UC Santa Barbara
NCGIA Technical Reports

Title
Image Registration using Multiquadric Functions, the Finite Element Method, Bivariate
Mapping Polynomials and Thin Plate Spline (96-1)

Permalink

https://escholarship.org/uc/item/8kg6w8f\v

Authors

Fogel, David N.
Tinney, Larry R.

Publication Date
1996-03-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/8kg6w8fv
https://escholarship.org
http://www.cdlib.org/

NCGIA

National Center for
Geographic Information and Analysis

Image Registration using
Multiquadric Functions, the Finite Element
Method, Bivariate Mapping Polynomials and
Thin Plate Spline

by

David N. Fogel
University of California, Santa Barbara

Larry R. Tinney
DOE Remote Sensing Laboratory, Las Vegas

Technical Report 96-1

March 1996
Simonett Center for Spatial Analysis State University of New York University of Maine
University of California 301 Wilkeson Quad, Box 610023 348 Boardman Hall
35 10 Phelps Hall Buffalo NY 14261-0001 Orono ME 04469-5711
Santa Barbara, CA 93106-4060 Office (716) 645-2545 Office  (207) 581-2149
Office (805) 893-8224 Fax (716) 645-5957 Fax (207) 581-2206
Fax (805) 893-8617 ncgia@ubvms.cc.buffalo.edu ncgia@spatial.maine.edu

ncgia@ncgia.ucsh.edu



Title:

Image Registration using Multiquadric Functions, the Finite Element
Method, Bivariate Mapping Polynomials and the Thin Plate Spline

Authors and Affiliations:

David N. Fogel

National Center for Geographic Information and Analysis
University of California, Santa Barbara
fogel@ncgia.ucsb.edu

Larry R. Tinney

Multispectral Remote Sensing and Geographic Information Systems
Bechtel Nevada
tinneylr@nv.doe.gov

Keywords:

image rectification, image registration, surface fitting, scattered data interpolation, triangulation,
interpolation, approximation, bivariate mapping polynomials, multiquadrics, thin plate spline

Short Title:

Image Registration using Multiquadric Functions
Name and Address of Author for Correspondence:

Larry R. Tinney, Manager

Multispectral Remote Sensing and Geographic Information Systems
DOE Remote Sensing Laboratory

P.O. Box 98521, MS RSL-19

Las Vegas, Nevada 89193-8521

tinneylr@nv.doe.gov

Acknowledgments:

The authors wish tehank thefollowing people fortheir generous assistance on technisales
addressed in an earlier version tbis report: Manfred EhlergISPA-University of Osnabrueck-Vechta,
Germany), Albert L. Zobrist (Rand Corporatiddanta Monica, California\yWaldo R. Tobler (University of
California, Santa Barbara), I&arrodale (Barrodale Computing Services, Victoria, B@anada)Robert P.
Comer (TASC, Reading, Massachusetts)d Richard FrankgNaval Postgraduate School, Monterey,
California).

Additionally, the authors wish texpresgheir appreciation to Julius2strowskiandDave Stanley of
PCI, and Brad Skelton and Brian Kloer of ERDAS for their helpful comnamdsuggestions. Of course, the
authors take full responsibility for any errors contained herein.



Abstract

In this report, three methods iofiage-to-image registration using control points are evaluated. We
assumethat ephemeris sensand platform data are unavailable. These techniques ar@dlyaomial
method, the piecewise linear transformation and the multiquadric method. The motivathia fesearch is
the needor more accurate geometric correctiondigital remote sensindata. This isespeciallyimportant
for airborne scanned imagery which is characterized by greater distortions than satellite data.

The polynomialandpiecewisdinear methodsvere developed for useith satellite imagerandhave
remained popular due their relativesimplicity in theoryand implementation. Withespect to airborne data
however, both of these methods have serious shortcomifige. polynomial method, a global model, is
generally applied as a least-squares approximation to the control points. Mathematically it is unconstrained
betweerpoints leading to undesirable excursions in the warp. pldeewisdinear method (or finiteelement
method), a local procedure, produces a facietedular warp when the distortiot&tweerthe control points
are highly nonlinear.

The multiquadric method is a radibhsis function. Two radial basis functions show promise for
image warping: the multiquadrand thinplate spline. The multiqguadric method iglabal technique which
captures local variationand interpolates, passing through the control points. It includes a tension-like
parameter which can hesed to adjust its behavior relative to local distortiofike principal shortcoming of
the multiquadric method ihat it isquite computationally intensive. Both the multiquadric metand thin
plate splines have been evaluated extensively for scattered data interpolation.

In a test application usingadly warpedaircraft imagery, the multiquadric methpdoduced better
results both visuallye.g. crookedlines werestraightened, anduantitatively with lower residuarrors. The
results forthe multiquadric method are encouragif@y improved environmental remote sensing and
geographic informatiorsystemsintegration. The techniqumay be applied to satellitdata aswell as to
airborne scanner data. The multiquadric metihoay be used fowarping poygons and applied to
mosaicking as well. Its present functional form is flexdatelmay be modified quite easily farther adapt to
local distortions, a task not performéar this report. Advances inthe rapid evaluation of radidlasis
functions will make both the multiquadric and thin plate spline techniques even more attractive in the future.



1 Introduction

This reportevaluates multiquadric functions for image registratéord rectification of airborne
scanner data. Two conventional registration techniques used in environmental remote sensing will be
evaluated against the multiquadric method: bivariate mappafgnomialsand thefinite element method
(piecewiselinear). There ardive sections inthis report: (1) this introduction; (2) aaverview of the
geometric correction process; (3) a technical discussidheofhree techniques under investigation; (4) the
results of an experiment with laadly warpedimage; and(5) a final section providing a summary and
recommendations for future research.

The motivation of thisstudy stems from problems specific ttte registration andectification of
airborne scanner acquired digital imagery. Conventional methods udbe fegistration of satellite iagery
are notsufficiently robust to modehe morecomplicated distortions found in airborne scanned imagery. The
Department of Energy'RemoteSensing Laboratory (RSL), operated by EG&G Energy Measurements, is
supporting this evaluation éfardy'smultiquadric functions for imagearping. Thisproject is apart of the
Department of Energy (DOE) program involving thee of remote sensing technology femvironmental
Restoration and Waste Management (ERWM).

The research is eollaborative effort between RSthe Geographic InformatioBystemsand Remote
Sensing Laboratory atthe Institutefor Structural Planning in Areas dhtensive Agriculture (ISPA),
Universtéat Osnabrick-Standort Veclatad theRemoteSensing Research Unit at tbaiversity of California,
Santa BarbaréRSRU; UCSB). Itonstitutes a follow-up to previol®SL and RSRUcooperative research on
geometric correction in conjunction with the National Ceriter Geographic Informatiorand Analysis
(NCGIA) Initiative (Scepan, Esteand Lanter1992). NCGIA 1-12 addressdbe integration ofRemote
Sensing and@eographic Informatio®ystems technologies (see “Special Issntgration ofRemoteSensing
and GIS,"Photogrammetric Engineering and Remote Sensing LVII(6) 1991).

1.1 Background

Conventional techniques fagarth remotely sensed imageegistration consist of surface fitting
models: bivariate mapping polynomial functicensd finite element methods. These techniques amaany
cases adequate for images characterized by small systematic global distortions or local distortions, respectively.
However,these techniques have rmmbved adequate for airborseanner imageryhat may contain rapidly
varying, nonsystematic distortions. At the same time, new, more accurate methods are being demanded by the
earth remote sensing community at large. Information-extraction techniques demand radiometric and
geometric fidelity. Inthis report, we address the latteroblem, although théwo are fundamentally
interrelated.



In the case of EG&G/RSLthe ability to accurately register imagery ispdramount importance for
environmental monitoring of Department of Energy facilities. Misregistragitectively degrades image
information content for multiple-sensand multi-temporal analyses. It is importaihtat new techniques be
operationalized to improve image registratiaccuracy forchange detection, classification problems and
remote sensing/geographic informatisystem (RS/GIS)ntegration. Improvements in distortion modeling
would beakin to increasing theffectiveresolution of an integrated dataset. There will be potential to extract
more information from precision-corrected airborne scanner data.

Image registration ofemotely sensed imagery encompasgese related problems: (1) image
overlay or image-to-imageegistration; (2) image rectification or image-to-map registratéord (3) image
mosaicking. We limiburselves to discussirthe first problem. Image rectificaticand image mosaicking
may be considered as extensions of image registration, albeit with a host of additional complications.

1.1.1 Project Objective

The objective ofthis report is toevaluate the suitability of the multiquadric methfod airborne
scanner image registration. This evaluation includes a technical discussion of the polynomial, piecewise linear
and multiquadrienethods. The characteristics of these methoddem@ibedandapplied to a test case. The
accuracy ofthe techniques is quantitatively established by measuring misregistration using the root mean
squared error criterion. Finally, this report includebreef discussion of implementation issues such as
computational complexity and numerical analysis.

1.1.2 Project Participants

The evaluation of the multiquadric methéat image registration involved cooperation among the
three facilities:RSL, ISPAand RSRU. RSRUcoordinated the research, providing monthly progress reports
andoverseeinghe preparation of this final report. Thalowing personsand organizationparticipated in
this joint research project:

Larry R. Tinney, Manager

Spectral Imaging and Geographic Information Systems
Remote Sensing Laboratory

EG&G Energy Measurements

P.O. Box 1912, MS RSL-19

Las Vegas, Nevada 89125

Dr. John E. Estes, Professor of Geography
Joseph Scepan

David N. Fogel

Remote Sensing Research Unit (RSRU)
Department of Geography

University of California

Santa Barbara, California 93106-4060

Dr. Manfred Ehlers, Professor for GIS and Remote Sensing

Uwe Flottemesch

David R. Steiner

Institute for Structural Research and Planning in Areas of Intensive Agriculture (ISPA)
University of Osnabrueck-Vechta

P.O. Box 1553, D-49364 Vechta, Germany

1.1.3 Project Overview

A series of general tasks for egghrticipantwas outlined to completthis project. The principal
contributions are listed below:



« ISPA implementedthe multiquadric methodfor image registration inthe C
programming language (ANSI GInd provided additional technicahaterial to aid
EG&G/RSL and RSRU in the writing of this report.

e EG&G/RSL provided a set of imagery foesting thatconsisted of badly distorted
airborne scanned imagery and a set of reference aerial photographs.

* RSRUcompiled detailed technical information tre techniquesind conducted a test
using the test imagery from EG&G/RSL.

1.2 Report Outline

There are three principal componentshis report in addition to the summaapdconclusions. The
original work statement called for ghort, summarizing technical documeriowever,during thecourse of
the literaturereview forthis project, it becamapparent thamany aspects dhe image registratioproblem
are notwell understood. Therefore, we have chosen to elaboratigegmoblemsand potential for modeling
geometric correction as a step to sdhnologytransfer of thisbasic research tthe earth remte sensing
community.

In the section,/mage Registration and Image Rectification, we describethe nature of image
distortions, discuss geometric correction techniques in gesredagéview numerougmportantconcepts. This
is a necessary prelude to subsequent technical discussions in the section.

The next sectionSurface Fitting Models, includes a brief technical description thfe two most
commonly used geometric correction methods as well as an introductioa ¢tass of functions to which the
multiquadric method belongs. this section, numerous observatiomse made withrespect tahe features
characterizing each of the methods. We nbtd there issubstantial room for improvementer current
practice.

The performance of these techniquéisat is how well each method corrected fgeomdric
distortions, is described ithe sectionlLas Vegas Experiment. The experiment, though limited to a single
image set, provides us with an opportunity to empirically describe (using images,asathlgsaphics), that
which hasbeen reviewed only in conceptwald technical terms. Weave chosen as a mattercoihvenience
to include the imageand the graphics imumerous separate appendices. Extensive references to the
appendices are made throughout this section.

Finally, there is a short discussion v implications of this research. THescussiorfocuses not
only on the multiquadric method, but on image registration practices in gen&atommendations for
improved geometric correction are also provided.



2 Image Registration and Image Rectification

In this section we provide an overview of those concepts mgsbrtant to understanding the image
registration problem. Wieelthe presentation isecessary givethe limited amount of recent attention to the
registration problem bthe Earth remate sensing community. In fact, advances in the area of digital image
manipulation are found mainly in the area of computer science and computer graphics.

2.1 Warping and Resampling

Modeling the deformatiobetween imagesiust address both locational attributes of a péxel the
corresponding numerical values. Deriving a mathematical expression for an image-to-image transformation is
the first step in image warping. Thecond step involvabe computation ofiew pixel values fothe output
image geometryThis is aproblem of pixel value interpolatioommonly termed imageesampling. The
most common resampling functions are nearest neighbor, bilinear and bicubic interpolation.

There ardrade-offs with each of these approaches. For exampleadmmonly knownthat bicubic
interpolation or cubic convolution may underestimate or overestimiue pixel values distorting the
radiometric characteristics of the imagery. Timgy confound subsequent analyses. Imegapplication
idiosyncrasies determine which interpolation method is bE®t. nearest neighbor approach is generaibd
when radiometric fidelity is at premium. However, lilinear interpolation and@ubic convolution yield more
visually pleasing resultand inmany cases cubic convolution is an acceptadthinique. There is fiee
parameter ircubic convolutiorthat isoften set to -1.0 or -0.that israrely discussed in remote sensing, but
profoundly affectsthe results. At the same time, it is rarely made clear whether interpoialiees are
rounded or truncated by scientists or in application software documentation.

More sophisticatedand computationally intensive interpolations functiomse known. The
interpolation literature is vasindwill not be detailed here. Wecus onthe mathematical modeling of the
pixel locations. It is sufficient to point othatmore complexesampling functions haueeen developed and
that this is anactive researclarea. Introductory discussions may be found Bernstein (1983), Mather
(1987), Moik (1980), Simon (1975) and Swartzlangderl. (1988).

2.2 Distortions

Geometric distortions, or error, in remotely sensed satellite imaggerybe categorized as either
internal (sensor-related) or external (platform perturbatiand scene characteristics)internal distetions
include, butare not limited to centeringcaleand skew effects. External distortions include attituasfects,
altitude deviationsearth curvaturand theviewing geometry. Landsand SPOT imagenare characterized



by low-frequency (smoothly varyingjistortions. As such the imagergay be correctedising relatively

simple mathematical models. Airborne scanner imagery exhibits additional geometric distortion due to
aircraft vibration, flightline driftand changes invelocity as well agnuch greater topographeffects. The
internal and externageometric errofound in imagery acquired by airborne scanners must be modeled by
more sophisticated methods.

More information on geometric distortianay be found in Moik X980), Bryant (1982), Bernstein
(1983) and Billingsley (1983). Image geometry properties related to remotely sensed imagery as well as
digital images in general may be found in Wolberg (1990).

2.3 Spatial Transformations

There are three principabncepts specific to imagearping which merit discussidior the remote
sensing specialist. These involve how well-identifi@dts of matched points are registered (interpolation and
approximation), the direction of the mapping function (forward or inverse mapairdjthe nature of the
mathematical modeling techniques (local or global).

We review these ideas to establisle backgroundor this report and talarify terminology. In
general, a distortion model is sensord scene dependentThe conceptsbelow describe technicaksues
surrounding the development of distortion models and provide some explanations for conventional practice.

2.3.1 Interpolation and Approximation

In the context of image registratidor remote sensinghe polynomialsandfinite element methods
approximateand interpolaterespectively. We uséhe termapproximation to denotethat the mapping
function approximately modefhe fit of the control points.Polynomials onlyinterpolate if thesystem of
equations is strictly determined. If howevéne number of control points is suchat we have an
overdetermined system afquations, thepolynomials approximatehe locations of the control points.
Common practice is to select many control points using a least-squares fit to charactegeentbgic
distortions, thus specifying an approximating model.

The finite element method is an interpolating procedhed means that thgeometric distortion
model passethrough the control points. It is clelmatinterpolation is a desirable feature, especially fata
with high spatial resolution where distinctive features can be readily identified.

2.3.2 Forward and Inverse Mapping

Geometric transformations of images involve developing a correspontdetweenthe input and
output images. Thigeometric relationshipnay be expressed lither a forward mapping or an inverse
mapping. In remote sensing applications, the general practicdaesetop an inversmapping. The reasons
for this will become clear after we describe forward mapping and its inherent shortcomings.

In a forward mapping, the output coordinaéesfound as a function dhe input coordinates. There
are two fundamental shortcomings to using this technique. First, it is possible to map many points of the input
image on to a single point in the output image. Theag be viewed as overlaps. Second, it is possible to
have areas of undefined pixels, or holes, in the output image where nowsxelsapped frorthe input on
to the output image. These are not insurmountab#tacles. Howeveadditional operational problems are
introduced in the resamplingocessncreasing theomplexity ofthe registration problemThis is basically
an implementation issue, though there are theoretical considerations as well.

Inverse mappingvoidsthe problems of holegand overlaps by mappintghe output image onto the
input image. This initially appears to be counter-intuititéowever,the mapping of each output coordinate
onto aninput coordinate ensures a continuous output indgeid of holesand overlaps. Still, inverse
mappingsmay loseinformation similar to theroblem of holes occasionally found in forwaréppings. The
inverse mapping of pixalalues is confounded the distortionmodel doesiot adequately fit, ocompletely
sample the input image. In other words, the geometric model in combination with the resampling method may



not referenceevery single pixel in the input image. Therefore the output image potentiallyless
information as a result of model mis-specification and resampling errors.

2.3.3 Global and Local Methods

A global transformation simply mearthat all the control points areused to derive a single
mathematical model dhe geometric distortiond_ocal methods use subsetstbé data and asuch derive
many distortion models. The distinctiomay beblurred. For example, if werere to use distance-weighted
polynomials, a global procedurthe local distortions will be incorporated4ome degree ithe mathematical
model. A different case arises withe local weighted mean procedur€his is alocal model, but we must
still quantify theconcept of proximity to operationalizkee technique. Finally, it must be recognitealt the
local fitting procedures require a tessellationtlvé control points which ireffect influences themodel
parameters.

2.4 Sensor Modeling

Modeling geometric distortions using ephemeris sensor data is a traditional approach in
photogrammetry. Analytical or parametric modelay also be applied to satellitata withouttoo much
difficulty. More difficult, butstill possible, is to collect airborne sensor-specific informatising advanced
position and attitude measuringystems, such as differential GPS (Global Positioning Systard) INS
(Inertial Navigation System) technology.

Although significant advanceme being made in this area, these techniques amddotssed in this
report. Full implementations of these ephemeris methods are curexpiiysivethoughthey hold great
promise for automatic correction of systematic geometric distortions. Indeed, the further integratimesato
models of ground control information in the form of digital elevation models is an important research area.

The registration methods aistues discussdtere will remainapplicable for fine tning ephemeris-
correcteddata. These methods wélso beeffective atregistering historical data amew imagery acquired
without the benefit of ephemeris data.

2.5 Surface Fitting

Thedevelopment of a geometric distortion model using control paiaig be considered an exercise
in surface fitting. Thesare numerical, ratheghanparametric, approaches. The polynomial, finite element,
and multiquadricmethod are allsurface fitting models. It igpossible to derive hybrid modeissing a
combination of analytic and numerical approaches. Such hybrid approaches, haneeteyond thecope of
this investigation. The following section addresses surface fitting models in more detail.



3 Surface Fitting Techniques

This section describethree surface fitting methods: bivariateapping polynomials, finite element
methodsand radiabasis function methodsThe firsttwo topicscorrespond to those methods most frequently
used in remote sensingle. power series polynomialnd thepiecewiselinear finite element method. The
multiquadric method belongs the family of radial basis functions. A seconddial basis functionthe thin
plate spline, is also discussed.

3.1 Bivariate Mapping Polynomials

The mostwidely usedapproach for correctinthe geometry of remotely sensed imagery is based on
proceduresthat make use of polynomial power series. Polynomial methods majntbepolating or
approximating functions depending on the number of control points. An interpolation condition exists when
the number of control points is equal to the number of unknown terms ppoljr@omial expression. The
syst+em of equations &aid to bully determined. In the interpolation case, the control p@rgsmapped
exactly fromthe outputspace tdahe inputspace. For example, identified road intersections will be mapped to
road intersections and not to nearby locations; there is no residual distortion at each control point.

When the number of control points is greatean thenumber of unknown terms, the transformation
coefficientsare approximated. The control points will not Ibeated inthe same place by the distortion
model. For example, a road intersection identified on an image notmap precisely tothe same road
intersection on the target baseimage. In the approximating case, residual distotipically exists at each
control point. Insome casesthe residual distortiormay be negligible while in extreme cases the
misregistration can be quite significant.

Polynomials higher than thefirst degreemay result in unwanted or undesirable stretching or
squeezingand perform badly atextrapolation. This isnost obvious for polynomials ofhird degree and
higher. For this reasorpolynomial methodsrebest applied whethe image distortions are slight. &goid
extrapolation problems withigh order polynomials, it idest ifthe control points @ampletely surround, or
envelopthe region of interest. Excefur relatively small areas, the higliequency distortions in airborne
scanner imagery are often too complicated to model adequately using polynomial power series.

The specification of a distortion model using polynomials is straightforward. Bivgpi@igomial
transformations in remote sensiaigg usually specified irthe following form (e.g., Moik 1980andWolberg
1990), wherer=f(u,v), y=g(u,v) andN is the polynomial degree:
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For N=3, the polynomial relationship may be expressed by:
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This polynomial expression requirdee number of control points to be greatiean orequal to
((N+1)2(N+2))/2. For first (linear)second (quadrati@nd third(cubic) order polynomials dhis form, the
minimum number of control points would be 3aBd 10 respectively. The total number of unknown terms is
twice this number since we musblve for bothx andy. That is, we mussolve two surfacditting problems
each containing {+1)2(N+2))/2 unknowns. These polynomial forms will be addressgin withrespect to
their application within the multiquadric algorithm for image registration.

A bi-polynomial formulation found in Kratky (197@&ndHall (1979), wherec=f(u,v), y=g(u,v), each
containingh? terms, or coefficients, is given by:
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The bi-polynomial form is implemented ithe data visualization packagdeL (Interactive Data Language;
1993). The inclusion of the additional higher order termseames thability of the polynomial expression to
model complex patterns. However, this formulation provides solutii@isliffer depending oithe location of
the origin. An infinite number ddurfaces is possible, each one generated by shiftengrigin in to any new



arbirtrary location. This characteristic, generating an arbisarface, may beegarded as undesirable and
extends to parameter subset selection procedures such as backward stepwise regression too.

The best polynomial expression usediinage warping depends upon tbeene geometry. In fact,
additional formsare possible by excluding coefficients ieither thepolynomial or bi-polynomial form.
However this is notcommon practice in remote sensing. An exceptiothénliterature id_eckie (1980) who
doesnot restrict thegpolynomial equations as shown abovihe caveat tadetermining which functiongbrm
to use is with respect to invariance properties. The conventional polynomial approach is affine invariant under
interpolating conditions and invariant with respect to rigid motions for approximafibis. is not trudor the
bi-polynomial formulation othe treatment thatvas used by Leckie. In these cadés, orientation of the
reference coordinate system produces a unique model under most circumstances.

It is interesting to notéhat thecommercial image processing software packages by ERDAS and PCI
implement the models with some operational emphasis on identifying “bad” control pbivigsis useful, but
it ignores the fact in airborne scanner imagerge@mingly bad control poimbay in fact be indicative dfigh
local variation which will confoundhe registratiorprocess. Deletinthe bad pointmay improvethe fit for
some areas, but there will be high local distortion in the region where the point was deleted. Greater flexibility
in polynomial specification must be regarded aseaessityand not merely a desirable featureLocal
polynomial methods may improve upon the results, though it is nottblgiathe inherenghortcomings of the
method warrant the additional computational cost that would be incurred (Goshtasby 1988a).

It should also be apparethiat thesurface fitting problem is in fadivo problems. There is no
justification for notusing thebest polynomial for modeling each thie x andy distortions, even if a different
polynomial expression is used forandy. This isespecially applicable tairborne scanners which are roll-
stabilized. For example, atgh altitude orover flatterrain the across-flight-pattistortions may be ledtan
the along-flight-path distortions. In other circumstances the topograffaats mayquite large suclihat the
across-flight distortions are greater in magnitude than the along-flight-path distortions.

3.2 Finite Element Methods

In remote sensing, thgnite element method hascome to be synonymousith piecewiselinear
interpolationover triangles. Image warping via ttleecomposition of an image into a series of pieces, or
surface patches, gives rise to a number of issues specific to local interpoldtieqprocedure is referred to as
a piecewise interpolation; it is a local approach to geometric correctionpiddesare termed finiteelements
from engineering nomenclature.

Theuse of finite elements for image warpings first implemented foguadrilaterals using bilinear
functions in VICAR/IBIS (Video Image Communicatiamd Retrieval/lmage Based Information System; see
Appendix) at JPL (Jet Propulsion Laboratory) in 1976 (Zoldr@84). A description of thase of control
grids, hence control points, in VICAR for the construction of these finite elements may be found in Castleman
(1979). Between1976 and 1979, theise of finite elements was expanded to incltrédangulations of the
control points; control points adten referred to as tiepoingdtie points in VICAR. In 1979%he use of
triangular finiteelements with bilinear functionsvas being used to mosdiandsat imagery by EROBata
Center (Zobrist, Bryant and McLeod 1983).

The polynomial functions forthe piecewise Hinear registration of sub-intervals (subareas) are
presentedelow. Inthe first case, wehow how a liinear transformation is applied as an inverse mapping.
The rectangles in thieaseimage are mapped to the (distorted) input quadrilateralstiattan inpuimage
point per quadrilateral is found using the following expression:

X=a,tautay tauv (3-9)
and

y =by +bu +b,y +buy (3-10)



The piecewise solutions tehe bilinear transformations are generafeam the vertices of the
rectangles in the output space. These rectangular patches interpolate vattitess of a region and
approximate the unknown locations within the regower which theyare defined. Irmmatrix notation, we
solve the following system of equations for each surface patch:

Cko  yoO [Qtove uo vo 10ds b0
E{H Y1 B: %’tlvl Uy vq 1%2 bzg
gcz hg %2"2 U Vo 1%1 blg
¥z YsO [Havs Uz vz 1da@e boQ

Bilinear transformation®ffer ease ofimplementation, but the transformatioase notover the smallest
definable surface patches. The quadrilaterals may be decomposed into triangles simply by conpeictoig a
opposite vertices. The smaller patchesimprove the model fit in the presence of rapidly varyingcal
distortions. It is only necessary to drop the cross-produrtd define a mathematical function over triangles.
These functions interpolate through tertices as irthe rectangulacase where eadnput image point is
found as follows:

(3-11)

x=a,tautayy (3-12)
and
y=b, +bu +by (3-13)

In matrix notation, asolution forthe following system of equations generated for each finite element by
solving this system:

ko yoO iy ve 10&, b0
[ 0_0d 1] [
1 Vit M ]Dﬁll b, 0 (3-14)
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The tessellation of an image irpgeces requires @iangulation of the control point set. An arbitrary
triangulation would suffice, but a more appealing approach is to form triangles based on proximitypultVe
like to modeleffectivelyeach subregion of an image. A robust method will generate triangles avbiaiell-
shaped, oclose toequiangular. This requirement requiresarby points to definthe tessellation sudiat
we are more likely to capture and model geometric distortions when using surface patches.

VICAR usesthe classicGreedy triangulation of the point set. From Manachand Zobrist (1979)
and Zobristr al. (1991) we describe the procesggeherating d&reedytriangulationfor a given point set: (1)
considering thex(n-1)/2 undirected edges; (R)sert the shortestdges firstand(3) continue until the entire
point set is triangulated. Edges are not inserted if they would intersect previously placed lines.

Triangulations in thdBIS successor CAGI§Cartographic Analysi@nd Geographic Information
System;Rand Corporationy)nay be generatedsing thegreedy method othe max-min angle criterion
(maximize the minimum anglor eachtriangle over all triangulations) or theircle criterion (no point is
within the circumcircle of any triangle). The latter critear@ equivalenandyield the well-known Delaunay
triangulation (see Aurenhammer 1985). The Delaunay triangulation has the progemybythe insertion or
deletion of a point haenly a local effect. That is, a change in the triangulatidnesnot cause aippling
effect throughout the imagéGold 1994). Muchhasbeen written abouthe Delaunay triangulatioand its
graph-theoretic dual, the Voronoi diagram (see Okabe, Boots, and Sugihara 1992).

There are other criteri@r generating spatial tessellations. For examplegph@al triangulation is
defined in the computationalgeometry literature as theminimum length triangulation. The optimal
triangulation minimizes the sum of thexlgelengthsover all triangulations. This islso known as the



minimum-weight triangulation (Preparata and Shamos, p. 227 1985; from Snoeyink 1994). The computational
complexity offinding the minimum-weight triangulation remains an open research quéStioryink 1994).
Neither theGreedynor theDelaunay criterion approximate the optimal triangulation (ManaahdiZobrist

1979), but on the average the Delaunay criteyieldstriangles which arelose tooptimal in minimumedge

length (Lingas 1986; in Aurenhammer 1985). There ibasitriangulation criterion or criterifor modeling

image distortions. The best triangulation is dependent upon the nature of the image distortioresrintéig
sensed imagery+-e. it is surface or data-dependent.

EROSData Center't AMS (Large Area MosaicSystem; sed@hormodsgardndLillesand 1987) and
Rand Corporation's Cartographic Analyaisd Geographic Informatio®ystem (CAGIS; Zobrisét al. 1991)
currently have both th&reedyandDelaunay criteria as optiotigr registration, rectificatiomnd mosaicking.
VICAR software is availableghrough theNASA software depository COSMIC, located the University of
Georgia (See Appendix). VICAR can be easily modified to include different triangulation criteria.

Data-dependent triangulations which are optimal witlspect to somecriteria are a recent
development. These triangulatiomsyresult in long skinny triangles which are traditionaioided for two
principal reasons: (1) Numerically, long skinny triangles are mddfieult to handle; and2) Conceptually,
long skinny trianglecover geater distances whiamay precludesffectively nodeling of local distortions.

Clearly the advantage of data dependent triangulatiaiaighelocal distortions may indeed be sutiat the
Delaunay, or close-to-equiangular triangled other data-independent triangulations #&ss than
satisfactory for the task. Two recent papers by Dyn and Rippa (1993) and Rippa (1992) are starting points into
this literature. See als&chumaker (1993), where simulauhealing ishown to be useful faearching for
different triangulation criteria as well as data-dependent triangulations.

Piecewiselinear image registration haseen periodically reintroduced ithe literature. The
technique is described by Goshtasby (198&) Devereux, FullerCarter andParsell (1990). In each case, the
piecewise case is developed as aternative to thepolynomial methods described previously. See also
Saalfeld (1985), Spiesand Brandenberger (1986)and White and Griffin (1985) for a cartographic
perspective.

It is possible to derivénigher degreetriangular or rectangulaglements (see LawsadlB77). For
example, Goshtasby (1987) describies application otubic functions tdhe registration problemParr and
Comer (1990) implemented Akima's quintic method (Akima 1978a, 1978b) in TASCs in-house image
processing system DIMS {@tal Image Managemer8ystem,The AppliedSciences Corporation). Akima's
method is also implemented in tHeL software package (Interactii@ata Language; 1993). \as noted
previously that IDL is principally a visualization package. IDL was unable to handle the large datasets such as
those used in this research.

In general usage, Akima's method refers to the amictealgorithnpublished inACM Transactions
on Mathematical Software (Association of Computing Machinery; 1978). Akima (1984) introduced a
variation of this scheme, specifically changinthe computational methodor estimating first partial
derivatives. Akima's revision was packaged in IMSL as subrol@H&SCYV (International Mathematical and
Statistical Library, Edition 8, 1980). Akima (1984) suggests modificatiotsetdACM and IMSL routines,
the former generally providing better results while the latter is computationally faster.

3.3 Radial Basis Functions Methods

Hardy's multiquadric method (1971) belongs tofamily of radial basis functions. Wéimit our
discussion to théwo methods which have appeared in the literaforeimage warpingthin plate splines
(TPS)and the multiquadrigMQ) method. Théocus inthis section is orthe interpolating characteristics of
these functions in their fundamental forms. These methodgairal in these sendkat allcontrol points are
used to construct the basis functions for the surface fitting models.

It is almost certaithat thedelayedintroduction of radiabasis functions to image registration is due
to the increased computational requiremarigsa-visthe traditionalpolynomialandfinite element methods.
There arealso somepractical issuesurrounding the solution procedure whigte related to the number of
observations. As an asidadial basis functions have been appliedame datasets where “blending” was



requiredbecause ofhe large number afbservations. Specificallghe number obbservations exceeded the
capability ofthe solutionprocedures for a given number of points sticht more than one surface fitting

model is used to develdpe surface. Special technique® required to merge the multipderfaces. This
suggestghat image registration with radiddasis functions may be usefully extended to mosaicking or to
independently model badly distorted pieces tdrgerscene. Shirand Williams (1984) implement adaptive
surface fitting using the MQ method as do Mitasova and Mitas (1993) in segmented processing of terrain data.

Hardy'smultiquadric exhibits tension-likeffects, or surfacemoothing as it is sometimes called with
respect tahe specification othe multiquadric parameter. Determination of bestmultiquadric parameter
hasbeenthe subject of considerablesearch (Franke 1979, 1982a; Tarwater 1985; Cadadr-oley 1991,
and Carlson an#oley1992). In a similarbut theoretically differeninanner, the thimplate splinemay also
be defined in such way thatlocal distortionscan, tosomeextent, be controlled for ithe distortionmodel.
Franke (1985) describes the concept of tensioning for thin plate splines.

For more information on these methods, we direct the readdaray's review ofmultiquadric-
biharmonic theoryand applicationsand the Secial Issue onradial basis functions inComputers &
Mathematics with Applications (Volume 24, Number 12, 1992). Theoretical discussions whieh relevant
include Duchon (1976), Meinguet (1979), Micchelli (19&86)d Powell (1987). Also, Bookstein (1989)
provides a quantitativdiology perspective tere theproblem is one of comparing biological forms as
deformations. Tobler (1994) analyzes cartographic distortions in a similar fashion.

3.3.1 Thin Plate Splines

The first application ofhin plate splines for surface fittirgndimage warpingliscoverediuring our
literature searclwas by Goshtasby (19880993). Goshtasby appliethe surface splines of Harder and
Desmarais (1972) to the warping problem. Thesdace splines werkater calledthin plate splines by
Duchon (1976) reflecting the nature of tharface fitting problem.The thinplate spline problenmay be
envisioned as one wheretlsin flexible plate is being deflected lppint loads. The TPS solution minimizes
the amount of bending energy applied to the surface. A full treatment of the develapmahtrgory of TPS is
well beyond the scope of this report. We refer the reader to Franke and Nielson (1991) as a point of entry into
the thin plate spline literature.

Recently, Flusser (1992) addresskeih plate splines in an exposition on adaptive image registration
techniques. Flusser's paper referenced eaviiegk onthe TPS byGoshtasby (1988b). Goshtasby (1988b)
presented the surface spline formulation of Haraled Desmarais a®pposed tothe TPS formulation
commonly found inthe literature. Equivalensurfaces result despitthe differences inthe problem
formulation. Barrodale, Kurahawa, Pockartd Skea (1993) implemente thhin plate spline for sonar-
scanned data. Barrodale, SkBarkley, Kuwahara and?oeckert (1993) commented on Flusser's wisikg
the TPS formulation. Barrodate al. notethatrecent algorithmic developments Bpwell (1992) reduce the
computational complexity of imagegistration by TPS making its application méeasible. Barrodaler al.
have implemented Powell's proceduealizing improvements of arountdio orders of magnitude depending
on the number of control points.

We present Hardexnd Desmarais' surface splimad theTPS formulationdelow. Our purpose is to
illustrate that thesame surface results from either formulation, althocgttain coefficients inthe solution
may be differentOur notation emphasizes the application of TPS to image warping.surfexze spline as
described by Goshtasby (1988b) and Flusser (1992) is shown belesfiatv) andy=G(u,v):

N
F(u,v)=ay +au+ay +> firfIng? (3-15)
i=1

and



N

G(u,v) =by +bju +by + Z gr?Inr? (3-16)

The latter terms, e. the summations, are written out below for clarity:

Zﬁ r?Inr? :if%/x X y y Ezln x x y y EZ (3-17)
+(y-») EZ

and
N N > 2
Z gr’Inr? = Z 8 %\/(x —xi) +(y —yi) Ezln%/(x—xi (3-18)
i=1 i-1
The following “equilibrium constraints” are imposed:
N N N
Zfi:Zfiui:Zfivi =0 (3-19)
= 1= 1=
and

N N N
Zgi :Z giu; = Zgivi =0 (3-20)

where,N = the number of control points amtis defined as:

= [rl- (u,v)z] = (u —ui)2 +(v —vi)2 (3-21)

This issimply the distance squared from control paitid all other control points. ThEPS formulation of
Barrodaleer al. is given below:

N
F(u,v)=ag+au+ay +Zfiri2|nri2 (3-22)
=
and
N
G(u,v) =by thu tbyy + Z girl.2 In rl.2 (3-23)
=

The difference inthe basis functions is with respect tbe inclusion of a constant in tterface spline
formulation which is not necessary for the solution of the problem. Note the following equivalence:

r2Inr?2=2&%Inr (3-24)

Clearly, the former expression is computationally less intensivegne less square root operation. It will be
helpful at this time to construct tisgstem of equationshich must besolved forthe image warpingroblem
for N control pointsN=1, 2, ...u:
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Whererl-j = rl-(uj’vj), or the distance from control point; (;) to control points L(j’Vj) for all i andj (i, j=1, 2,
ey ).

Characteristics andolution procedures for these equati@me discussed in Barrodaler al. The
inclusion of a first order polynomial ithis system is of indamental interest. These terms, the equilibrium
conditions, result in a surface whiclgrows almostinearly when famawayfrom the pointsx; y;)” (Barrodale

et al.). The TPS implicitlyj.e. by definition, includes polynomial precision of degree one.

During a review of scattered data contouring, Sabin (1980) rejpattshe kernel in thbasis may be
replaced with~’ which yields a function behaving in similar manner angbotentially more useful when
extrapolation is an issue. This shall be investigated in the near future.

It is unclear in the implementation by Barrodade:l. whether theyare modeling the distortidmased
on a preliminary fit using a polynomial expression or the control points alone. For both thand &
method, it is feasible to mod#te residualdased on a preliminary polynomial fifThat is, a preliminary
approximation, or interpolation orienting the images and removing some distortion may improve the quality of
the final warp. Barrodaler al. may assumehat for their application, the registration sfdescan sonar
imagery,that theimages are oriented in the same direction with nominal distortions, hence thereeisdno
for polynomial preprocessing. We note that preprocessing creates a new set of surface fitting problems (one for
x and one fop).

We conjecturdahat in theaffine (first order) casahe thinplate spline should produdbe same or
similar solution. Thehin plate spline is a minimum curvature techniguel anaffine transformation will
changes the relative locations of the control points, though not introducing additional “curvature” as with
higher orderpolynomials. Clearly, thdestpreliminary fit will be one where thaput control points are
distributed in a pattern similar, if not identical, to the output control points. Further commehts subject
are found in the next section.

Preliminary fitting functions do not jeopardize the radiomefidelity of the remotely sensedata.
On the contrary, by improving the geometric distortion modelretsin dataquality for applications such as
change detectioandmulti-temporal classification. Multi-stage geometric procesdimgsnot imply multiple
resampling. Only a single resampling is required to perform digital warping.

3.3.2 Hardy's Multiquadric Functions

The development of the surface spline and multiquadric functions occurred at approximately the same
time. Hardy'smultiquadricwas first published in971, while Hardeand Desmarais' surface spline was
published as an “Engineerirgote” in 1972. Itwas later discoveredthat thetwo methods have much in
common. Hardy'snultiquadric takeswo general forms: the multiquadric method (M&)d thereciprocal
multiqguadric method (RMQ). Our discussion willfocus onthe MQ method. Forcompleteness, the
formulations for both methods are given below. However little further mention will be given to the RMQ.

The literature on the multiquadric method is vast. We are fortutheteHardy published a
retrospective in 1990. Imhis multiquadricreview, Hardy refers tdhis technique as the multiquadric-
biharmonic method. He also listsver 100 references tthe MQ many of which are relevant temote



sensing. We are selective in atoverage othis literature, anémphasize the practicalsues mostlosely
related to thescope otthis project. We notehat thesolution to the multiquadrisystem of equations is not
always biharmonic and will continue to use the expression “multiquadric method” (Franke 1994).

The potentialfor image or cartographic warpingsing the MQ is alluded to bylardy in
Photogrammetric Engineering and Remote Sensing in 1977. No precise detailgere given orthe application.
The multiquadric image warping implementation detailed hedessribed by Gopfert (1982Ehlers (1987)
recognized the potential ofGopfert's multiguadric formulation for image warpiragd supervised its
implementation by Flottemesch (1993Jhis effort was supported gsart of this research anmdsulted in the
development of research software.

In thesense of polynomial precision, e term isused inthe scattered data interpolation literature
(e.g., Franke andNielson 1991), the original MQ includes molynomial precision. However, it may be
appropriate, operationally, to include polynomial precisiorthi@ mannerdescribed forthin plate splines.
Franke (1987and Franke antlielson (1991) describe subsequent developments by Micchelli (1986) where it
is notedthat there is alfays a solution taghe MQ basis. However,with respect to Hilbert Space Theory, a
constant term should be included to derive a solution for the MQ method. This is in contrast to WS
a constant, am-term and g-term are specified.

Based orthe definitions above, we developur distortion model foxk=F(u,v) andy=G(u,v) based on
the MQ kernel:

F(”’V): Zfi\/(x —xi)z +(y —y,-)2 +R? (3-26)

and

N

G(”’V): Zgi\/(x _xi)z +(y _yi)2 +R? (3-27)

The RMQ functions are similar:

F(u,v): if’ ]//\/(x—xi)2 +(y —yi)2 +R? (3-28)

and

G(u,v): :Zlgi ]/\/(x —xi)z +(y —yi)2 +R? (3-29)

The remainder of thisection refers tthe MQ formulation. We maksome observationggarding the RMQ
in the following section where we review sonexperimental results. Thisautious approach reflects the
relatively poor performance dahe RMQ for geometric correctiorwhich is unlike its performance in
conventional applications given,z) data.

The MQ basis functions are often more concisely expressed as:

N

Fu,v)= Zf,- (%2)+R2 (3-30)

and



G(u,v) = i gy () + R (3-31)

The similaritybetweerthis expressiorand thelower right partition of theTPS matrix should not go
unnoticed. The solution to this problem is generated from the following system of equations:

0 1 1 1 Oa, b,0 00 00O
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Thebest value fothe parameteR? is determined by both the relative distances of the control points
as well aghe magnitude of thex(y) distortions. In Gopfert'algorithm, wemodelthe residuals generated

from a preliminary polynomial function. As noted time section onthin plate splines, it also generates an
(x,y) surface where the control points are distributed much like initheplane.

Gopfert's algorithm is composed of four principal steps:

[1] Model the global geometric distortion dhe (,y) = f{y,v) using a bivariate mapping
polynomial expressionThis is an inverse transformation intendedemovethe global
trend in the data.

[x,y]” :[Px(%"’x)’Py(” AY ,y)]

[2] Find the residual distortion (actual - predicted) from [1].

(v3)=leo] =[xl 153 ]

[3] Model the residual distortion (not to m®nfusedwith error) from [2] using the MQ
method. That is, model the distortion asy() = f(u,v).

[x,y] = [MQx (u,v,x’),MQy(u,v ,y’)]

[4] Add the predictedralues from [1]and the MQvalues from [3] to generate,{) as a
function of ¢,v).

(o) =[] o] " {2 ™

In Step #1 wereconfronted with the dilemma of what constitutes lhlest polynomial fothe distortions per
the dataset. In Step #2 we muohbose amppropriate value foR>. MQE (Multiquadrische Entzerrung),
ISPAs multiguadric methodsoftware implementation, allows for experimentation with different order
polynomialsand different values folR?>. Therespective equations fok,¢) are presentetielow. The values
from Step #1 are shown &6x) andP(y) whereP is a polynomial of an arbitrary order:



x= P(x)+if“/(riz)+R2 (3-33)

and

N
y=P(y)+ Z g, (rl?) +R?2 (3-34)

In general, the determination of the optinvallue for R? depends upon the nature of theene
distortionsand the number andistribution of control points. In other words, it is problem-dependent. The
value ofR? determines whether the interpolatisgrfaces will be degenerate coni&3 = 0) or hyperboloids
(Hardy 1990). In thease of £,y,z) data, there are numerous published metladgenerating an appropriate
value forR2. These do not appear to be directly applicable to image war@ingexperiencehowsthat data
spacing may be more important or rather the spacing and adequate sampling of the distortions.

3.3.2.1 R?and (X,Y,Z) Data

Despite the facthat previous work orfinding optimal values using heuristifar R? doesnot directly
apply to the warping problem, it is appropriate to review previous work. pftngdes us with atarting point
for further investigations. Weiscuss research on findinggaod value foR? in somedetail since theuality
of the interpolating functions depends thiis value. Hardy (1977) recommendtte following equation for
R?:

R? = 0.665[d %or R =0815d |, (3-35)

whered is the “grid spacing of the nodes.” Clearly, when the data are irregsjaalyedhis must be re-
interpreted. Franke (1979) notdmatd is approximately the mean distance to its nearest neighbor. Franke
(1979) introduced an alternative to this equation:

o2 - ONPPR G]:DDDf OVPPR _r [0

2 _
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whereNPPR is a weighting parameteb, is the diameter of the bounding point set{@ the radius) and is
the number of data points. (The meaning ofahbreviation foithe NPPR weighting parameter (Number of
Points per Region) is irrelevafdr the MQ method. It isimply a variablenameused in Franke's (1979)
surface fitting simulations by Franke (1994yPPR was set to 25 blfrankewho notedthat highervalues on
occasion produced promising result¥his formula appearmost often inthe scattered data interpolation
literature ¢.g. Carlson and Foley 1991 and Wolberg 1990) as:

R? = %25[—!%5 or R =12502 (3-37)
n

T

wherer “is the radius of the disk whictould be anticipated to contain opeint,” thusNPPR is 25 (Franke
1979). Simplifying Franke's formulatiofoley (1987) approximates the average bounding circle using an
average bounding rectangle:

R? = El.OEﬁDZ (3-38)
n



whereA is the area of the bounding rectangle ((maxgin(x))s(max(y)-min(y)). Subsequently, Carlson and
Foley (1991) presented an algorithfor determining aneffective MQ parameter. This latter algorithm
reportedly yields a valuavhich givesgood resultsand ismore robustthan theaforementioned methods.
Carlson and-oley (1991) reporthat the magnitude of thevalues is significant imetermining an optimal
value forR? which is counter to most previous research wiiciused orthe distance®etweerthe scattered
data values. We did not apply this heuristic to our warping problem.

Hardy (p. 188, 1990) cites a formula by Schul'nsind Mitel'man(1974) used in a topographical
mapping application. Schul'min and Mitel'mas@lution mayfind application to image warping in a
modified version presented in the next section. In the present case, it is formulated as:

DI EOREE
Re= j n(n—l)

We expectthat the nature oivarpng remotely sensedata will require thedevelopment of new
hueristics for approximatinthe bestmultiquadric parameter. In limted testing, no one method appbastd
for geometric correction. Carlson and Foley provide a heutisgirequires scaling the data to [G,1](x, v.x)
and ¢,v,y)). As a side effect, scaling improves the quality of the solution with respect to numerical accuracy.

(3-39)

3.3.2.2 R?and (UV,X,Y) Data

The determination of thbestmultiquadric parameteR? for the image warping implementation by
Flottemesch (1993)oosely follows Gopfert 1982). Both formulationsre shown below. Notehat the
difference betweethe two is with respect to calibratinthe MQ parametebased oreither the inpuspace
(x,y) or the outpuspace #,v). Both methods require finding tmeinimum spacindgetweendata points and
multiply this by the constant 0.6. Flottemesch writes in his thesis (1993; p. 37):

G = R?* =0.6Lthin %/(xi -x,) +(y, —yj)zg (3-40)

This is notstrictly in conformance with Gopfert (1982). Indeed, it seems more appropribéseo
the calculation of an optim&? on the spacing of the{) points, especially if a rectified image constitutes the
output space. Gopfert's (1982) implementation by Flottemesch should therefore be given as:

G=FR° :O.GEniH%/(ui —uj)2 +(V,- —vj)zé (3-41)

Interestingly, in Gopfert (197and 1982), the formulation is givedifferently. Based on these
papers, the following equivalent formulation is given:

G = R? =06min u; —uj)2 +(vi —vj)zg (3-42)

The final method we will present here is an adaptation of SchudlmdrMitel’ man(1974) where we
sum over the distances betwegv) data points instead of squared data points. This cheag&ased on the
observation that thR? value would be quite similar to that of Gopfert (1977):



R? = Z jZJ(x -x) (=)
n(n-1)

Again, the approximation or determination of the optiRawill be scengand application) dependent and
remains an open research question. The ssbssible values fakR? may bedata dependent, pecified for
each point as wellThat is tosay, weare not limited to a singlealue for each basis function3here can be
as manyk? values as data points. We clarify this statement below.

(3-43)

Tarwater (1985) mentions tip@ssibility ofusing a uniquek? for eachdata point. Thischeme may
more effectively account for variable sparse or denlsga patterns asell as better model rapidlghanging
data values. From Carlson and Foley (1991), we can rewrite the basis functions as:

X = P(x) + ifi\/(riz) +R/? (3-44)

and

N
y=P(y)+ Z giy(?) +R? (3-45)

This strategy may or may not improviee fit of the interpolatingurface (CarlsoandFoley 1991), butdoes
illustrate theflexibility of the multiquadric method. Kansa (199®ad 1990b) uses a flexible value f&2,
however, as noted by Carlson and Foley (1991), the motivation is to intheeendition number of theasis
function. Franke, Hageand Nielson (1994) indicat¢hat it is quite easy tofind examples where different
multiquadric parameter values lead to singular systems.

3.4 Radial Basis Functions and Polynomial (Functional) Precision

The concept gpolynomial precision has been introduced here without explanation. For this report, it
may be defined athe inclusion of terms in thigasis which will reproducexactly a polynomial surface of the
same precision given an absencerwbr in the control points. If there is errthien thepolynomial precision
may be thought of asfanctional precision weighted by the kernel. Details tris may be found in Lancaster
and Salkauskas (1986, p. 263) for thin plate splines.

The inclusion ofpolynomial precision is relevant given recent publications by RupeeuthMuller
(1993; 1995), AradDyn, Reisfeldand Yeshurin1994)and Ruprecht, Nagehnd Miiller(1995) as it applies
to the multiquadric method. The applicatiatescribed in these publications includesar precision in the
basis. Polynomial precision may improtiee fit away from the control points, butor remote sensing
applications this formulation demands furthetudy. As a counter-exampl&ranke (1987) reports his
experiencethat theinclusion of a constant reducése effectiveness othe multiquadric method. Further
application-specific research is warranted. ©Own limited set of experiences is sutiat theinclusion of
linear precision reduces the overall quality of the warp as determined by the RMSE.

Related tahe mathematical formulation of radiaésis functions, it is appropriate to note stochastic
methods in geostatistics have shown a relationbeiveenthin plate splinesand universal kriging(see
Cressie (1989)and Wahba (1990)and QGessie (1990)). In meteorology, Nuasd Titley (1994; see
“Comments” by Barnes 1995) recently applteé multiquadric method tobjectiveanalysis. They included
smoothing, in the statistical sense, their discussion. We willfocus onnon-stochastic methods while
recognizing a related literature exists meriting further investigation do to similarities in mathethematical
structure. Mitasova and Mitas (1993) describe still another radial basis function (with constant precision).



4 Las Vegas Experiment

The evaluation of the multiquadric method for image registration is carrieaveubne scene. The
scene is conspicuously fland distorted more in the across-flight line direction. The nigdadditional
comparisons, such as ftire case of satellite imagery or rapidly varying topography was lessenetiexsihe
clearthat the multiquadrienethod was performing extremely well. Subsequeniig focus ofthe project
shifted to fully documenting the nature and characteristics of the multiquadric method.

This section provides a descriptiontbie test site, anverview ofthe computing environmetstnd a
comparison of the results from the three different methods (polynomial, finite elangembultiquadric). At
the end of the section, weviewthe MQEsoftwareand make recommendations on those issues surrounding
the operational implementation of the multiquadric method.

4.1 Test Images

The LasVegas image set consists of a digitizetial photograph and an airborne scarasguired
image of theRemoteSensing Laboratory complex on Nellsr Force Base, Nevadalhe reference, doase
image in this experiment is a digitized photograph acquired usiegsselblad?Omm camera. The distorted
image was acquired from airborne multispectral scanner (Daedalus AADS1268) biiwgn from a BO-
105 helicopter platform. The Daedalus scanner imagery inchidésfrequency distortions induced from
platform motion during the scanning procedure.

The Daedalus scanner includes built-in roll correction mechari@nerturbation fronthe normal
flight line. However,variations in pitchyaw, altitude and velocity are notcompensated foand introduce
geometric distortions in the imagery. The vertical aerial photognagha nominal digitizedesolution of
approximately ondoot per pixel. The scanner imagery is one-third the spatial resolution of the photograph
(three feet per pixel).

Control pointswere collected by ISPA. A scan-digitizedage of thebasephotographwas used to
aid in thecollection of control points. ASharpJPX-600 Color Scannevas used at a resolution of 3@6ts
per inch. Thecontrol points are distributed throughout geenearea of interest, though not in a uniform
manner. Thdack of identifiable features constrained #edection of control points to specifigceas. This
problem is often encountered when registering multispesta@iner imagery. Aubset othe control points
were extractedand subsequently used asdependent check points. These havsirailar, approximately
uniform, distribution.

The distortedand reference imageare shown in theLas Vegas Images Appendix. Thefollowing
Appendix, Control and Check Points, includestwo referencémages showing the distribution of the control



pointsand thecheck points, respectivelyThe locations of the contr@ndcheck pointsare approximate in
these graphicbased orimitations of the plottingsoftware. The tables inthe same Appendix present the
actual values. The control and check points are based orighmdefined aghe center of the uppésft pixel
that is located in the upper left corner.

4.2 Computing Environment

The computingesources usearebriefly described.This includes hardwarandsoftware in varying
degrees of detail with respect to vendor specifics and version information.

4.2.1 Hardware

The digital image transformations in this experimgate done on &unMicrosystems IPXunning
SunOS 4.1.3. During the initial report preparation, checking numeraraputations was donesing an
IBM-compatible 386-25unningMS-DOS5.0 with a mathcoprocessor. Subsequent development took place
on the IPX platformand on anBM-compatible Pentium-90 processor (withdbe notorious floating point
hardware bug). The MQ software, in its various manisfestations, has been tested and usedht® cdsedis
on an SGl-Indigo2-XZ.

4.2.2 General Purpose Software

On the 386-25 computer, Borland's Quattro Pro spreadsheet, Versiama2.0sed to double-check
such things aRMSE (RootMean Squared Error) calculatioasd calculation of image extents BRDAS
andMQE. Additional checksvere madausing StatisticaBciences S-Plus Versidl and 3.2.S-Plus was
also used to evaluate the polynomial results, Hardy's multiquadric and thin plate splines.

4.2.3 Image Processing and G.I.S. Software

Commercial image processing software, ERDAS, was used fpotieomial registration evaluation.
CAGIS was used to evaluatiee finite element method.ISPA providedthe MQE code forthe multiquadric
method. Software characteristics are reviewed in the next three sections.

4.2.3.1 ERDAS

The ERDAS software versions usetliring thisprojectare listedbelow. There aretwo separate
routines for image warping irERDAS 7.5: LRECTIFY and NRECTIFY. Both routines require the
polynomial coefficients generated from a sepaptmyram COORDN. During preliminary investigations,
NRECTIFY was used since it duplicatése functionality of LRECTIFY (affine transformatio@nd has
extended capabilities fdrigher ordepolynomials. A newer ERDAS system, IMAGINE1, was used as an
additional means of validating the results. Below, the version information for the ERDAS software is listed:

« ERDAS 7.5

COORDN -- Coordinate Transformation Version 7.5.04.202
Copyright (C) 1984-1991 Erdas, Inc. All Rights Reserved.
Installation : Remote Sensing Research Unit - UCSB (9/19/91)

« ERDAS 7.5

NRECTIFY -- Non-Linear Rectification  Version 7.5.02.202
Copyright (C) 1984-1991 Erdas, Inc. All Rights Reserved.
Installation : Remote Sensing Research Unit - UCSB (9/19/91)

» ERDAS IMAGINE 8.01

Copyright 1991 - 1993 by ERDAS. Inc. All Rights Reserved.
< ERDAS IMAGINE 8.1 Initial Release



Copyright 1991 - 1993 by ERDAS. Inc. All Rights Reserved.
Installation : Remote Sensing Research Unit - UCSB (12/16/93)

The suite ofERDAS registration routines produced consistent results for the geometric modeling
component. The nearest neighbor resampled imalfésred very slightly betweenthe output images
attributable to a difference in algorithms in the two products (Kloer 1994).

4.2.3.2 CAGIS

CAGIS (Cartographic Analysis and Geographic |nformation System) was developed aRand
Corporation (Zobrister al. 1991)and hasheen provided tohe RSRUfor use on research project€AGIS
includes the finite element approach introducedRit with VICAR/IBIS. We will describethe registration
procedure in CAGIS below:

1. The control points (tiepoints) in the outgpiceare triangulated using eitherGreedytriangulation
or a Delaunay triangulation.

2. A uniform grid is applied over the outputy) space.

3. A warpedgrid is calculatedover the input space bylinear interpolation within corresponding
triangles.

4. An inverse transformation is used to warp the input image.

There is a built-in function in CAGIS to extrapolate beytreiconvexhull of control points. An affine fit by

least squares is used to predict the location of four distant points based on the extent of the control points. For
more informationseeThormodsgaragndLillesand (1987). The extrapolation, while appropriatesatellite
data,does not adequately model digion outside ofthe control points. Thisnay not be a problem for
environmental modeling using airborne scanners since it is common praativer ity anarea. That is, the

area of interest is framed by a buffer. This area outside the region of interest need not be accurately registered.

The gridding step INCAGIS introduces additionatrror into the registratioprocess. The total
registration error includes both the original error from the distortiodelandintroduced gridding error. In
the case of badly warped imagethe grid spacing in either dooth thex andy directions mayapproach the
size of the output image. Thigould effectivelyeliminate the error introduced by gridding. Thelaunay
and Greedy Triangulations are shown with and without the grid peamtay inthe Triangulations Appendix.
Further reading on thase ofgridding techniques in image warpimgay be found in Niblack (1986) and
Wolberg (1990).

The tessellations of the control points in théungulations Appendix do not appear to lsemposed
entirely oftriangular elements. Isome cases iappearghat there are triangleertices inthe middle of
adjacent triangledges. This isdue to the presence ektremely skinnytriangles. In fact, the triangulations
were verified both quantitatively and visually. In the cash@fDelaunay Triangulation, by dropping tloer
extreme points used to extrapolate in CAGIS, we fotired number of triangles to be equaltwice the
number of points plus the number lmbundary edges less two, ©#652. This formulafor the number of
trianglesmay be found irschumaker (1987). Thisas alsahe same number of trianglgelded byprogram
VORONOI (Fortune, 1987). The same procedwss followed forthe GreedyTriangulation. The number of
triangular elements, excluding tlextreme points, was alstb2. A detailed visual inspection of tipéots
confirmed these findings.

During the course of the investigation, the Delaunay triangulation (or Thiessen option in CAGIS) was
discovered to produce an erroneous tessellatidgheroutput space. Th@oblem was reported tBand and
immediately fixed. As noted previouslhis warpingsoftware is used bRrand,UCSB, EDC (EROS (E&rth
Resources Observation Systerigta Center and Ft.eavenworth TRAC (TRADOC Analysis Command;
TRADOC: Training andDoctrine Command; Zobrist, 1994). The MQ method performed much better in the
test caseising theGreedytriangulation, suchhat we did noview this as detrimental to thgroject. That is,



we anticipated thasome improvement was possibgth the Delaunay algorithm, but not so much as to
change our conclusions. Later, the Delaunay triangulation was used and did indeed yield better results.

CAGIS is flexible interms of image origins. The orientation of the coordinsystem is
accommodated for ithe specificprograms we used, namely TIEGR#DdIMWARP. The principalcaveat,
if you will, in using CAGIS with ERDAS 7.5, ERDAS Imagine and MQE is with respeittd@oordinates of
the image origin. In CAGIS, the origin of the coordinate system (0,0) is such that the center of the pixel at the
origin is (0.5,0.5). This contrasts with ERDAS 7.5 and MQE (1,1) and ERDAS IMAGINE (0,0).

4.2.3.3 MQE

MQE (Multiquadrische Entzerrung; Multiguadric Rectification) isthe name of theoftware prepared
at ISPAunder thecooperative research contréettweenthe RSRUandISPA supportinghis research. The
source code level used the 1994 reporwvas versionl.15. RSRUhassince enhanced theodeduring the
course ofthe researcliFogel, 1994and 1995). The results in thigvised reporare based orthe modified
code. The compileraused inthe project depended largely dhe platform, but in general rece@NU Project
C compilers and libraries were used to compile the MQE code (2.6.x).

The relevant characteristics of the image registration/rectification software for the research are listed below:

¢ ANSI C Language source code

e Compatibility with ERDAS 7.5 *.lan files

¢ Polynomial order to degree ten

« Input coordinates are based on an upper left origin
e Output coordinates are based on a lower left origin

e Supports polynomial or multiquadric registration method

¢ Manual selection of the MQ smoothing facR%
e Testing routines for evaluating alternative surface fitting models

« A flexible evaluation ofthe polynomial order as well athe MQ parameterk?, based on a set of
control points and check points.

* Nearest neighbor, bilinear interpolation or cubic convolution resampling
¢ No polynomial precision in the basis

The matrix techniqueased forall of theproblem-solving irthis reportwere based on those described
in Goluband VanLoan (1989)andimplemented in the matrix libraryleschach (Stewartand Leyk 1994).
Specifically, the QR factorization routingvas used. Double-precision results e workstationswere
checked against “long” double precision on the PC using Borland C++ 3.1 (using C code).

The MQEhasspecific requirements relatéts use for image-to-image or image-to-map registration.
Control points must be specified in ERDAS 7.5 format,as a *.gcp file in ERDAS. The origin of tloatput
space is inflexible.This requireghat thecontrol points beffset by someumber greatethan orequal to the
number of lines in thecene to perform image-to-imagggistration. This is the approach tRERUtook in
the software evaluation.

There are additiondeatures in MQE which will not be describbdre. Interest readers are referred
to the programmer's thegilottemesch 1993). For example, Menu-Resampling, it may be necessary to
modify the *.lan header toeflect anominal XCELL,YCELL pixel size to exercisall MQE options. These
featuresare notdirectly related tahe task of registration method comparison, hehegare ignoredor this
discussion.



The MQE program includes diagnostic output to hdgntify outliers inthe tiepoint set. These
diagnostics are not generally applicableths evaluation task, since we daeusing onthe use of these
techniques for badly warped imagery.

Gopfert's (1982, pp. 14-16) approximation for the optimal smoothing parameter is given below:

R* = O.6Dmin((u,. —uj)2 +(V,- —vj)z) 4.1)

The use of (w) in Equation 4-1 refers to the output space. Flottemesch (1993) implemented Gépfert's formula
allowing a flexible specification followinghe form indicated in Equations 3-26, 3-2d 3-28). The MQE
program implementatiomdiffered from the formulation given inhis thesis. The implementation of the
smoothing value for the latest version of the code is as follows:

R*=G mnin((u,. —uj)2 + (V,- —vj)z) (4.2)

where G is user-specified. We refer to the smoothfagtor (Glaettungsfaktor) as Gopferts for no other

reason than the fact that we are pty to his earlierwork from whichthevalue 0.6was derived.Thevalue

for the multiquadric parametenay differ substantially fronthe approaches taken blardy (L977), Franke
(1979)and Carlson ané&oley (1991). Theses approaches use an average distance whereas Gopfert uses the
minimum distance.

4.3 Quantitative Results

The results of the three registration methods evaluatethisnstudy are presentedelow. The
accuracy ofthe registration is evaluated using the root mean squared error. The fofonulas RMSE
calculations are straightforward. These are presented below:

RMSE_= %1 (x,- _ x;)z | (4.3)
RMSE = %1 (y,- _ yi,)2 (4.4)

and
RMSE = % Zl gxi - x;)z + (yi - yi')zé (4.5)

wheren is the number of control points @heck points. The finite elementand multiquadricmethods
interpolate the control point locations, hence there are no residudtse control points. Theolynomial

method only interpolates the data if the number of control points is the same as the number of unknowns in the
polynomial expressionThis situation is highly unusuébr remotely sensedircraft data. ERDAS uses the
expression above. PCls EASI/PACE takes a diffespptoach. PCI adjusts ftine degrees of freedom of a

given polynomial order. This adjustment is presented below:

RMSE = \/n }k i(xi —xi')2 (4.6)



RMSE = 1k Z (y, - yi')2 (4.7)

and

RMSE,,, =.|- fk Zl gxi -x) +(y, - yi')zé 4.8)

where k is the polynomial order. We felthis is anill-advised approach fothe simple reasomhat no
assumptions are maddoutthe underlying structure of the distortions. At the same time, it can be argued
that the trudocations of the control points are unknown stitdt thisproblem may be viewed asstatistical

problem. We have opted to make no such assumptions and view the image warping problem as a deterministic
process. Consequently, we have no interestaking judgements on the functional relationstigsveen the

output coordinates as they relatesttherx ory in the inputspace. Fothis report, it iassumedhat there is

no error in the locational coordinates afy§ and ¢,v).

The complicated distortion patterns foundtime LasVegas imagearedisplayed in Figure 4-1. The
Figure showshe results from a least-squakgtine fit of the reference image tthe input imagd&an inverse
transformation). The figurehowsthe magnitude andirection of the displacements after correction for
rotation and translation of the origin askewing inthe x andy directions. The arrows are pointing to the
predicted locations of the control points in the warped image based on an affine transformation.

4.3.1 Polynomial Results

The firsttwo tables showhe results from theolynomial methods. In each case, three numbers are
reported: (1x-RMSE; (2) y-RMSE; and (3) the roral-RMSE. Two comments are appropriate. First, the
improvement in ther andy directions is not uniform. Thiseflectsthe fact that we areindependently
calculating ther andy distortion models. Unfortunately, thesee no existing commerciabftware packages
which we are aware of that offer the flexibility to choose different polynomial ordersafualy. Second, the
total RMSE continues to drop féihe control points but theheck points illustratéhe polynomial method's
fundamental shortcoming--it is unconstrained between the control points and given to (sometimes) undesirable
fluctuations.

On a similar note, therexists no commercial software which allows conteérwhich polynomial
terms should be included in tisaerface fitting model fodetermining thebest model. Ironically, given the
lack of progress in this area, tipsoves to be a goothing. These polynomialare affine invariant. The
inclusion or exclustion of different terms tiois form of polynomial series may compromigee fact that it is
translation, rotation andcaleinvariant (Franke andlielson, 1991). Invariant properties of scattered data
interpolation methods amiscussed in Nielson (1987), Nielsand Foley (1989)and Nielson (1993). As a
simple example, different warps may result depending on the origin of the images.
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Figure 4-2: Bivariate Mapping Polynomial. RMSE for 83 control points and 27 check
points for polynomials or orders one to ten.

Table 4-1 shows the RMSE for the control points. Higher order polynomials result in a lower RMSE,
but not necessarily a better distortion mod@&lhis is not nerely conjecture as shown by Takle2. The
excursions which characterize polynomiase minimal with low order polynomials, but increase in
magnitude as the polynomial order increases. The point at which this occurs is differearidgrwhich is to
be expected. There is no reason gy distortions should be similar both directions. A plot contrasting
the RMSE for control points versus check points is shown in Figure 4-2.

Finally, thepolynomial methodhas great shortcomings whercdmes toextrapolation. The greater
accuracy generated by higher order polynomials is greatly diminished in value should any region of interest be
outside ofthe perimeter, oconvexhull of control points. This is illustrated bysaries of perspective plots in
the Residual Magnitudes Appendix. In this Appendix, series of plots serves iitustrate thedegree to which
higher polynomials moreclosely approximate the data. The unconstraitsthavior of thepolynomials
beyondthe convexhull is obvious, whereathe excursiorbetweenthe control points is not readily apparent.

The plots inthis Appendix illustrate themanner in which higher-ordepolynomials approximate more
complicated distortion patterns such as those found in the test imagery.



i Polynomial RMSE -- Control Points

I Degree X y Total
i 1 22.179 30.179 37.452
| 2 7.979 18.164 19.839
I 3 3.569 11.807 12.335
| 4 1.934 5.806 6.120
I 5 1.509 4.666 4,904
I 6 1.260 4.421 4.597
I 7 1.083 4.061 4.203
I 8 0.604 3.626 3.676
I 9 0.457 2.455 2.497
I 10 0.299 1.554 1.582
Table 4-1: Polynomial registration. 83 control points

i Polynomial RMSE -- Check Points

I Degree X y fotal
i 1 22.750 20.168 30.402
I 2 8.285 12.116 14.678
I 3 3.868 8.549 9.383
| 4 2,600 5.632 6.203
I 5 2.341 4187 4.797
I 6 2.407 3.623 4.349
I 7 2.370 3.560 4.277
I 8 1.881 6.348 6.621
I 9 7.689 24576 25.750
I 10 10.323 68.148 68.925

Table 4-2: Polynomial registration. 27 check points.

4.3.2 Finite Element Method

CAGIS software from RANDCorp. was used to evaluatbe finite element method. THeAGIS
software automaticallgrids the datdbased upon amitial triangulation introducing error into the distortion
model. The fineness of thgrid determinediow much error is due to griddingnd how much exists due to
nonlinear distortions within the finite elemenis. within the triangles.
tessellation of the control points: (1) Greedy triangulation and (2) Delaunay triangulation (the dual of Thiessen

polygons inthe graph-theoretic sense). Thables whichfollow illustrate both theeffect of different

There argvo options for the



triangulations asvell asthe error introduced by the griddiqpgocess. The griddingeffect wasevaluated by
writing a new CAGIS routine. The routine was checked manually for a subset of points toitsreszoearacy.
We notethat theexisting bilinear interpolatioruses a double-precision Gauss-Jordan solvEhis same
CAGIS "utility" program was used for the RMSE evaluation.

There arealso two illustrations in theResidual Magnitudes Appendix which illustrate the "tin-
sheeting" of the finite element method. The linear patches whitposehe finite elemensurface result in
a composite surface whidtasdiscontinuous first derivativesThis isshown by thesharpedges inthe model
of the complex distortions. The distortion model can be improved visually and quantitatively only through the
addition of new control points.

4.3.2.1 Greedy Triangulation

Table 4-3showsthe results from using th@reedytriangulation and thredifferentgrid resolutions.
The mostobviousresult is surprising. The resolution of the grid did moticeably improvehe accuracy of
the registration. The totdRMSE actually increased slightly. We attributes effect to computational
problems associated with approximatiager the long, narrow triangles whickometimes result from the
Greedy triangulation.

Another interesting observation is with respedhi griddingeffect. It isquite evident if the grid is
not dense enough as shown in Table 4-4. The transformed image will appear even less smooth than a standard
piecewise linear model over triangles. This can further underscopegbence ofonlinear distortions in the
image. It also suggests that the need for diagnostic procedures to identify the appropriate resolution of the grid
as opposed ttrial-and-error using varying grid sizeRegardless, it is apparethtat theGreedytriangulation
may not be well-suited for rapidly varying distortions such as thwisieh on occasion confound the
registration of airborne imagery. The potential for missing surface variations appears to be a problem. Table
4-5 lists the RMSEs using all of the ground control points.

i Finite Element RMSE -- Check Points

I Grid X y total
i 30x30 2.741 4.491 5.261
I 120x120 2.555 4.789 5.428
I 360x360 2.569 4.788 5.434

Table 4-3: Finite element. Greedy triangulation. 83 control points and 27 check points.

i Finite Element RMSE -- Grid Points

I Grid X y fotal
i 30x30 1.428 3.911 4.164
I 120x120 0.640 1.740 1.854
I 360x360 0.296 1.139 1.177

Table 4-4: Finite element. Greedy triangulation. Gridding effect. 83 control points.



i Finite Element RMSE -- Grid Points

I Grid X y fotal
i 30x30 1.783 3.490 3.919
I 120x120 0.737 1.548 1.714
I 360x360 0.236 0.992 1.019

Table 4-5: Finite element. Greedy triangulation. Gridding effect. 110 control points.

4.3.2.2 Delaunay Triangulation

The "Thiessen" option ICAGIS generates a Delaundsiangulation. Thiessen pgons and
Delaunay triangulations haweenthe subject of agreat deal of research. Aurenhammer (1986Yyides and
overview ofthe Voronoi diagrams, as computatiorggometers call Thiessen polygoasd the dual of the
planarVoronoi diagram--the Delaunayiangulation. Perhaps the most importabtervation to make to
understand the importance of a Delaunay triangulation iatti¢hat "extreme" angles aravoided. This is
useful for computational reasons as weltlasfact that compacttriangles willseemingly capture locacene
variations. However, the triangulation is surface-independent so that better results are not guaranteed.

i Finite Element RMSE -- Check Points

I Grid X y total
i 30x30 4278 2.094 4.763
I 120x120 4.681 1.792 5.012
I 360x360 4.681 1.787 5.010

Table 4-6: Finite element Delaunay triangulation. 83 control points and 27 check points.

The Delaunay triangulation improved the toRMSE by almos0.5 pixels as shown in Table 4-6.
This is consistent with whatne might expect. The Delaunay triangulation is shown in the Appendix
(ASPRS/ACSM94). There is still a major problem withe griddingeffect. It isclearthat toimprove upon
the finite element method, there must be datas¢@ne dependentiangulations) or avay of generating
smoother surfaces which captiseme ofthe local variationfor example, Akima's method (Akima 1978a,
1978band1984). In thecase of badly warpedirborne scanner data, registration using grideitay not be
very appropriate. An unexpecteditcome fromthe griddingprocess ists potential usefulness for distortion
diagnostics. The gridding effect, see Table 4-7, is highly local and given a large RMSE, indicihiameet
to collectadditional control points folinear piecewisewarping. Table 4-8 lists thRMSEsusing all of the
ground control points.

i Finite Element RMSE -- Grid Points

I Grid X y total
i 30x30 1.275 3.488 3.714
| 12002 0.469 0.986 1.092
I 360x360 0.165 0.721 0.740

Table 4-7: Finite Element. Delaunay triangulation. Gridding effect. 83 control points.



i Finite Element RMSE -- Grid Points

I Grid X y fotal
i 30x30 1.654 3.181 3.586
I 120x120 0.648 0.927 1.131
I 360x360 0.135 0.628 0.643

Table 4-8: Finite Element. Delaunay triangulation. Gridding effect. 110 control points.

4.3.3 Multiquadric Results

A series of images were creatasing the MQ method as implementedFgttemesch (1993) and
adapted by Fogel (1994, 1995). As noted previoubly,MQ has a smoothinfgctor whichmay be used to
influence the shape of the interpolated surface. Bbé& surface vidhe multiquadric methodnay be
approximated by using subset othe control points to "tune" the fit. In thisise, we simply usdtie control
points tospecifythe surfaceand thecheck points to findhe lowest RMSEwhich may be used ahe best MQ
parameter. The MQ parametereigpressed as a product of Gopferrsand the minimundistance squared
betweenthe outputspace control points (Equation 4-2The results from the MQEoftware as adapted by
Fogel (1995) are presented in Table 4-9.

| Multiquadric Method RMSE

I Polynomial Gopfert's G X y total
i 1 225 2,056 2047 2,902
| > 290 1.898 2416 3072
| 3 200 1777 2 401 2 087
| 4 1.50 1.647 2287 2819
| 5 1.70 1,659 2202 2773

Table 4-9: Multiguadric method. MQE. 83 control points and 27 check points.

The removal of theylobal trend surface uses a low degree polynomialliaged in the first column. The
polynomial fit approximateshe correctionsurface whoseesiduals are thefitted using the MQ approach.
The difference inthe MQ parameteacross polynomial orders results frahe differentsurfaces which are
generated through eaalet of control points. The slight increase in RMSE fory is a result of the MQ
parameter being tunefdr the roral RMSE. The image registratioproblem involves two surfacétting
problems. It is cleathat theRMSE could probably be reduced for yusing a different MQ parametéor x
andy. The totaRMSE would be lower as wellThis changemay not alwaygienerate an improvement in the
registration accuracy; the correct distortion model is problem dependent.

The Residual Magnitudes Appendix contains an illustration whickhows the nature of the
multiquadric method as it accommodates local variatidrigs figure should beompared to th@olynomial
approaches whiclwvere shown to bénadequate for modeling high-frequency distortioithe multiquadric
method is also interpolating; it honors the locations of the control points during the transformation.

The evaluation of the MQE included a computatioeaiew to ensuré¢hat the programvas coded
correctly. Inthe 1994 report, we reported discrepancies irRRESE calculations. S-Plus showed noticeable
differences inthe RMSE than reported from MQE. Athat time, weattributed these differences to the
numerical routines used teolve the multiquadricsystem of equationgnumerical precision) or errors in
coding. We did not identify the source of the discrepancies. As is the case witbutiaice polynomials, the



solution to the multiquadric methodnd radialbasis functions in general is complicatedhdgh condition
numbers in the basis.

Subsequent software development revedlted acombination of factors were responsible for the
inconsistencies. These have been remediedhier1995 report. As stated in the earlier verisorfillst
operational implemention should include a scalingupf)(to the unit square See, for example, Barrodale,
Skeaet al. (1993), Carlson and Foley (1991) and Kansa (1990a and 1990b).

4.3.4 Thin Plate Splines

The use ofthin plate splines was not specified fitris report. However, asoted previouslythin
plate splinesand multiquadricfunctions areboth radial basis functions. For aominal effort, we can
substitute the TP®asis forthe MQ and implement theorresponding equilibrium conditioremd solve the
warping problem. The nature of the TPS is stiwdt thedistribution of the control pointmay not need a
preliminary polynomial warp.The plate idorced to bend in suchway that itinterpolates the control points,
but it is constrained with respect to its loeald global curvature. Accordinglythe spacing of the control
points may not be asrucial for imagewarping. The results are presentszlow in Table 10. The MQ
method was applied to the residuals after first applying a least squares affine fit. ThvasT&plied directly
to the original control points. We do not wish to draanclusions fronthis Table but simply wish to draw
attention to the potential of the TR& imagewarping. As mentionegreviously,the MQ method is more
flexible and may vyield better surfacétting models. Franke (1982has implementedPS with tension
(similar, but not equivalent to the MQ tension-like parameter) which is yet another method meriting further
investigation.

I Radial Basis Functions RMSE

I Polynomial Gopfert's G X y total
i MQ 1 2.25 2.056 2.047 2.902
I MQ Linear Precison | Not applicable 2.25 2.086 2.036 2.914
I TPS Not applicable Not applicable 1.874 2.089 2.806

Table 4-10: MQ (no polynomial precision), MQ (linear precision) and TPS (linear precision
by default). 83 control points and 27 check points.

The thinplate spline includes linear precision by definition. For the compasisove, we removethe first
order trend using aaffine least squares fit. Ithe first case, thereviously reported MQ resultsre listed.
This MQ formulationhad nopolynomial precision. Irthe second casghe MQ formulation included the
polynomial precision of degree one. Experience With linear precision MQ method without a preliminary
polynomial model to remove trend(s) in the data has shown it be less effective for image warping.

4.4 Discussion

It is clear from the results in th@evious sectiothat the multiquadric isvorthy of additionalstudy
for improved imageegistration. The testase was badly warped imagery over a relatiflelysurface. A
more robust series of tests should be conducted to examine such distortions as relief displacements, etc.
comparison to the results from S-Plus, the best results from the polyreordiatite elements differed in total
RMSE by morghan 2 and Dixels, respectively.The thinplate spline performesimilar to the MQ method,
which makes it cleathat radialbasis functions offer amprovement to existing technology ftine image
registration problem.

A series of imagesre presented in th@arped Images Appendix which reproduce visually the
quantitative results of the preceding sections. Tisesee tofurther illustrate the potential of radibbsis
functions to produce better distortion models than either the polynomials or finite element method.

In



5 Conclusions

This section contains conclusions bagetarily on the theoretical discussion of thgface fitting
modelsand theresults of the empiricadtudy. We present a series of observationgument practice and
commercial solutions to the registration problem. Finally, there $ection on implications for future

research.

5.1 Control Points

The selection of control points is an important component in distortion modeliigs paper has
focused onimage-to-image registratioand therefore we have avoiddtie use ofthe expression “ground
control points” when referring to reference poifds warping (Ground control points imphhat locational
information for a point in an image is associated with a knowap position). Théollowing comments and
observations apply to both image-to-map transformations as well as image-to-image transformations.

A high RMSE for a control point indicates either a bad point or a poor model fit.

It is common practice to considaigh control point RMSE to be an indicative of a bad
match between corresponding points inrdferenceanddistorted images. In fadhat may
be true. However, inthe presence of rapidly varying distortions, there is als@disibility
that the dstortion modelhasfailed to capture complicated patternsirternal and external
effects. Inthecase of airbornscanner data, there is a strong likelihdlodt a highRMSE
may also be due to the presence of terrain and/or sensor-platform effects.

Control point RMSE inadequately measures model performance.

This statement should tself-evident. There is a need tise other techniques such as
ordinary cross-validation to mortully investigate systemati@and random patterns of

distortions due tinternal and externadffects. Scientifiovisualization techniques should be
investigated as well to aid the registration process. Morphometrics are a possibility.

The problem of verifyingthe accuracy of a moddlas an analog in themotely sensedata
classification process. It is well-knovtinat the a trainingample data should not beed to
explain classification accuracy. Independent test sites must be used to hkdegsults
with quantitative statements.



5.2 Surface Fitting Models

The use of surface fitting models for image registration will continue to bamgortanttool for
environmental remote sensing. At present,tdws whichare available to the reste sensing analyst are
those whichwere developed at ime when computationadfficiency was acriterion for implementation.
Improvements in computing hardwaaad subsequent research in scattedath interpolationsurface fitting,
computational geometry, compuggraphics and numericahalysis make it possible to improve upmmrrent
practice. Indeed, the conventionahy in which the image warpingroblem is approached should be
reconsidered.

An additional issue in surface fitting analysis for image registratitimeigse of local vis-a-vis global
models. It is clear from our reseattiatsome global models may competih local models irthe presence
of rapidly varying unsystematic distortions. Commentstida issueare made withrespect tothe models
themselves in the following sections on the polynomial, finite element, and multiquadric methods.

5.2.1 Bivariate Mapping Polynomials

It has been demonstratethat the standargolynomial functions found in commercial image
processing systemare not entirely up to the task of modelingmplicated distortions found in airborne
scanned imagery. In fact, thise of approximating polynomial expressianay not be suitable for satellite
imagery either when geometric and radiometric fidelity is at a premium.

We do not advocat@bandoning theuse of polynomials for imageegistration. Themodel's
mathematical simplicityand speed of computation may be decidedly advantageous in some cases. It is also
accessible tdhe non-specialist in image warping. Tlevel of geometric correction required is clearly
dependent on the nature of the application. With this in mind, the follow statements can be made:

e Bivariate mapping polynomials are a global registration method.

All of the control points areised to construct a single distortion model. Local variations
within an image limit the usefulness of the polynomial approach.

e Bivariate mapping polynomials have limited utility for highly distorted images.

In the presence ofomplicated distortions, conventional application of polynomials for
image registration cannot achiethee registratioraccuracy ofinterpolating methods. The
primary justification forthe continuedised of polynomials itheir simplicity in theory and
implementation; accurate registrationspwever, will usually require giecewise or
segmented application to scanner imagery.

* The image registration problem involves fitting bothvaand ay surface.

The surface fitting approach to image warping is in faedb problems. The distortion
modelsare mutually independent. Conventional practice issethe samenodel forx and
y, despitethe fact that there aréwo surfacefitting problems. Effectively, this represents a
compromise between bestcorrectionand best y-correction. Indeed, it is possiliteat
neither the best model femory will be selected in favor of minimizing total RMSE.

¢ Weighted polynomials merit investigation.

This report did not address in detail thhge of weighted polynomials (a global method) or
the local weighted mean technique (a local method). Mathematically, weghijgdmials

are not much moreomplicatedthan thepower series polynomial form discussedytlis
report. Many ofthe disadvantages of usingolynomials remain, especially in the
approximating circumstances.

The local weighted mean technique, like the weighted polynomial, is not mathematically
difficult. It is a local method, whicloffers obviousadvantages in the presenceladal
distortions, but it is more difficult to implement operationally. Local weighteshn



implementation issues are analogous to the image mosaicking prablesmset of images is
merged into a single larger image.

It should be cleathat theuse of polynomial expressions for image registratiosti an open
research topic in the context of developing a “best” distortion model. At the same time, it cannot be overstated
that conventional commercial implementations of polynomials fall well short of being optimal techniques.

5.2.2 Finite Element Methods

In the presence dfadly warped imagenthe finite element method h&genthe only widespread
alternative to using bivariate mapping polynomials. The finite element approach in its preseitgionm,
VICAR/IBIS and CAGIS, uses a piecewidmear interpolation isised to warp imageryThe localnature of
the piecewisetransformations means thhical distortions will not confoundhe registrationprocess as a

whole.

However,nonlinearitiesbetweenthe control points remain aroblem. Thefollowing general

statements may be made:

The Finite Element Method is a local registration technique.

Only those control points defining each finite element, or surface patch are used to model the
distortions forthat region. Local variations dmot directly affectthe registration of the
entire image. We elaborate this comment in the next statement.

Control point tessellations impact the overall fit of the Finite Element Method.

There are manyossibletriangulations of the control points from which wan define a
warping model. The distortions in the image are nwags well understoogrohibiting the
choice of a bestriangulation. There igoodreason to explor¢he application of data-
dependent triangulations asell as interactively specifiedriangulations where known
breaklines existeg., a cliff). The contouring literature may be useful for this purpose.

The fact that atessellation is independent of the variations in the input ineagentially
ignores important informatiothat might helpbetter characterize the warp. Thest
triangulation for image warping will be data-dependent.

Finite elements may not be merely continuous in value, but smooth as well.

The piecewiselinear interpolationover trianglesyields a surfacevhich is continuous in
value, but not necessarily smooth acr@isangle boundaries (known as @ surface).
Visually, the corrected surface magppear angular at the triangle boundaridor this
reason, lineapiecewise modeling is frequently referred totimssheeting apposed to
rubber-sheeting as in the case of polynomials (and the radial basis functions).

Piecewise modela/hich have continuous firgiartial derivatives appear smoothand are
known asC! surfaces. As noted ithe text, Parr an€omer fitted a fifth order polynomial
acrossthe surfaces using Akima's method (197&ad 1978b). This solution may lead to
artifacts given the high order of tipplynomial (Comer, 1994)Lower order functions, such
as cubicdnterpolation (Goshtasby, 198@nhdbicubicinterpolation (Renkand Cline,1984)
may offer more satisfactory solutions.

Extrapolation beyond the convex hull of control points is an open research issue.

The techniqueised by VICAR/IBISand CAGIS for extrapolating beyonithe convexhull is
adequate in most cases for satellite imagery: four corner Eomtsdded to the control point
coverage far off irthe distance. An alternatiweould bethe extension of the exterior region
into triangles and quadrilaterals. Thi®uld yield a more local solution for extrapolation
outside the control points.

Due tothe nature of airborne scanned image acquisition, this is not as crititssuan In
the linear case, as long as the convex hull surrounds the area of interdet studyarea is



contained within a larger image, it will hennecessary to consider extrapolation. Ebr
surfaces, nearby control poirdseused inthe surface construction suc¢hat the bcation of
control points outside of the convex hull is an important issue.

5.2.3 Radial Basis Functions

The developmentind implementation afiew techniques for image warping is cleasgirranted for
improved accuracy for environmentabnitoring. Thetools commonly employed by rematensing analysts
were adequate when alternatives did not exist. In this report, weshewathatalternatives exist, albeit at a
cost of increased theoreticahd computational complexity. It is our purposethis section to review those
features of the multiquadric methadhd thinplate splines (radiabasis functions) sucthat it is clear that
existing solutionsare not thebest or only available solutions image registration. Thillowing comments
are relevant:

¢ Radial Basis Functions are global methods.

All of the control points are used to construct the distortion models. Both technigydse
adjusted to accommodate local variations. The multiquadric parameter may be used to adjust
the shape of the surface and imprtive distortion modeling. The theoretical characteristics

of the thinplate splinemay not allowthe samedegree of flexibility in defininghe x andy
surfaces (see, for example, Franke, 1985).

¢ The Multiquadric Method (and Thin Plate Spline) may be applied locally.

The multiquadric provides a well-behaved surface whely exploited for segmented image
registration. The potential application of the multiquadric mettoodnosaickingcan be
inferred from work by Schiro and Williams. The barrier to mosaicking is reipect to the
difficulties in operationalizing the procedure. Discontinuities in the functemmess the
“sub-images” will need to be addressed. Franke (1882usseshe analogous situation for
thin plate splines.

Breaking the registratiorprocess downinto stages using sub-images or using the
multiquadric method for mosaicking is still a matter of fittinglabal model. The option of
breaking down darge image registratioprojectinto smaller constituent parts sémply an
option which needs to be recognized. Polynon@edsunsuitabléor this task and thénite
element method does not always produce an acceptable warp given severe distortions.

¢ There may be two best multiquadric parameters: onedad one foy.

The two surfacefitting problemsmay result intwo different distortion models. In the
current implementation, thiswould mean different ordepolynomials as well as different
values forthe multiquadric parameter. This point highlights the significance characteristic
of the warping problem,e. we are concerned with the interpolation of scattered\ddtes.

The distribution of thesevalues impactghe fit of all of the distortionmodels. The
multistage implementation of the geometric correction component of the wamgiogss is
flexible suchthat thereexists no universally best modeljgital image registration is a
complex topic.

« The Multiquadric Method (and Thin Plate Spline) is computationally intensive.

It is true that theMultiguadric Method is more expensive computationgtlgin either using
polynomial power series dhe finite element method. #ade-off must be realized wherein
registration accuracy and choice of methodology is dependent t¢ime nature of the
application.

The gridding approachbsed in CAGISand described irthis report,may be usedavith the
polynomial, multiqguadri@and thinplate splines. Thimay yield an acceptab#dternative to
conventional practice wherein tipelynomials approximate true locations, but model more



complex distortionghan thefinite element method. And the finite element method, as
currently implementeddoesnot modelnonlinear distortionsetweenthe control points.
The ability of the Multiquadric method tenodel complex distortions in a well-behaved
fashion, make it a candidate for fast registrationgridding using bilinear functions as in
the CAGIS program IMWARP.

Finally, it must be notethat thefast evaluation ofadial basis functions is a contemporary
research topic whicimay lead to improvements ithe computational requiremenfsee
Beatsonand Newsam, 1992). Barrodale, Skeraal. have implemented work Hyowell for

the thin plate spline making it competitive to existing practice. Improvements in registration
accuracy forchange detection, etc., certainly merit additional overhead ifngeto base
science and major policy decisions on the results.

5.3 Recommendations

The technicalreview of the methodsdescribed inthis reportcombined withthe experimental
application make it cleghatexisting procedures must be augmented by new methbascomplexpatterns
of airborne scanned imagery distortions motivateid research. It is cleahat radialbasis functions
legitimately merit further investigation. In particular, the multiquadric method perfoexteeimely well in
the test case. Tha&milar successith thin plate splines reported by Barrodaleal. is consistent with our
findings.

The ability of the multiquadric method to deal with large distortigiogs notmean its application
should be limited to airborne acquired imagery. Satellite imagery be more accurately registered as well.
In both casesthe development of more informative diagnostitbsin theRMSE measureg.g. visualization
techniques, will aid in the selection of the most appropriate warping model.

We also notehat thepossiblerange of distortions in an image is a function of the internal and
external sensoeffectsand terraineffects. The ability to more accurately model complex distortjmatterns
using the Multiquadric Methodould conceivablyaid theprocess of automated control point extraction. In
particular, ephemeris sensand platform data in combination with #exible surfacefitting model, could
guide the extraction process. We make these comments recognizing that the control point extraction process is
complicated. Indeed, the identification of a similarity metric which is robust across sensors and seasons is also
an open research question.

Finally, wefeel it is extremelyimportant to point outhat currentapproaches to image registration
are largely constrained by th@ols which have been made available by commercial image processing vendors.
It is critical that the remte sensing community recognizasd conveys tovendorsthe essential need for
improved registration techniques. Accurate image registration is fundamental to any analysis involving
multiple sets of imagerye(g., change detectioand multitemporatlassification) or the integration eémote
sensing and geographic information system databases.
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Appendix A : Las Vegas Images

Distorted Image

i - Five

RemoteSensingLaboratory Complex. EG&G Energy Measurements, Las Vegas, Nevada.
The aircraft in thaop center has aingspan of105 ft. 4in. Daedalus AADS1268 Band 7,
0.625-0.695um.



Appendix A : Las Vegas Images

Reference Image

RemoteSensingLaboratory Complex. EG&G Energy Measurements, Las Vegas, Nevada.
This imagewas acquired by scattigitizing a color photogaphusing a Shar@PX-600 color
scanner. The image is 1800 samples by 2400 lines. The first 600 santpkesrigfinal scan-
digitized product were cropped to producthis graphic. The aircraft ithetop center has a

wingspan of 105 ft. 4 in.



Appendix B : Control Points and Check Points

Control Points

The following list of control points is based on an upper-left origin. The coordinate
(1,1) is in the center of thaixel inthe upper-left cornerThis isthe format used by ERDAS
Version 7.5, the system which was used to extract the control points and the check points.

CcP U 1% X Y
1 1950.250 181.250 400.645 9.131
2 1888.875 374.625 400.125 104.6%5
3 1828.989 565.580 399.376 200.875
4 1771.034 752.193 398.125 295.875
5 1712.307 940.352 395.626 388.625
6 1654.352 1121.943 385.87H 479.8Y15
7 1596.398 1303.534 373.125 573.1%25
8 1539.216 1480.875 355.625 675.815
9 1483.193 1655.898 333.376 771.3715
10 1427.557 1826.67( 306.125 861.3f5
11 1373.080 1995.125 278.625 967.3Y5
12 1319.761 2164.352 252.625 1081.3)5
13 1278.034 2299.193 234.125 1175.3F5
14 2391.250 232.75C 588.611 16.340
15 2102.250 617.25C 535.772 214.989
16 2019.250 874.250 534.617 342.609
17 2002.852 1199.989 545.875 493.6P5
18 1806.580 1510.239 484.375 679.8Y5
19 1638.125 1788.42( 410.875 837.8Y5
20 1550.034 2341.693 367.375 1156.1pP5
21 1007.875 2206.625 112.875 1165.6P5
22 961.602 2005.557 93.87H 1025.315
23 1028.443 1781.08( 119.625 846.6P5
24 1322.824 242.643 122.790 87.405
25 1197.750 220.250 77.87b 87.635
26 1014.125 178.875 7.438 80.938
27 985.375 282.125 6.062 137.438
28 955.125 384.375 5.812 198.332
29 927.375 484.875 6.438 261.688
30 898.375 585.373 6.938 306.812




Control Points

CcP U 1% X Y

31 861.125 718.125 5.562 355.188
32 874.250 900.250 22.312 427.438
33 837.750 1029.25( 19.06R 492.938
34 801.250 1162.75( 15.12p 548.125
35 755.750 1320.75( 8.875 624.315
36 787.000 1439.00d 23.87p 688.125
37 919.250 1916.25( 76.87p 955.12%5
38 1989.750 188.250 420.279 9.410
39 1927.779 382.871 419.699 104.416
40 1867.092 574.138§ 418.587 200.488
41 1808.708 761.50G 418.087 295.787
42 1749.792 949.392 414.538 390.087
43 1691.319 1132.242 404.788 482.882
44 1633.288 1315.181 393.538 578.087
45 1574.992 1493.254 374.837 681.587
46 1518.731 1668.93¢ 351.688 777.3B7
47 1462.115 1840.377 324.387 868.188
48 1407.623 2008.985 295.438 973.288
49 1364.277 2180.512 269.587 1084.6B8
50 1311.023 2314.354 251.188 1179.1B8
51 2156.250 451.25( 535.772 140.495
52 2364.750 755.75@ 636.875 239.8Y5
53 2340.750 825.75C 635.375 273.695
54 2317.750 895.250 635.625 314.195
55 1729.375 1799.37% 454.375 840.1p5
56 1972.125 2355.125% 555.625 1103.8f5
57 1906.250 2224.25( 530.875 1040.1p5
58 1656.625 2366.875 419.375 1152.3F5
59 989.062 2269.562 103.312 1240.0p2
60 997.812 2237.812 108.438 1194.688




Control Points

CcP U Vv X Y

61 1036.312 2110.00( 123.812 1092.1B8
62 1042.875 1498.375 121.875 709.1p5
63 904.250 1731.25( 70.62b 824.875
64 932.250 1637.25( 80.62b 779.8715
65 970.250 1506.75( 92.56p 718.188
66 1008.125 1376.625 101.875 641.8f5
67 1056.875 1209.125 112.438 556.3}2
68 1171.875 1060.625 149.062 484.188
69 1042.625 76.375 7.045 21.647
70 1805.125 207.625 336.646 31.238
71 1655.250 176.75G 264.945 27.130
72 1386.000 587.500 192.175 260.111
73 1429.000 444.000 193.416 180.0y7
74 1343.000 728.500 192.796 327.116
75 1991.375 1418.625 557.060 617.796
76 2072.750 705.75@ 534.617 255.411
77 1270.375 1956.125 228.557 951.248
78 1130.125 2044.375% 164.737 1028.8p8
79 1102.875 2251.875% 153.436 1178.8p2
80 1093.125 2283.875 147.999 1208.9p4
81 1083.625 2315.625 142.707 1250.2p8
82 1223.625 2346.625 207.383 1230.2)8
83 1213.875 2379.625 201.503 1260.7p4




Check Points

The following list of check points is based on an upper-left origithe coordinate
(1,2) is in the center of th@xel inthe upper-left cornerThis isthe format used by ERDAS
Version 7.5, the system which was used to extract the control points and the check points.

CcP U Vv X Y
1 2130.250 529.750 535.4883 176.298
2 1843.125 2071.375 502.438 971.812
3 2045.750 790.250 534.906 297.8%5
4 1569.750 1788.750 376.968 838.6%4
) 1577.625 1765.625 381.660 827.117
6 1630.125 1811.125 406.058 851.515
7 1393.875 1931.375 289.699 926.790
8 1244.875 2281.125 218.670 1169.471
9 1524.125 2311.375 354.953 1141.4p4
10 1920.375 1304.37% 522.707 555.190
11 2051.375 1180.625% 562.985 480.696
12 2146.625 1093.375 590.993 428.485
13 1485.875 1268.375 316.984 562.985
14 1680.625 774.625 360.005 316.118
15 1773.875 507.375 365.34(7 177.814
16 1806.375 403.125 366.213 125.1%0
17 1954.125 210.375 406.925 22.475
18 1834.125 252.125 357.262 51.060
19 1409.875 258.875 162.078 88.018
20 1456.125 106.375 162.656 6.017
21 1296.875 643.375 160.635 295.3p9
22 1278.875 946.375 186.332 420.784
23 1285.625 1170.785% 211.885 527.182
24 1235.125 1660.375 211.307 781.791
25 1228.375 2088.625 209.448 1043.2p8
26 1132.375 2155.37% 164.462 1106.2J19
27 1234.375 2313.625 213.262 1194.8p3
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locations of the control points. Extrapolation outside the convex hull uses four extreme
points to complete the triangulation.
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Appendix D : Residual Magnitude Difference Plots

Third Order Polynomial

A\

Perspective view othe magnitude ofthe difference from a plane between a thwdder

polynomial and a firstorder polynomial {.e. a least-squareaffine transformation).

vertical scale is to 100 pixels RMSE.

The



Appendix E : Residual Magnitude Difference Plot
Sixth Order Polynomial
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Perspective view othe magnitude ofthe difference from a plane between a sixitder

polynomial and a firstorder polynomial ¢.e. a least-squareaffine transformation). The
vertical scale is to 100 pixels RMSE.



Appendix F : Residual Magnitude Difference Plot
Finite Element Method (30 x 30 Gridding)
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Perspective view athe magnitude ofthe difference from a plane between a pieceviisear
model (using a 30x30 grid) and a firstder polynomial (.e. a least-squaresiffine

transformation). The vertical scale is to 100 pixels RMSE.



Appendix G : Residual Magnitude Difference Plot
Third Order Polynomial with Multiquadric Method

Perspective view ahe magnitude othe difference from a plane betweeriveo-stagemodel,
third-order polynomial and multiquadric method, and a firstder polynomial {.e. a least-
squares affine transformation). The vertical scale is to 100 pixels RMSE.



Appendix E : Warped Images

First Order Bivariate Mapping Polynomial

First OrderPolynomial. Origin(1,1) at the center of thaxel in the uppeieft corner of the
reference coordinate system. Image extents shownanerauppeieft (601,1) and lower
right (2400,2400).



Appendix E : Warped Images

Third Order Bivariate Mapping Polynomial

Third OrderPolynomial. Origin(1,1) at the center of thgxel in the uppeieft corner of the
reference coordinate system. Image extents shownahnerauppeieft (601,1) and lower
right (2400,2400).



Appendix E : Warped Images

Finite Element Method (120 x 120 Gridding)

‘;“

Finite ElementMethod. Thiessen Triangulation. Origifi,1) at the center of thaxel in the
upperleft corner of the reference coordinagstem. Image extents shown hare: upper
left (601,1) and lower right (2400,2400).



Appendix E : Warped Images

Two-Stage Multiquadric Method

Third OrderPolynomialand MultiquadricTwo-Stagelmage Registration. 1@jin (1,1) at the

center of thepixel inthe uppeleft corner of the reference coordinatgstem. Image extents
shown here are: upper left (601,1) and lower right (2400,2400).



Appendix E : Warped Images

Two-Stage Reciprocal Multiquadric Method

Third OrderPolynomialand Reciprocal Multiquadri¢wo-Stagelmage Registration.Origin
(1,1) at the center of theixel in the uppereft corner of the reference coordinagstem.
Image extents shown here are: upper left (601,1) and lower right (2400,2400).



Appendix E : Warped Images
Thin Plate Method

Thin Plate Spline. Origirn(1,1) at the center of thpixel in the upperleft corner of the
reference coordinate system. Image extents shownahnerauppeieft (601,1) and lower
right (2400,2400).



