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Abstract. We address the theoretical problems of optical flow estimation and image registration in a multi-scale
framework in any dimension. Much work has been done based on the minimization of a distance between a first
image and a second image after applying deformation or motion field. Usually no justification is given about
convergence of the algorithm used. We start by showing, in the translation case, that convergence to the global
minimum is made easier by applying a low pass filter to the images hence making the energy “convex enough”. In
order to keep convergence to the global minimum in the general case, we introduce a local rigidity hypothesis on
the unknown deformation. We then deduce a new natural motion constraint equation (MCE) at each scale using the
Dirichlet low pass operator. This transforms the problem to solving the energy minimization in a finite dimensional
subspace of approximation obtained through Fourier Decomposition. This allows us to derive sufficient conditions
for convergence of a new multi-scale and iterative motion estimation/registration scheme towards a global minimum
of the usual nonlinear energy instead of a local minimum as did all previous methods. Although some of the sufficient
conditions cannot always be fulfilled because of the absence of the necessary a priori knowledge on the motion, we
use an implicit approach. We illustrate our method by showing results on synthetic and real examples in dimension
1 (signal matching, Stereo) and 2 (Motion, Registration, Morphing), including large deformation experiments.

Keywords: motion estimation, registration, optical flow, multi-scale, motion constraint equation, global mini-
mization, stereo matching

1. Introduction

Registration and motion estimation are one of the most
challenging problems in computer vision, having un-
countable applications in various domains [4, 6, 13,
17, 18, 29]. These problems occur in many applica-
tions like medical image analysis, recognition, visual
servoing, stereoscopic vision, satellite imagery or in-
dexation. Hence they have constantly been addressed
in the literature throughout the development of im-
age processing techniques. As a first example (Fig. 1)
consider the problem of finding the motion in a two-
dimensional images sequence. We then look for a dis-
placement(h1(x1, x2), h2(x1, x2)) that minimizes an

energy functional:

∫ ∫
|I1(x, y)− I2(x+ h1

(x, y), y+ h2(x, y))|2 dx dy.

Next consider the problem of finding a rigid or non
rigid deformation( f1(x1, x2), f2(x1, x2))between two
images (Fig. 2), minimizing an energy functional:

∫ ∫
|I1(x, y)− I2( f1(x, y), f2(x, y))|2 dx dy.
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Figure 1. Finding the motion in a two-dimensional images
sequence.

Figure 2. Finding a non rigid deformation between two images.

Figure 3. Finding Correspondence in a Stereo pair with epipolar
constraint.

At last consider the stereoscopic matching problem:
given a stereo pair (Fig. 3), the epipolar constraint al-
lows to split the two-dimensional matching problem
into a series of line by line one-dimensional match-
ing problems. One has just to find, for every line, the
disparityh(x) minimizing:∫

|I1(x)− I2(x + h(x))|2 dx.

Although most papers deal only with motion estima-
tion or matching depending on the application in view,
both problems can be formulated the same way and

be solved with the same algorithm. Thus the work we
present can be applied both to registration for a pair of
images to match (stereo, medical or morphing) or mo-
tion field/optical flow for a sequence of images. In this
paper we will focus our attention on these problems as-
suming grey level conservation between both signals or
images to be matched. Let us denote byI1(x) andI2(x)
respectively the study and target signals or images to be
matched, wherex ∈ D = [−M, M ]d⊂Rd, andd≥ 1.
In the following I1 andI2 are supposed to belong to the
spaceC1

0(D) of continuously differentiable functions
vanishing on the domain boundary∂D. We will then
assume there exists a homeomorphismf ∗ of D which
represents the deformation such that:

I1(x) = I2 ◦ f ∗(x), ∀x ∈ D.

In the context of optical flow estimation, let us denote
by h∗ its associated motion field defined byh∗ = f ∗ −
Id on D. We thus have:

I1(x) = I2(x + h∗(x)). (1)

h∗ is obviously a global minimum of the nonlinear func-
tional

ENL(h) = 1

2

∫
D
|I1(x)− I2(x + h(x))|2 dx. (2)

We can deduce from (1) the well known Motion Con-
straint Equation (also called Optical Flow Constraint):

I1(x)− I2(x)'〈∇ I2(x), h
∗(x)〉, ∀x ∈ D. (3)

ENL is classically replaced in the literature by its
quadratic version substituting the integrand with the
squared difference between both left and right terms of
the MCE, yielding the classical energy for the optical
flow problem:

EL(h)= 1

2

∫
D
|I1(x)− I2(x)−〈∇ I2(x), h(x)〉 |2 dx.

Here∇ denotes the gradient operator. Since the work
of Horn and Schunk [17], MCE (3) has been widely
used as a first order differential model in motion es-
timation and registration algorithms. In order to over-
come the too low spatio-temporal sampling problem
which causes numerical algorithms to converge to the
closest local minimum of the energyENL instead of a
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global one, Terzopoulos et al. [24, 29] and Adelson
and Bergen [9, 28] proposed to consider it at different
scales. This led to the popular coarse-to-fine minimiz-
ing technique [11, 13, 14, 18, 25]. It is based on the
remark that MCE (3) is a first order expansion which
is generally no longer valid withh∗ searched for. The
idea is then to consider signals or images at a coarse
resolution and to refine iteratively the estimation pro-
cess. Since then many authors pointed out convergence
properties of such algorithms towards a dominant mo-
tion in the case of motion estimation [7, 8, 10, 11, 15,
21], or an acceptable deformation in the case of reg-
istration [13, 25, 26], even if the initial motion were
large. Let us mention that many authors assume that
deformation fields have some continuity or regularity
properties, leading to the addition of some particular
regularizing terms to the quadratic functional [2, 3, 5,
17, 29]. This very short state-of-the-art is far from being
exhaustive but it allows to raise four common features
shared by all most effective differential techniques:

1. a motion constraint equation,
2. a regularity hypothesis on the deformation,
3. a multi-scale approach,
4. an iterative scheme.

However, most of the multi-scale approaches assume
that the MCE is more “valid” at lower resolutions. But
to our knowledge and despite the huge literature, no
theoretical analysis can confirm this. It may come from
the fact that flattened signals or images are always
“more similar”. Choosing a particular low pass filter
5σ (hereσ ≥ 0 is proportional to the number of con-
sidered harmonics in the Fourier decomposition) and a
deformation f = Id + h satisfying some local rigid-
ity hypothesis with respect to a signal or imageI1, we
shall find a linear operatorPI1

σ depending onI1 such
that:

5σ(I1− I2) ' PI1
σ (h), (4)

the sharpness of this approximation being decreasing
with respect to bothh norm and resolution parameterσ .
We are faced with the following motion size/structure
hypothesis trade-off: for some fixed estimation reli-
ability, the larger the motion, the poorer its structure.
This transforms the problem to solving the energy min-
imization in a finite dimensional subspace of approx-
imation obtained through Fourier Decomposition. In
this context we are led to consider the new energy to

be minimized:

EL(h) = 1

2

∫
D

∣∣5σ(I1− I1◦(Id+ h)−1)−PI1
σ (h)

∣∣2 dx.

Considering general linear parametric motion mod-
els forh∗, we give sufficient conditions for asymptotic
convergence of the sequence of combined motion esti-
mations towardsh∗ together with the numerical conver-
gence of the sequence of deformed templates towards
the targetI2. Roughly speaking, the shape of the theo-
rem will be the following:

Theorem. If

1. At each step the residual deformation is“ locally
rigid ”, and the associated motion can be linearly
decomposed onto an“acceptable” set of functions
the cardinal of which is not too large with respect
to the scale,

2. The initial motion norm is not too large, and the
systems conditionings do not decrease“ too rapidly”
when iterating,

3. The estimated deformations Id+ ĥi are invertible
and“ locally rigid”,

Then the scheme“converges” towards a global mini-
mum of the energy ENL.

The outline of the paper is as follows. In Section 2 we
show the energy convexifying properties of multi-scale
approaches together with fast convergence of iterative
algorithms for the estimation of purely translational
motion in any dimension. In Section 3 we turn to the
general motion case and introduce a new local rigidity
hypothesis and a low pass filter in order to derive a new
MCE of the type of Eq. (4). In Section 4 we design an
iterative motion estimation/registration scheme based
on the MCE introduced in Section 3 and prove a con-
vergence theorem. In order to avoid the a priori mo-
tion representation problem, we try successively two
different approaches for the numerical resolution. We
first use a level sets approach in Section 5, that does
not prove tractable nor robust. In Section 6 we adopt
an implicit approach and constrain each estimated de-
formationId+ ĥi to be at least invertible. We show nu-
merical results for some signals and the stereo problem
in dimension 1, and for large deformations problems
in dimension 2. Section 7 gives a general conclusion to
the paper.
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2. Purely Translational Motion Estimation

In this section we assume the motion to be found is
only translational. This simple case will allow us to
show the energy convexifying properties of multi-scale
approaches together with fast convergence of iterative
algorithms.

2.1. Synthetic 1D Energy Convexifying Example

Consider a test signal (Fig. 4) and its purely translated
copies. The energy given by the mean quadratic error
between shifted test signals and considered as a func-
tion of the translational parameter can be convexified
using signals at a poorer resolution. Indeed we show
the energy as a function of the translation parameter
calculated with original test signals (Fig. 5) and with
same signal at a poorer resolution (Fig. 6), namely sig-
nals reconstructed with only 5 and 3 first harmonics
of the Fourier base. This readily yields more and more
convexified energies as the resolution is lower.

Based on this convexifying property, a generic algo-
rithm for estimating the translational parameter is as
follows:

1. Find the finest resolutionj for which the energy is
convex enough.

2. Minimize the energy with signals at resolutionj .
3. Refine the result by increasing the resolution and

minimizing the new energy.

Figure 4. Test Signal. The second signal is the same shifted by 200.

Figure 5. Energy as a function of shift parameter. There are
numerous local minima around the global minimum atx = 200
at scale 7.

Figure 6. Same energy with signals reconstructed with only 5 har-
monics (top) and 3 harmonics (bottom) using the multiresolution
pyramid spanned by the first elements of the Fourier base.

2.2. The One Dimensional Case

Let us introduce some useful notations and technical
hypothesis:

• I1 and I2 belong toC1
0(D),

• D = [−M,M ],
• h∗ satisfies|h∗| ≤ dist(Supp(I2), ∂D), where dist

denotes the Hausdorff distance between two sets of
points, Supp(I2) denotes the set of points whereI2

is different from zero, and∂D denotes the boundary
of D,
• I1(x) = I2(x + h∗), for all x ∈ D.

The problem we are faced with writes:

(P) : Find ĥ = arg min
h
‖I1(x)− I2(x + h)‖2L2,

where L2 denotes the space of summable squares
functions overD. We now define the multiresolution
pyramid considering the sequence of spaces

Vj = span

{
ek(x)= 1√

2M
e−iπkx/M ,−2 j ≤ k≤ 2 j

}
.

Let us denote5j the projection operator ofL2 ontoVj .
The linearized problem inVj writes:

(PLj) : Find

ĥ j = arg min
h

Ej(h) = ‖I1(x)− I2(x)− I ′2(x)h‖2Vj
.

Our first result will be the
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Lemma 1. If ‖I ′2‖Vj 6= 0, then

ĥ j = 〈5j(I ′2),5j(I1− I2)〉 Vj

‖I ′2‖2Vj

, (5)

and if |h∗| ≤ M
2 j+1 then we have: |ĥ j − h∗| ≤ |h∗|2 .

Proof: See [20]. 2

To iterate the estimation process we introduce some
notations: let̂h0

j = 0, I2,0(x)= I2(x),and, for eachL >
0, ĥL

j = arg minh ‖I1(x)− I2,L−1(x)− I ′2,L−1(x)h‖2Vj
,

andI2,L(x) = I2(x+
∑L

l=0 ĥl
j ). As a result we have the

Theorem 1. If ‖I ′2‖Vj 6= 0 and |h∗| ≤ M
2 j+1 , the algo-

rithm converges in the sense that, when L→∞,
L∑

l=0

ĥl → h∗, and I2,L → I1 uniformly.

Proof: See [20] 2

Remark. Calculating the translation parameterh∗ is
not considered to be a difficult task using the classical
phase method. This only illustrates theoretical perfor-
mance of a multiresolution algorithm in a simple case.

2.3. Generalization to Dimension d> 1

Notations in this context are to be understood as fol-
lows:

• D now becomes [−M,M ]d in Rd.
• I1,p, I2,p, I2, are functions fromRd toR.
• h, h̃∗ are vectors inRd.
• 〈. , .〉 denotes the scalar product inRd.
• [. , .] denotes the scalar product inL2.

Once again and for technical reasons we assume thatI1

and I2 belong toC1
0, and I1(x)= I2(x+ h∗), x ∈ D,

h∗ ∈Rd,and that dist(Supp(I2), ∂D)≥ |h∗|,where∂D
denotes the border ofD. Let also consider extended
versions ofI1 and I2 by continuity to the whole space
Rd, in order that the expression boundingI1 to I2 be
meaningful ifx+h∗ /∈ D. The problem now writes:

(P) ĥ= arg minh‖I1(x)− I2(x+ h)‖2L2

Consider a set of approximation spaces for the prob-
lem, given by the following definition:

Definition 1. Let i be the chosen component index.
We denote byV j

i the sequence of vector sub-spaces of
L2 defined by:

V j
i = vect

{
ek(x)= 1

(2M)d/2
e−iπkxi /M ,

k = −2 j , . . ,0, . . ,2 j

}
.

For each spaceV j
i , we denote by5 j

i the oper-
ator from L2 into L2 mapping each functionf to
its reconstruction5 j

i f with its Fourier coefficients
ck( f ), |k| ≤ 2 j :

5
j
i f (x)=

∑
|k|≤2 j

ck( f )ek(x).

Practically, we will have 2M samples in each direc-
tion, and we can therefore limit the problem study to
its approximation inV j

i spaces, wherej is implicitly
bounded by inequality 1+ 2 j+1≤ 2M .

Let us call(PL) the problem associated to MCE:
Find

ĥ= arg min
h∈Rd
‖I1(x)− I2(x)−〈∇ I2(x), h〉‖2L2,

and(PLj
i ) the problem embedded inV j

i , j ≥ 1:(
PLj

i

)
: Find

ĥ j
i = arg min

h
‖I1(x)− I2(x)− ∂i I2(x)h‖2V j

i

,

where∂i I2 denotes the partial derivative ofI2 w.r.t.
component indexi . A straightforward result similar to
the previous one is given in

Lemma 2. If ‖∂i I2‖V j
i
> 0, then

ĥ j
i =

[
5

j
i (∂i I2),5

j
i (I1− I2)

]
‖∂i I2‖2V j

i

, (6)

and if |h∗i | ≤ M
2 j+1 , then we have:

∣∣ĥ j
i − h∗i

∣∣≤ |h∗i |
2
. (7)

Proof: It is exactly the same as in the one dimen-
sional case. 2

Remark. As a first consequence, if‖∂i I2‖2= 0, then
it has no sense to estimate the translation parameter in
this direction (aperture problem). In that particular case
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we will assume that it is null, and a zero value will then
be given to its estimator.

We can see that if we replaceI2 by I2,1(x)=
I2(x+ ĥ j ), then the hypotheses of last Lemma will
be satisfied again for‖∂i I2,1‖V j

i
= ‖∂i I2‖V j

i
> 0 and:

∣∣ĥ j
i − h∗i

∣∣ ≤ |h∗i |
2
≤ M

2 j+2
≤ M

2 j+1
.

We can therefore find

ĥ j,1
i = arg min

h
‖I1(x)− I2,1(x)− ∂i I2,1(x)h‖2V j

i
,

and the Lemma allows to show that the sequence of
functionsI2,L(x) = I2(x +

∑L
l=0
ˆh j,l ) converges uni-

formly towardsI1 (see [20]).
We show in Figs. 7 to 9 some numerical results

of two-dimensional purely translational motion esti-
mation and registration. In Fig. 8, yielded translation
parameter is (99.03,99.07). Surprisingly we note that
during the iterative process, the estimated translation

Figure 7. Test image on the left. The second image is the same trans-
lated with parameter (100,100). Translation parameters are found
exactly without the need for scales greater than 1.

Figure 8. On the left, test image with 50% pixels corrupted by a
Gaussian additive noise. The second image is the same before adding
noise, then translated by a (100,100) shift, and finally also corrupted
by the same type of noise.

parameter was best estimated before reaching the finest
resolution, and then became less precise.

3. General Motion Multiresolution Estimation

In Section 2 we have considered only purely transla-
tional motion estimation and registration. Our purpose
here is to take over the general case for the motion. We
will first try to take some distance with what was done
in the past concerning differential models and estab-
lish the need and the means of a constructive approach.
Our approach is based on the fact that the motion is
hidden in the difference between both functions to be
matched. This will lead us to analyze this difference at
some particular resolution. Making some assumptions
on the structure and local behaviour of the motion and
the type of scale-space, we will find a new MCE and
show that we can control the sharpness of it, which has
not been taken care of previously.

3.1. Controlling the Residuals When Mixing
Differential and Scale-Space Techniques

Using a regularizing kernelGσ at scaleσ, Terzopoulos
et al. [24, 29] and Adelson and Bergen [9] were led to
consider the following modified MCE:

Gσ ∗ (I1− I2)(x) ' 〈Gσ ∗ ∇ I2(x), h
∗(x)〉

Remark. One could also consider regularizing both
left and right terms of the original MCE, yielding the
following alternative:

Gσ ∗ (I1− I2)(x) ' Gσ ∗ (〈 ∇ I2, h
∗〉)(x)

At finest scales it can be shown that these two propo-
sitions are equivalent.

To our knowledge and despite the huge literature on
these approaches, no theoretical error analysis can be
found when such approximations are done. However
it has been reported from numerical experiments that
the modified MCE was not performing well at very
coarse scales, thus betraying its progressive lack of
sharpness. Assuming a local rigidity hypothesis and
adopting the Dirichlet operator5σ , we will find a dif-
ferent right hand side featuring a “natural” and unique
linear operatorPI1

σ in the sense that:

5σ(I1− I2)(x) ' PI1
σ (h

∗)(x), (8)
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Figure 9. Registration with Gaussian additive noise. From left to right the four first iterations of the process at scale 1. We come up with a
translation parameter of (99.66,100.07).

with remainder of the order of‖h∗‖2 for some particular
norm and vanishing as the scale is coarser.

3.2. Local Rigidity Property

In this paragraph we introduce our local rigidity prop-
erty of deformations.

Definition 2. f ∈ Hom(D) is ξ -rigid for I1 ∈ C1(D)
iff:

Jac( f )t .∇ I1 = det(Jac( f ))∇ I1, (9)

where Jac( f ) denotes the Jacobian matrix off and
det(A) the determinant of matrixA, and Hom(D)
the space of continuously differentiable and invertible
functions fromD to D (homeomorphisms).

All ξ -rigid deformations have the following proper-
ties (see [19] for the proofs). Assumef ∗ is ξ -rigid for
I1 ∈ C1

0(D) and I1 = I2 ◦ f ∗. Then,

1. Equation (9) is always true if dimensiond is 1;
2. for all d ≥ 1,

(a) ‖∇ I1‖L1 =‖∇ I2‖L1, where L1 denotes the
space of integrable functions overD;

(b) ∇ I1 // ∇ I2 ◦ f ∗.
(c) relation∼ defined by

[ I1 ∼ I2] ⇐⇒ [∃ f ξ -rigid for I1 s.t.I1= I2◦ f ]

is an equivalence relation onC1
0(D);

3. supposed = 2: then,

(a) if Jac( f ∗) is symmetric, then (9) means that if
|∇ I1| 6= 0,

Figure 10. An example of motionh= f − Id of aξ -rigid deforma-
tion f for imageI1. We show a level set of imageI1, and the fields
∇ I1 andh along its boundary.h varies only along the direction of
∇ I1.

• direction η= ∇ I1
|∇ I1| is eigenvector (λ= det

(Jac( f )) is an eigenvalue);
• directionξ = ∇ I ⊥1

|∇ I1| is “rigid” ( λ = 1 is an
eigenvalue);

This property can be seen as a non-sliding
motion property. We illustrated this interesting
property in Fig. 10, where we show a level set
of I1, and a motionh = f − Id of a ξ -rigid
deformation f for image I1. h can vary only
along the direction of∇ I1.

(b) κ(I1) = [Tr(Jac( f ∗)) − det(Jac( f ∗))].κ(I2) ◦
f ∗, whereκ(I )(x) stands for the curvature of
the level line ofI passing throughx and Tr(A)
denotes the trace of matrixA;

4. if d = 1 or 2, and

• h∗ is known at

– 1 point (d = 1).
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– each isolated critical point ofI1 and at one in-
terior point of each connected constant set of
I1 (d = 2).

• h = h∗ at this(ese) point(s), and

I1 = I2 ◦ (Id + h) on D,

then for allx ∈ D whereI1 is not locally constant
we haveh(x)= h∗(x).

Remark. It is an important issue to know whether
suchh∗ is unique. In cased ∈ {1, 2}, property 4 leads
to uniqueness ifh∗ is known at some isolated points.
Though it is not proved in the general case, we will
assume uniqueness hereafter for simplicity.

As a consequence we can show thatξ -rigid defor-
mations of signals or images can be transfered to test
functions. Indeed, we have the following

Lemma 3. Suppose that

1. I1 and I2 ∈ C1
0(D) are such that: I1 = I2 ◦ f

2. f is ξ -rigid for I 1

3. φ ∈ C∞(D;R), and8 ∈ C∞(D;Rd) s.t. div8 =
φ, where C∞(D;R) denotes the space of indefi-
nitely differentiable function from D toR.

Then,
∫

D(I1− I2)φ dx= ∫D〈∇ I1,8 ◦ f −8 〉 dx.

Proof: See [20] 2

3.3. The Dirichlet Operator

One choice for the set of test functions in Lemma 3 is
the Fourier basis, the simplest projection onto which is
the Dirichlet projection operator. LetD = [−M,M ]d;
Sσ = {k ∈ Zd, ∀i ∈ [1, d], |ki | ≤ Mσ 2}; ck(I )
denotes the Fourier coefficient ofI defined by:

ck(I ) = 1

(2M)
d
2

∫
D

I (x) e−
iπ〈k,x〉

M dx.

Then the Dirichlet operator5σ is the linear mapping
associating to each functionI ∈ C1

0(D) the function
5σ(I ) = Gσ ∗ I , where the convolution kernelGσ is
defined by its Fourier coefficients as follows:

ck(Gσ ) =
{

1 if k ∈ Sσ
0 elsewhere

3.4. New MCE by Linearization for the
Dirichlet Projection

Now that we have introduced our rigidity property of
deformations and the Dirichlet projection, let us choose
the test functions of Lemma 3 in the Fourier basis. We
obtain the

Lemma 4. If f ∗ = Id+ h∗ isξ -rigid for I 1 = I2◦ f ∗,
with I1, I2 both in C1

0, then

c0(I1− I2) = 1

d
c0(〈∇ I1, h

∗〉) (10)

and, for k 6= 0,

ck(I1− I2)

= i M

π |k|2 ck
(〈∇ I1, k〉

(
e−iπ〈k,h∗〉/M − 1

))
. (11)

Proof: If k= 0, we take8(x)= 1
d x, which yields

the expectedφ(x)= div(8(x))= 1. If k 6= 0, then we
must find8 such that div(8(x))=φ(x)= e−iπ〈k,x〉/M .
Fortunately in this case we have an explicit solution
which is given by8(x)= i M

π
k
|k|2 e−iπ〈k,x〉/M . 2

Now taking the linear part of the jet of
e−iπ〈k,h∗〉/M − 1 with respect toh∗, and setting:

ck
(
PI1
σ (h

∗)
)

=


1
d c0(〈∇ I1, h∗〉) if k = 0

ck

( 〈∇ I1, k〉〈k, h∗〉
|k|2

)
if k ∈ Sσ /{0}

0 if k /∈ Sσ

we obtain the

Theorem 2. If f ∗ = Id + h∗ is ξ -rigid for I 1 = I2 ◦
f ∗ ∈ C1

0(D), then we have:∥∥5σ(I1− I2)− PI1
σ (h

∗)
∥∥

L2 ≤
π

2
σ d+2

∥∥h∗|∇ I1| 12
∥∥2

L2.

This inequality is nothing but the sharpness of MCE
(8):

5σ(I1− I2)(x) ' PI1
σ (h

∗)(x), (12)

at scaleσ . It clearly expresses the fact that measuring
the motion (e.g perceiving the optical flow)h∗ is not
relevant outside of the support of|∇ I1|.

Proof: See [20] 2
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4. Theoretical Iterative Scheme and
Convergence Theorem

In Section 3 we found a new MCE and showed that
we can control the sharpness of it. In this section we
will make a rather general assumption on the motion
in the sense that it should belong to some linear para-
metric motion model without being more specific on
the model basis functions. Though it is somewhat re-
strictive to have motion fields in a finite dimensional
functional space, this structural hypothesis will be a key
to bounding the residual motion norm after registration
in order to iterate the process. This makes it possible to
consider a constraint on motion when there is a priori
knowledge (like for rigid motion) or consider multi-
scale decomposition of motion for an iterative scheme.

4.1. Linear Parametric Motion Models
and Least Square Estimation

Let us assume the motionh∗ has to be in a finite di-
mensional space of deformation generated by basis
functions9(x)= (ψi (x))i=1..n. Thush∗ can be decom-
posed in the basis:∃2∗ = (θ∗i )i=1..n unique, such that:

h∗(x) = 〈9(x),2∗〉 =
∑

i=1..n

θ∗i ψi (x),

∀x ∈Supp(|∇ I1|).

MCE (8) viewed as a linear model writes:

5σ(I1− I2) =
〈
PI1
σ (9),2

∗〉.
Now set, forσ s.t. thePI1

σ (ψi ) be mutually linearly
independent inL2:

Mσ = PI1
σ (9)⊗ PI1

σ (9), Yσ = 5σ(I1− I2),

where⊗ stands for the tensorial product inL2. Then
applying basic results from the classical theory of lin-
ear models yields:̂h=〈9, 2̂〉= 〈9,M−1

σ Bσ〉, where
column Bσ ’s components are defined by(Bσ )i =
〈PI1

σ (ψi ),Yσ〉.

4.2. Estimation Error and Residual Motion

Given the least square estimation of the motion of last
paragraph, we have

Lemma 5. In this framework the motion estimation
error is bounded by inequality

∥∥(ĥ− h∗)| ∇ I1| 12
∥∥

L2 ≤
π

2
σ d+2

(
Tr
(
M−1
σ

)) 1
2

× ∥∥h∗|∇ I1| 12
∥∥2

L2.

Proof: See [20] 2

If Id + ĥ is invertible, we can define:

I1,1 = I1 ◦ (Id + ĥ)−1. (13)

Letting r1 denote the residual motion such thatI1,1 =
I2 ◦ (Id + r1), if Id + ĥ is ξ -rigid for I1 then a variable
change yields equality∥∥(ĥ− h∗)|∇ I1| 12

∥∥
L2 =

∥∥r1|∇ I1,1| 12
∥∥

L2,

thus giving by Lemma 5 the following bound on the
residual motion norm:∥∥r1|∇ I1,1| 12

∥∥
L2 ≤

π

2
σ d+2

(
Tr
(
M−1
σ

)) 1
2
∥∥h∗|∇ I1| 12

∥∥2
L2.

(14)

In view of equality (13) and inequality (14), iterating
the motion estimation/registration process looks com-
pletely natural and allows for pointing out sufficient
conditions for convergence of such a process. Indeed,
provided the same assumptions are made at each step,
relations (13) and (14) can be seen as recurrence ones,
yielding bothrp and I1,p sequences.

4.3. Theoretical Iterative Scheme

Having control on the residual motion after one regis-
tration step, we deduce the following theoretical itera-
tive motion estimation/registration scheme:

1. Initialization: Enter accuracyε > 0 and the maxi-
mal number of iterationsN. Set p= 0, and I1,0 =
I1.

2. Iterate while (‖I1,p − I2‖ ≥ ε & p ≤ N)

(a) Enter the set of basis functions9p=
(ψp,i )i=1..np that linearly and uniquely decom-
poserp on the support of|∇ I1,p|.

(b) Enter scale σp and compute: ĥp=〈9p,

M−1
p,σp

Bσp〉.
(c) SetI1,p+1 = I1,p ◦ (Id + ĥp)

−1.
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4.4. Convergence Theorem

Now that we have designed an iterative motion estima-
tion/registration scheme, let us infer sufficient condi-
tions for the residual motion to vanish. This leads us to
state our following main result:

Theorem 3. If:

1. For all p ≥ 0, I1,p∼ I2 (as defined in Section3.2),
and the residual motion rp can be linearly and
uniquely decomposed on a set of basis functions
{ψp,i , i = 1..np};

2. For all p ≥ 0, there exists a scaleσp > 0 such that
the set of functions{PI1,p

σp (ψp,i ), i = 1..np} be free
in L2 and, for p = 0, we assume that:

∥∥h∗|∇ I1| 12
∥∥

L2 <

(
π

2
σ d+2

0 Tr
(
M0,σ0

) 1
2

)−1

;

Set C0 = ( π2σ d+2
0 Tr(M0,σ0)

1
2‖h∗|∇ I1| 12‖L2)−1;

3. The sequence of conditioning ratios satisfy criteria:

∀p ≥ 0,
σ d+2

p+1Tr(Mp+1,σp+1)
1
2

σ d+2
p Tr(Mp,σp )

1
2
≤ C0;

4. For all p ≥ 0, the estimated deformations Id+ ĥp ∈
Hom(D) and areξ -rigid for I 1,p;

Then, limp→∞‖r p|∇ I1,p|1/2‖L2 = 0.

Proof: See [20] 2

4.5. Numerical Algorithm Requirements

Firstly, due to the fact thath∗ is unknown we have
to make an arbitrary choice for the scale at each step.
Secondly we at least have to ensure thatId + ĥ be
invertible at each step. Finally we are faced with the
motion basis functions choice.

4.5.1. Multi-Scale Strategy. The scale choice ex-
presses both a priori knowledge on the motion range
and its structure complexity. Here we assume that(σp)p

is an increasing sequence, starting fromσ0> 0 such
that:

#Sσ0 ≥ #{expected independent motions}. (15)

Then letα ∈]0, 1[. In order to justify the minimization
problem at new scaleσp+1>σp,we will choose it such

that:∥∥(5σp+1 −5σp

)(
I1,p+1− I2

)∥∥
L2 >α

∥∥I1,p+1− I2

∥∥
L2,

(16)

4.5.2. Invertibility of Id + ĥp. Let β >0. We will
apply toI1,p the inverse of the maximal invertible linear
part of the computed deformation e.g.(Id + t∗.ĥp)

−1,

where

t∗ = sup
t∈[0,1]
{t/det(Jac(Id + t.ĥp)) ≥ β}. (17)

Remark (Recursive version of the algorithm). Set
f ∗(I1, I2) the solution to the correspondence prob-
lem between I1 and I2. Then, f ∗(I1,p, I2) =
f ∗(I1,p+1, I2) ◦ (Id+ ĥp). We thus deduce the follow-
ing alternate recursive motion estimation/registration
function f ∗(I1, I2) defined by:

If ‖I1− I2‖ > ε,

Then


Calculateĥ(I1, I2)

Deform: I1,1 = I1 ◦ (Id + ĥ(I1, I2))
−1

Call f = f ∗(I1,1, I2)

Return f ◦ (Id + ĥ(I1, I2))

Else returnId

4.5.3. Choosing the Set of Basis Functions.A major
difficulty arising in the theoretical scheme comes from
the lack of a priori knowledge on the finite set of basis
functions to be entered at each step. To alleviate this
problem we propose two different approaches. In Sec-
tion 5 we will consider splitting both signals or images
into a collection of pairs of level sets to be matched,
whose basis functions are simple Dirac measures in
dimension 1, and vector curves in dimension 2. In Sec-
tion 6 we will use an implicit approach via the optimal
step gradient algorithm when minimizing the quadratic
energy associated to MCE (8).

5. Level Sets Approach of Basis Functions

In Section 4 we derived a theoretical iterative scheme
and established a convergence theorem. In order to im-
plement the proposed algorithm we at each step have to
choose a finite dimensional motion model. In this sec-
tion we consider splitting both signals or images into
a collection of pairs of level sets to be matched, whose
basis functions are simple Dirac measures in dimen-
sion 1, and vector curves in dimension 2. Indeed, using
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Figure 11. From top to bottom, we showI2, then I1 = I2 ◦ f ∗, f ∗, f̂ , then the error percentage betweenf̂ and f ∗, and finally I2 ◦ f̂ .

the level set decomposition of signals and images, we
show that the energy minimization is equivalent to a
series of independent distance minimizations between
characteristic functions of the level sets of both signals
or images. We design a procedure that achieves motion

estimation and registration grey level by grey level. At
each grey level the motion of the borders of the level
sets is estimated recursively.

The initial matching problem can be split into a col-
lection of independent sub-problems: for eachλ ∈
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{I1(x)/x ∈ D} ⊂ R, solve:

min
h

∥∥χ{I1≥λ}(x)− χ{I2≥λ}(x + h(x))
∥∥2

L2,

whereχ denotes the characteristic function.
Indeed, if I1 = I2 ◦ f, then the level sets ofI1 and

I2 ◦ f can be superposed. Conversely, we have:

‖I1− I2 ◦ f ‖2L2 =
∫

D
|I1(x)− I2 ◦ f (x)|2 dx,

=
∫

D

(∫ +∞
−∞

∣∣χ{I1≥λ}(x)− χ{I2≥λ} ◦ f (x)
∣∣dλ)2

dx.

Now set:

a = min
(

inf
D

I1, inf
D

I2

)
andb = max

(
sup

D
I1, sup

D
I2

)
.

We can deduce (see [20]) that:

‖I1 − I2 ◦ f ‖2L2

≤ (b− a)
∫ +∞
−∞

∥∥χ{I1≥λ} − χ{I2≥λ} ◦ f
∥∥2

L2 dλ.

Consequently if the level sets can be superposed for
almost eachλ, then functions are almost everywhere
equal.

As characteristic functions vary only at the borders
of connected components, we shall estimate the motion
only at the borders of the connected components of the
grey levelλ sets{I1 ≥ λ} of I1.

5.1. The One-Dimensional Case

In that case we only have to estimate the motion at the
borders of each of the chosen level sets, so the unknown
is a set of reals that are the amplitudes of the borders
motions. Left and right borders of each component are
asked to remain in the same order.

We illustrate our algorithm on a pair of 1D synthetic
signals (Fig. 11).

5.2. The Two Dimensional Case

Here we suggest to proceed to the registration of char-
acteristic functions of the level sets. In this context, we
have the following

Proposition 1. The operator kernel Ker PχA
σ 6= {0}

for some of the open sets A⊂ R2 satisfying the nec-
essary and sufficient condition of the Conformal Rep-
resentation Theorem of Riemann whose conformal ap-
plication does not imply any local nor global rotation
(See[19] for the proofs).

This shows that the choice of the base functions
remains a hard issue in this approach. However, we
have tested our algorithm using translational and nor-
mal base functions.

Numerical results
We first show two synthetic examples of motion estima-
tion and registration of shapes. Each figure shows the
motion of a grey shape which is deformed iteratively to
match the second shape represented by its contour. In
the first example (Fig. 12) we show a Chinese symbol
that is translated towards the final contour. In the sec-
ond example (Fig. 13) we show a disk being translated
and enlarged to match the final contour.
As a conclusion to this section, we suggest using it
only in case the motion is rather uniform or can be
modelled with translational and normal basis functions.
Finally let us emphasize on its lack of robustness in the
presence of noise.

Figure 12. Iterations 1, 7, 13, 19, 25 and 30 of the algorithm for
the registration of a Chinese symbol.

Figure 13. Iterations 1–6 of the algorithm for the registration of a
translated and reduced disk.
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Figure 14. 1D synthetic (left) and 1D real (right) examples: From top to bottom we show signalsI1, I1,∞ (final deformation ofI1), I2, I1,∞ − I2

andĥ∞ (final deformation function).

6. Implicit Approach of Basis Functions

In Section 5 we have shown the limitations of the level
sets approach to alleviate the motion model choice for
the motion model choice for the motion estimation/
registration scheme of Section 4. Here we suggest to
use the optimal step gradient algorithm for the mini-

mization of the quadratic functional associated to MCE
(8). There are at least two good reasons for doing this:

• the choice of base functions is implicit: it depends on
the signals or imagesI1 and I2, and the scale space.
• we can control and stop the quadratic minimization if

the associated operator is no longer positive definite.
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Figure 15. Stereo example: From left to right: Noise free data ex-
periments, and then with data corrupted by a Gaussian additive noise
with variance 10 and 100. From top to bottom we show imagesI1,

I1,∞ that was processed line by line,I2 and ĥ∞ (shown only if
|∂x I1| > 2, 5 and 12 resp.). We see that this disparity image has
lower values (grey level) for points that are at the end of corridor.

The general algorithm does not guaranty that the re-
sulting matrixMp,σp be invertible. Hence we suggest
to systematically use a stopping criteria to control the
quadratic minimization, based on the descent speed or
simply a maximum number of iterationsNG.

In that case our final algorithm writes:

1. Initialization: Enter accuracyε > 0 and the maxi-
mal number of iterationsN. Set p = 0, I1,0 = I1,

and choose first scaleσ0 according to (15).
2. Iterate while (‖I1,p− I2‖ ≥ ε & p ≤ N & σp ≤ 1)

(a) Chooseσp satisfying (16).
(b) Apply NG iterations of the optimal step gradient

algorithm for the minimization of

Ep(h) =
∥∥5σp(I1,p − I2)− P

I1,p
σp (h)

∥∥2
L2.

(c) ComputeI1,p+1 = I1,p ◦ (Id+ t∗.ĥp)
−1 with t∗

defined by (17) and incrementp.

Figure 16. Comparison with ground truth disparity for the stereo
example of Fig. 15: Mean Weighted Quadratic Error (indicated at
top of each graph) distributions as a function of the horizontal spa-
tial gradient ofI1 for the stereo example with noise level 0 (top),
10 (middle) and 100 (bottom). Motion estimation errors are concen-
trated at low horizontal gradients ofI1, and diffuse to broader values
as noise increases.

Figure 17. Registration movie of a rotated rectangle: From left
to right and from top to bottom we show the different steps of the
algorithm performing the registration.

In the following experiments we have fixed param-
eters toα = 2.5%, NG = 5, β = 0.1.

6.1. Running the 1 Dimensional Algorithm

In the following we show results on one-dimensional
synthetic and real signals, and then with all intensity
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Figure 18. Registration movie of a target to a ‘C’ letter. Again, each
image corresponds to a step in the iterative scheme.

Figure 19. Scene registration example: Study image (left),
deformed Study image onto Target image (center), and Target image
(right).

Figure 20. Registration of a face with two different expressions:
Study image (left), deformed Study image onto Target image (center),
and Target image (right).

Figure 21. Registration of a vortex at two different states: Study
image (left), deformed Study image onto Target image (center), and
Target image (right).

lines of a stereo pair of synthetic images with some
progressively added Gaussian noise.

• 1D Signal Matching: We show 1D synthetic and real
examples in Fig. 14. Recall thatξ -rigidity is not a
constraint whend = 1 and thuŝh∞ is relevant only
when|I ′1(x)| 6= 0.

Figure 22. Registered sequence of the original sequence onto first
image using the computed backward motions.

• Stereo Correspondence: Since we use a synthetic
pair of rectified images, epipolar lines are the lines
of the images. Image matching is then solved as a
sequence of 1D line matchings. In this case, ground
truth disparityh∗ is available. We see the results in
Figs. 15 and 16. The Mean Weighted Quadratic Error
(indicated at top of each graph as EQPM) is defined
asMWQE= ‖|∂x I1|1/2|ĥ− h∗|‖2L2/‖∂x I1‖1.

6.2. Running the 2 Dimensional Algorithm

We illustrate the algorithm on pairs of images with large
deformation for registration applications and movies
for motion estimation applications.

• Registration Problems Involving Large Deforma-
tion: In Figs. 17 and 18 we show the different steps
of the algorithm performing the registration between
the first and last images. In Figs. 19 to 21, we show
the study and target images, and the deformed study
image after applying the estimated motion. This was
applied for two examples of faces and a turbulence
image featuring a vortex at two different states.
• Optical Flow Estimation Examples: In Fig. 22 we

show the sequence of the registered images of the
original Cronkite sequence onto first image using
the sequence of computed backward motions. The
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Figure 23. On top, movie obtained by deforming only the first
image of Cronkite movie using the sequence of computed motions.
On the bottom, enhanced (applyingI ′ = 255.(1−√I /255)) abso-
lute difference between original and artificially deformed Cronkite
sequences.

result is expected to be motionless. On top of Fig. 23,
we show the complete movie obtained by deforming
iteratively only the first image of Cronkite movie.
For that we use the sequence of computed motions
between each pair of consecutive images of the orig-
inal movie. In Fig. 23 on the bottom, we see the error
images.

7. Conclusion

We have addressed the theoretical problems of mo-
tion estimation and registration of signals or images
in any dimension. We have used the main features of
previous works on the subject to formalize them in a
framework allowing a rigorous mathematical analysis.
More specifically we wrote a new ridigity hypothe-
sis that we used to infer a unique Motion Constraint
Equation with small remainder at coarse scales. We
then showed that upon hypotheses on the motion norm
and structure/scale tradeoff, an iterative motion esti-
mation/registration scheme could converge towards the
expected solution of the problem e.g. the global min-
imum of the nonlinear least square problem energy.
Since each step of the theoretical scheme needs a set of
motion basis functions which are not known, we have
first implemented a level sets approach, that prove not
tractable nor robust. We then designed an implicit al-
gorithm and illustrated the method in dimension one
and two, including large deformation examples.
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