discussed in more detail.

4.1 Control Points Selection

In Section 3.1 it was proposed to calculate the gradient magnitude of the mask image of
the sequence as a prediction of the regions in the subtraction image where artifacts can
be expected to appear in the case of a misalignment. When dealing with 1024 × 1024
images, the scale at which the gradient magnitude is calculated should be twice as large
as for 512 × 512 images, in order to have the same amount of regularization. This means
that, for 1024 × 1024 images, the required computation time is at least a factor 8 larger
(a factor 4 from the image size and another factor 2 from the kernel size, not to mention
the possibility of worse caching behavior at these image sizes).

In order to reduce the required computation time, the gradient magnitude can be
calculated using a subsampled version of the mask image, at the cost of loss of accuracy
in the positioning of the control points in the final selection. In our implementation, the
edge detection is always carried out on an Medge × Medge sized mask image, regardless of
the original size. This has the two advantages: (i) regardless of original images size, the
computation time is fixed, (ii) the threshold Θe can be the same for both image sizes.

The final selection of control points from the gradient magnitude of the mask image is
carried out as follows. The image is divided into blocks of size Dmax×Dmax. In turn, these
blocks are sub-divided into smaller blocks of size Dmin×Dmin. For every large block (from
the upper left to the lower right of the image), every small block (again, from upper left to
lower right within the large block) is scanned for pixels with a gradient-magnitude value
above the specified threshold Θe. From these pixels, the one with the largest value is taken
as a candidate control point. (If no edge pixels are encountered, no candidate is selected.)
The candidate becomes a control point if it is positioned inside the exposure region as
defined in (6) and at a distance of at least Dexp from the border ∂RE of that region.
In order to enforce a minimum distance between control points, the gradient-magnitude
values in a (2Dmin + 1) × (2Dmin + 1) region around the selected point (that point being
the center) are suppressed. If no point is selected after a large block has been scanned,
the point with the largest gradient-magnitude value in a small block around the center
of the large block is taken as a control point so as to constrain the maximum distance
between the points.

4.2 Control Points Triangulation

In the eventual warping of the image, the displacements d(pi) of the selected control points
pi are linearly interpolated to construct the complete displacement vector field d(p). To
this end, it is required that the triangulation D(P ) completely covers the image. However,
this is not the case if P consists only of control points from inside the exposure region.
In our implementation this is solved by means of four additional corner points that lie
outside the image. The displacement of each of these points is explicitly set to zero.
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Figure 5. The energy measure E as a function of the displacement d = (dx, dy) in x and
y direction, using different window sizes. Left: result for a window size of 11x11 pixels (43
local extrema). Middle: result for a window size of 31x31 pixels (although hardly visible
there are still 6 local extrema). Right: result for a window size of 51x51 pixels (one local
extreme, corresponding to the correct displacement). As can be seen from this figure, the
window size determines the smoothness of the function E(d) and thereby the number of
local extrema in which the optimization technique might become trapped.

As will be explained in Section 4.5, special attention needs to be paid to the warping
of triangles (referred to as corner triangles) of which at least one of the vertices is a corner
vertex. In order to remove serious border artifacts that result from the warping, a set of
equally spaced points that are positioned exactly on the exposure region border ∂RE are
taken as additional control points for which the displacement will be calculated.

4.3 Similarity Measure Computation

As proposed in Section 3.2.2, the displacement of every control point is calculated by means
of template matching, using the histogram-of-differences similarity measure of Buzug et
al. [11]. Since the largest part of the computation time is due to the calculation of this
measure, a few notes should be made concerning its implementation.

First, the time required to compute the measure of match E(d), as defined in (9), should
be as small as possible, which implies that the function f(H(δ)) should not only satisfy
the requirements of differentiability and convexness, but should also be computationally
cheap. To this end, the energy function f(H(δ)) = H2(δ) was chosen, since it involves
only a single multiplication [9, 11].

A very important parameter is the size of the window W. In order to reduce the
computation time to a minimum, this window should be as small as possible. However,
in principle, the size of the window determines the amount of statistical information that
is provided and, therefore, the smoothness of the function E(d). In order to allow for
computationally cheap optimization techniques, such as hill-climbing (or the method of
Powell [46]), it is a prerequisite that the function E(d) is sufficiently smooth so as to
have only one extreme, corresponding to the actual displacement. Small windows will
yield unreliable match values, which causes the resulting function E(d) to be rather coarse
(many local extrema). This is illustrated in Figure 5. Experiments for several thousands
of points have indicated that a window size of 51 × 51 pixels yields a good compromise
between computational speed and statistical reliability.

Furthermore, digital angiographic images usually have a grey-value resolution of 10
bits, i.e., I(x, y, t) ∈ [0, 1023] ⊂ N. This means that the difference values are in the
range [−1023, 1023]. In order to avoid time-consuming checks in filling the histogram,
the histogram should have the same range, with a bin-size of 1 (no clustering of bins).
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The computation time can be reduced somewhat further by reducing the summation range
[δmin, δmax]. As can be seen from Figure 2, the majority of difference values is concentrated
in the range [−200, 100]. Restricting the summation to this range reduces the computation
time without affecting the accuracy of the calculation.

Finally, in order to let the displacement computations be based on actual image in-
formation only (i.e., grey-values inside the exposure region), the difference values outside
the exposure region are not incorporated in the computations.

4.4 Inter-Image Displacement Prediction

In Section 3.4 it was stated that when successively computing the displacement vector
field d(x, y, n) for all images I(x, y, n), n ∈ [1, N − 1] ⊂ N with respect to a single image
I(x, y, 0) (the mask), the displacements obtained in the previous iteration, d(x, y, n − 1),
can be used as an estimate for the displacements in the current image. If the assumptions
concerning the patient motion hold, the use of these estimates may reduce the number of
iterations of the hill-climbing algorithm in finding the optimal correspondence.

As proposed in Section 3.2.2, the computation of displacements is carried out hierar-
chically, i.e., first up to an integer number and then with subpixel accuracy. However,
the computation of the fractional part of the displacements requires interpolation of one
of the images (bilinear interpolation was used in our implementation). This is a relatively
expensive operation. To avoid the need to interpolate the image when calculating the
integer part of the displacement, only that part was used in the predictions.

4.5 Image Warping

Because of the coherence in behavior of neighboring pixels, it was proposed in Section 3.1
to calculate the displacement between two images from the sequence only for a selected
set of control points pi. In Section 3.3 it was advocated that in order to reduce the
computation time to a minimum, this should be done is such a way that it is allowed
to use linear interpolation to obtain the displacement d(p) for any other point p in the
image, and an approach to realize this was presented.

The actual warping of an image I(x, y) is carried out as follows. For every triangle
∆ijk in the mesh, the constituent vertices pi, pj , and pk are virtually translated over the
calculated displacement vectors d(pi), d(pj), and d(pk), respectively. Using a rasteriza-
tion algorithm (see e.g. Foley et al. [22], Chapter 18.7), it is determined which of the pixels
p in the transformed (warped) image Ĩ(p) belong to the warped triangle. For every one of
those pixels, the inverse displacement d−1(p) is calculated by linear interpolation of the
inverse displacements at the (now displaced) vertices: d−1(pi + d(pi)) = −d(pi). Using
this inverse displacement, the grey-value of the warped image Ĩ at pixel p is computed
according to the theory described in Section 2:

Ĩ(p) = Jr(p)I(p + d−1(p)). (12)

It can easily be derived that, because of the fact that the inverse displacement of
an arbitrary point p in the image is computed by linear interpolation from the inverse
displacements of the three control points pi, pj , and pk of the enclosing triangle ∆ijk, the
Jacobian factor Jr in (12) has the form Jr(p) = 1 + c(∆ijk), where c is a constant that
is dependent only on the enclosing triangle ∆ijk and not on p itself (see Appendix for
details). This implies that Jr is nothing but a constant grey-level scaling factor that needs
to be computed only once for every triangle. In order to avoid artifacts at the borders
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of triangles, we imposed the additional constraint that the grey-level distribution in the
resulting subtraction images must vary in a continuous fashion. Since Jr is a constant
within every triangle, this requirement can be satisfied only by taking c(∆ijk) = C, ∀∆ijk.
In our implementation C = 0 (hence, Jr = 1), since any other value for C will cause the
entire subtraction image to be grey-level scaled, which makes no sense.

In almost all cases, the position p+d−1(p) in the original image will not be on the grid.
The grey-value at that position can then be obtained by simple bilinear interpolation.
In our implementation, the described process of polygon rasterization [22] and texture
mapping [26] is carried out real-time by graphics hardware.

Finally, because of the transition from the exposure region to the constant grey-value
of the remainder of the image (at the borders), the warping of the corner triangles (as de-
scribed in Section 4.2) may give rise to very disturbing border artifacts. Since subtraction
in those region does not yield any relevant information, the difference values in the corner
triangles are explicitly set to zero.

5 Algorithm Overview

In the previous sections, the different operations involved in the registration of two images
of a digital angiographic image sequence have been presented and discussed. For clarity,
the individual operations are summarized here, together with their parameters.

Given an image sequence of size M × M × N , the registration of a mask image I(x, y, 0)
(without contrasted blood vessels) with respect to the contrast images I(x, y, n), n ∈
[1, N − 1] ⊂ N is accomplished by carrying out the following steps:

1. Calculate the gradient magnitude ‖∇L‖ (at scale σ) of an Medge×Medge sized version
of the mask image I(x, y, 0) of the sequence, and extract potential artifact regions
by means of thresholding at level Θe.
Parameters: Medge, σ, Θe.

2. Extract the border ∂RE of the exposure region (described by R, Xmin, Xmax and
Ymin, Ymax, see (6)) from the original mask image I(x, y, 0) by analyzing scan-lines
from the border to the center of the image, and select a set of border control points.

3. Extract control points from the exposure region RE using the thresholded gradient-
magnitude ‖∇L‖ version of the mask image I(x, y, 0) and the minimum and maxi-
mum distance constraints (Dmin, Dmax and Dexp, based on assumptions about the
coherence between neighboring pixels).
Parameters: φmin, φmax, φexp.

4. Given the set of control points P = {pi} (including four corner points that are po-
sitioned outside the image), construct a triangular mesh D(P ) (completely covering
the image) using a standard incremental Delaunay triangulation algorithm.

5. For every image I(x, y, n), n ∈ [1, N −1] ⊂ N in the sequence, calculate the displace-
ment d(pi, n) for the selected control points pi ∈ P (except for the corner points) by
maximizing the energy of the histogram of differences, E(d), in a W × W neighbor-
hood of these points, using a hill-climbing optimization and using the displacements
d(pi, n − 1) of the previous image as an estimate.
Parameter: W .
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Sequence Type Size

CER Cerebral 1024×1024×18
PER Peripheral (Femoral) 512× 512×10
ABD Abdominal (Kidney) 1024×1024× 6

Table 1. Specifications of the digital angiographic image sequences used in the experiments
as described in Section 6. All data sets were acquired using an Integris V3000 imaging
system (Philips Medical Systems, Best, the Netherlands).

Parameter Value

Medge 512
σ 1.0
Θe 15.0
φmin 0.04
φmax 0.20
φexp 0.01
W 51

Table 2. Values of the parameters of the algorithm during the experiments as described
in Section 6. See Section 3 for a detailed description of these parameters.

6. For every image I(x, y, n), n ∈ [1, N − 1] ⊂ N in the sequence, warp every triangle
∆ijk in the mesh D(P ) using the displacements d(pi, n), d(pj , n), and d(pk, n) of
the constituent control points pi and the linearly interpolated displacements at the
remaining points p 6= pi, using bilinear interpolation of grey-values.

6 Experimental Results

The algorithm as presented in the previous sections was implemented in the C++ pro-
gramming language [52], utilizing the Open Graphics Library [42]. User-interaction was
provided by means of an interface, implemented using Tcl/Tk [44], resulting in a platform-
independent application. All experiments were carried out on a relatively low cost O2
workstation (Silicon Graphics, De Meern, the Netherlands) with a 180MHz R5000 IP32
processor, 64MB main memory and 512kB secondary unified instruction/data cache mem-
ory, providing special graphics hardware for support of the OpenGL instructions.

The specifications (type and size) of the three data sets (CER, PER, ABD) that were
used in order to demonstrate the performance of the algorithm, are presented in Table 1.
All data sets are clinical digital angiographic image sequences, acquired on an Integris
V3000 imaging system (Philips Medical Systems, Best, the Netherlands). The data sets
were manually pre-processed in the sense that uninteresting parts in the images were
clipped to a fixed grey-value. During the experiments, the parameters of the algorithm
(as summarized in Section 5) were kept fixed to the values in Table 2. For all three image
sequences, the first image was taken as the mask image, for which the correspondence was
calculated with respect to the subsequent live images.

The results of applying the proposed registration technique to the three data sets of
Table 1 are demonstrated in Figures 6, 7, and 8, respectively. In the figures, the original
subtraction of the mask image and one of the live images is shown in the top-left panel.
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The subtractions after correction for patient motion artifacts, using the proposed approach
(based on an irregular triangular mesh), are shown in the bottom-right panel. In order to
relate the performance of our algorithm to that of the manual pixel-shifting technique and
automatic methods based on regular quadrilateral meshes, the results with these latter
methods are shown in the top-right and bottom-left panels, respectively.

In order to give an impression of the speed of the algorithm, the total computation
times required to register the image sequences are presented in Table 3. As an example of
the distribution of the total computation time over the preprocessing operations and the
several images in the sequence, the computation times for data set CER are presented in
more detail in Table 4.

7 Discussion

In this section the results obtained by the experiments described in the previous section
will be discussed and suggestions for extensions and future research will be presented.

7.1 Discussion of the Results

From Figures 6, 7 and 8 it can be seen that the artifacts in the image sequences cannot
be corrected by means of global translation of the mask image, i.e., by applying the pixel-
shifting technique provided on standard DSA imaging devices. In all presented sequences,
the artifacts were caused by elastic (non-rigid) patient motion, as a result of which regis-
tration (using this technique) in one part of the image immediately implied a deterioration
of the artifacts in other parts of the image. Furthermore, it can be seen that especially at
the borders of the exposure regions, a registration algorithm based on a regular quadri-
lateral mesh is not capable of completely removing the artifacts. In general, the proposed
approach, based on a triangular mesh of irregularly spaced (edge-based) control points
yields better registrations and, consequently, better subtractions.

There is a major difference between the registration results of data sets CER and
PER (Figures 6 and 7, respectively) and the results of data set ABD (Figure 8) with
our method. In the first two sets, the artifacts were removed almost completely, i.e., the
algorithm yielded near perfect registrations. In the last data set however, although some
artifacts were removed, the registration result still showed some major artifacts. It should
be mentioned that these artifacts could not be removed by adjusting one or more of the
parameters of the algorithm (Table 2) so as to obtain a larger density of control points. In
fact, the artifacts could not even be removed by replacing the hill-climbing optimization
by a full-search approach. We will discuss these phenomena in more detail.

The registration result of ABD when using the standard pixel-shifting method (top-
right image of Figure 8) reveals that there are parts in the image in which there are several
important structures superimposed (e.g., the spine, the catheter and the bowels in the left-
middle part of the image). This in contrast with the CER and PER sequences, where the
important structures are the result of the projection of only one object in the original
three-dimensional scene, viz., bones. In an attempt to remove the artifacts caused by the
displacement of the catheter (the black/white curve in the left-middle part of the images
of Figure 8), it is inevitable that other artifacts will be introduced (caused by the spine
edges in that same region). This phenomenon has been mentioned earlier (in Section 2) as
the first limitation of any registration algorithm for projected density images, and explains
why even a full search will not be able to retrieve the correspondence.
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Figure 6. Registration of data set CER. Top left: the original subtraction of one of the
live images from the mask image (showing major motion artifacts). Top right: registra-
tion by global translation of the mask image (standard pixel-shifting method) yields only
local correction (in this case at the bottom right of the image). Bottom left: the registra-
tion result using a regular quadrilateral mesh (rubber sheet masking method) still shows
some artifacts at the borders of the exposure region. Bottom right: registration using the
proposed approach yields a (near) perfect subtraction.

In the center of the image however, the artifacts are caused only by peristaltic motion
of the patient. As can be seen from the bottom-right image of Figure 8, our algorithm
was able to remove the artifacts near the small vessels (an important region). The larger
artifacts on the right side of the image could not be removed. The main reason for this
is the increase of noise in the subtraction under translation, causing the match surface to
have a local maximum at d = (0, 0). These artifacts would have been removed if, instead
of a hill-climbing optimization, a full search would have been applied. However, this case
appeared to be a very exceptional one.
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Figure 7. Registration of data set PER. Top left: the original subtraction of one of the live
images from the mask image (showing subpixel motion artifacts). Top right: registration
by global translation of the mask image (standard pixel-shifting method) yields only local
correction (in this case at the bottom left of the image). Bottom left: the registration
result using a regular quadrilateral mesh (rubber sheet masking method) still shows some
minor artifacts at the borders of the exposure region. Bottom right: registration using the
proposed approach yields a (near) perfect subtraction.

The computation times presented in Tables 3 and 4 indicate that, in spite of the
additional time due to the preprocessing operations (i.e., edge detection, control points
selection, triangulation), the proposed approach is faster than commonly used algorithms
based on regular quadrilateral meshes. This is mainly due to the edge-based control point
selection procedure which, in general, results in a reduction of the number of points for
which the displacement needs to be calculated explicitly.

One might argue that algorithms based on regular meshes can be made faster too, by
reducing the density of the control points in the mesh. However, this will almost certainly
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Figure 8. Registration of data set ABD. Top left: the original subtraction of one of the
live images from the mask image (showing major motion artifacts). Top right: registration
by global translation of the mask image (standard pixel-shifting method) yields only local
correction (in this case at the right side of the image). Bottom left: the registration result
using a regular quadrilateral mesh (rubber sheet masking method) in which most of the
artifacts are still present. Bottom right: registration results using the proposed approach
in which there are still major artifacts (see Section 7 for a discussion).

result in a deterioration of the registration accuracy, which is already worse than that
of the proposed approach. With the current parameter settings (Table 2), the average
number of points in relatively dense regions is about the same with both approaches.

7.2 Extensions and Future Work

After the set of control points P has been tessellated into a Delaunay triangulation D(P )
and the displacement d(pi) has been calculated for every vertex (control point) pi ∈ P , it is



PP-22 Image Registration for Digital Subtraction Angiography

Sequence Algorithm
Q-FS Q-HC Q-HC-P T-FS T-HC T-HC-P

CER 949.51 31.20 25.96 391.08 19.29 16.42
PER 514.07 12.05 11.91 316.42 8.48 8.40
ABD 341.87 8.77 8.48 131.30 4.66 4.66

Table 3. The total computation times (in seconds) required by the several versions of
the algorithm to completely register the data sets presented in Table 1. In this table, Q
indicates the use of a regular quadrilateral mesh and T the use of an irregular triangular
mesh. The different optimization techniques that were used are full search (FS) (in a range
[−10, 10] ⊂ N in both x and y direction) and hill climbing (HC). The letter P indicates the
application of inter-image displacement prediction.

Image Algorithm
Nr Q Q-P T T-P

PP 0.00 0.00 0.89 0.91
0 0.00 0.00 0.00 0.00
1 1.65 1.64 0.89 0.92
2 1.81 1.80 1.01 1.00
3 1.85 1.74 1.05 0.90
4 1.83 1.75 1.10 0.95
5 1.90 1.75 1.10 0.96
6 1.86 1.68 1.09 0.90
7 1.87 1.70 1.09 0.87
8 1.86 1.66 1.12 0.88
9 1.83 1.68 1.07 0.90
10 1.81 1.69 1.09 0.93
11 1.83 1.72 1.09 0.93
12 1.84 1.69 1.11 0.92
13 1.88 1.69 1.16 0.93
14 1.84 1.69 1.06 0.86
15 1.83 1.66 1.09 0.89
16 1.85 1.61 1.15 0.90
17 1.86 1.62 1.13 0.87

Total: 31.20 25.96 19.29 16.42

Table 4. The computation times (in seconds) required by the proposed algorithm using an
irregular triangular mesh (T) in order to completely register data set CER (see Table 1).
The computation times required for a standard rubber-sheet masking approach using a
regular quadrilateral mesh (Q) are shown for comparison. PP denotes pre-processing time
and the extension P indicates whether inter-image displacement prediction was applied. In
all cases, hill-climbing was used for the optimization.

required that the resulting transformation does not cause triangles to fold over. The reason
for this requirement is that, in the case of a fold over, the transformation is not consistent
in the sense that there exist pixels in the original image that are mapped to the same
pixel in the transformed image. Although we did not encounter any occurrences of this
phenomenon during the experiments with the data sets in Table 1, a robust implementation
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should be able to perform some kind a regularization in such cases. A subject for future
research would be the development of a regularization scheme that does not affect the
performance of the algorithm in terms of computation times.

Note that the results have been presented on a rather experimental basis. There is
no pronounced way in which to quantify the registration results for this type of images.
The reason for this is that the actual quality of the resulting subtraction images has to
be judged by the person who is responsible for the diagnosis based on these images, i.e.,
the radiologist. An important activity for the near future will be to carry out a thorough
clinical evaluation of the algorithm.

8 Conclusions

In this paper, we have presented a new approach for the registration of digital angio-
graphic image sequences. The method involves the extraction of regions in the image
where artifacts can be expected to appear in the case of patient motion. These regions are
obtained by thresholding the gradient magnitude of the mask image. Based on assump-
tions about the coherence of neighboring pixels, a selected set of control points is extracted,
for which the displacement is computed explicitly by means of maximizing the energy of
the histogram-of-differences similarity measure. A hill-climbing approach is used for the
optimization. The complete displacement vector field is constructed from the displace-
ments at these control points, using a Delaunay triangulation and linear interpolation.
The final warping of the images is done real-time by graphics hardware.

The overall conclusion from the experimental results is that, in general, the proposed
method is effective, very fast, and outperforms algorithms based on regular grids. The
best results are obtained in those situations where the important structures in the original
three-dimensional scene are exposed in such a way that the grey-level distributions of
these structures in the resulting projection images do not overlap. Mostly, this is the case
in e.g. cerebral and peripheral images. In abdominal images, however, there are often
several important structures that can move independently, as a result of which accurate
registration with the current approach becomes impossible.

Future research should focus on improving the robustness of the algorithm by including
procedures to test for the consistency of the transformation. An important activity for
the near future will be to carry out a thorough clinical evaluation of the algorithm.

Appendix

The mapping for which the Jacobian Jr must be computed in (12) is not just the inverse
displacement vector field d−1, but the total reverse mapping dr (Theorem 1), defined by

dr : R
2 → R

2 : p → p + d−1(p), (13)

which we could write as

dr(x, y) ,

[

rx(x, y)
ry(x, y)

]

. (14)

The Jacobian of this reverse mapping is then computed as
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Jr = Jdr
,

∣

∣

∣

∣

∣

∣

∂rx

∂x
∂rx

∂y

∂ry

∂x

∂ry

∂y

∣

∣

∣

∣

∣

∣

, (15)

where | · | denotes taking the determinant of the matrix.

In general, Jr will have to be computed explicitly for every point in the image (or
region of interest). For example, if the region of interest is a rectangle, and the inverse
displacement vector field within the region is computed by bilinear interpolation of the
inverse displacements of the four corner points (see e.g. Mandava et al. [39]):

rx(x, y) = x + (a10xy + a11x + a12y + a13),

ry(x, y) = y + (a20xy + a21x + a22y + a23),
(16)

then the Jacobian becomes

Jr =

∣

∣

∣

∣

∣

(1 + a11 + a10y) (a12 + a10x)

(a21 + a20y) (1 + a22 + a20x)

∣

∣

∣

∣

∣

= (a20 + a11a20 − a10a21)x +

(a10 + a22a10 − a20a12)y +

1 + a11 + a22 + a11a22 − a12a21,

(17)

which is linearly dependent on x and y. (The eight constant coefficients aij are easily com-
puted from the eight equations that result when successively substituting the coordinates
and displacements of the four corner points into (16).) This result also applies when the
image is completely divided into quadrilaterals, which are the suitable polygons in case of
a regular grid of control points.

However, in our algorithm the control points are on an irregular grid, and they are
tessellated into a Delaunay triangulation. The inverse displacement of an arbitrary point
in the image is computed from the inverse displacements of the three control points con-
stituting the enclosing triangle, by means of linear interpolation, i.e.

rx(x, y) = x + (a11x + a12y + a13),

ry(x, y) = y + (a21x + a22y + a23).
(18)

It can easily be derived that in this case the Jacobian becomes

Jr =

∣

∣

∣

∣

(1 + a11) a12

a21 (1 + a22)

∣

∣

∣

∣

= 1 + a11 + a22 + a11a22 − a12a21,

(19)

which is a constant within every triangle. (Again, the coefficients are computed by sub-
stituting the coordinates and displacements of the three corner points into (18) and by
solving the resulting system of equations.)

At this point, there are two possibilities: either (i) the coefficients aij are negligible
and there is no problem taking Jr = 1, or (ii) the coefficients do have significant values
and Jr needs to be computed explicitly for every triangle. It is important to note that
in the latter case, Jr needs to be computed only once for every triangle, which implies a
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great advantage in terms of computational speed as compared to the approach described
by e.g. Mandava et al. [39], where Jr must be computed separately for every point within
the region of interest.

It is even more important to have a look at the consequences of including the Jacobian
factor into the computations. Since, in our implementation, Jr is a constant within every
triangle, Jr is nothing but a constant grey-level scaling factor. Here we have another two
possibilities: either (i) the corresponding coefficients aij in neighboring triangles are almost
equal, as a consequence of which there is, again, no problem taking Jr = 1, since it would
only imply that we do not incorporate a constant grey-level scaling of the entire image,
or (ii) the corresponding coefficients aij do change substantially from triangle to triangle,
and should be recomputed. However, in the latter case, inclusion of the Jacobian factor
in the computations will result in substantial grey-level discontinuities at the borders of
the triangles, the resulting artifacts of which might even be worse than the ones that we
were initially trying to correct for by including this factor. It should be stressed that these
artifacts do not only occur in our case of linear interpolation between displacement vectors
using (18). They will also occur in the case of bilinear interpolation using (16), which can
be seen clearly from the several examples shown by Mandava et al. [39].

In order to avoid this type of artifacts, we imposed an additional constraint to the
warping algorithm, viz., that the grey-level distribution in the resulting subtraction im-
ages should vary in a continuous fashion.5 As already pointed out in Section 4.5, this
requirement can be satisfied only by explicitly taking Jr to be constant in the entire im-
age. A natural choice is Jr = 1 since any other value for Jr will cause the entire subtraction
image to be grey-level scaled, which makes no sense.
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