
Image Representation, Indexing and

Retrieval Based on Spatial Relationships

and Properties of Objects

Euripides G.M. Petrakis

March 1993

Image Representation, Indexing and
Retrieval Based on Spatial Relationships

and Properties of Objects

A dissertation

presented to the faculty of the

Department of Computer Science of the

University of Crete

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

by

Euripides G.M. Petrakis

c� Copyright by Euripides G.M. Petrakis 1993
All Rights Reserved

Acknowledgements

THIS DISSERTATION could not have been completed without the help of many people.

First and foremost, the completion of this work owes to the support and encouragement

I received from my parents. I feel also grateful to my thesis advisor Professor Stelios

Orphanoudakis for his guidance, his tireless support, the patience and the confidence he

showed to me and to my work.

I wish to thank the members of my dissertation committee, Professors Panos Constan-

topoulos, Costas Courcoubetis, Siegfried Stiehl and Stavros Christodoulakis for valuable

contributions to this work. They got into deep questions and with their comments helped me

to improve this dissertation in both content and presentation.

I feel grateful to my colleagues for their cooperation and friendship during all these

years. I want to thank Adam Damianakis, Antonis Argyros, Maria Mamalaki, Tasos Sorilos,

Costas Vezeridis, Thodoros Topaloglou, Mihalis Mertikas, Giorgos Bebis and all members

of the Image Processing Laboratory. Especially, I want to thank Rena Kalaitzaki, our

tireless secretary, for her friendship and support. I want to thank Manolis Lourakis for his

cooperation and for the excellent work he did in implementing the user interface. He and

Dimitris Lagouvardos did a lot of tiresome work for me. I wish them both best of luck with

their graduate studies.

I am thankful to Professors Nicos Alvertos and Vasilis Moustakis and my colleague

Thodoros Topaloglou for their comments and for the careful reading of the manuscript.

Finally, I feel grateful to Doctor Manolis Vernadakis, Professor Manolis Kontopirakis and

many more good friends of mine who always were there whenever I needed them.

This research was supported in part by the Department of Computer Science, University of

Crete and the Institute of Computer Science, Foundation for Research and Technology, Hellas

(FORTH). The AZ-VUB Hospital, Brussels and the Department of Diagnostic Imaging, Yale

University School of Medicine provided most of the medical images used in this work.

Abstract

I N THIS thesis, a new methodology is presented which supports the efficient representation,

indexing and retrieval of images by content. Images may be indexed and accessed based

on spatial relationships between objects, properties of individual objects, and properties of

object classes. In particular, images are first decomposed into groups of objects, called

“image subsets”, and are indexed by computing addresses to all such groups. All groups

up to a predefined maximum size are considered. This methodology supports the efficient

processing of queries by image example and avoids exhaustive searching through the entire

image database.

The image database consists of a “physical database” which stores the original image files

and a “logical database” which stores all image subsets together with their representations.

The logical database consists of a set of data files each storing subsets of equal size.

Queries are resolved through the logical database. Searching is performed in two steps,

namely “hypothesis generation” and “hypothesis verification”. Queries are distinguished into

“direct access”, corresponding to queries specifying a number of objects which is less than or

equal to the maximum size of image subsets stored, and into “indirect access”, corresponding

to queries specifying more objects than the maximum size of image subsets stored.

The performance of the proposed methodology has been evaluated based on simulated

images, as well as images obtained with computed tomography and magnetic resonance

imaging. Measurements of the size of the answer sets and of the retrieval response times

have been obtained. The results of this evaluation are presented and discussed.

This work completes and extends the work of others. In particular, the image representa-

tions used in this work may be considered as extensions of the representation of “2-D strings”.

The classical framework of representation of 2-D strings is specialized to the cases of scaled

and unscaled images. Based on 2-D strings, an indexing scheme and a retrieval strategy are

proposed, which in contrast to 2-D strings, avoid the exhaustive search through the entire

image database. The performance of the proposed methodology has been compared with

the performance of existing techniques of 2-D string indexing and retrieval. The results

demonstrate significant retrieval performance improvements.

Contents

1 Introduction 1

1.1 Problem Description � 2

1.2 Overview of the Present Work � 4

1.3 Contributions of the Present Work � 7

1.4 Thesis Outline � 9

2 Related Work 10

2.1 Introduction � 10

2.2 Image Analysis and Interpretation � 10

2.3 Image Representation � 13

2.4 Image Data Modeling � 15

2.5 Image Query Languages � 17

2.6 Image Similarity � 18

2.7 Image Retrieval by Content � 19

2.7.1 Image Retrieval Based on the Shape of Objects � � � � � � � � � � � 19

i

ii

2.7.2 Image Retrieval Based on Structural Image Content � � � � � � � � � 21

2.8 Image Indexing � 23

2.8.1 Database Indexing Techniques � 23

2.8.2 Spatial Indexing Techniques � 26

2.9 Image Database Systems � 28

3 Image Representation 31

3.1 Introduction � 31

3.2 Image Preprocessing � 32

3.3 Image Decomposition into Subsets � 33

3.4 Representation of the “Left/Right” and “Below/Above” Relationships � � � 34

3.4.1 First Ordering Criterion � 34

3.4.2 Second Ordering Criterion � 37

3.4.3 Comparison of the Two Ordering Criteria � � � � � � � � � � � � � � 39

3.5 Representation of the Inclusion Relationships � � � � � � � � � � � � � � � � 40

3.6 Representation of Object Properties � 44

3.7 Stability of Image Representations � 45

3.8 Completeness of Image Representations � � � � � � � � � � � � � � � � � � � 46

4 Image Indexing and Storage 48

4.1 Introduction � 48

4.2 Indexing Image Subsets � 49

iii

4.3 Proposed Addressing Scheme � 51

4.4 Selection of Primary Attributes � 53

4.5 Proposed File Structure � 56

4.6 Storage Requirements � 58

5 Image Retrieval 61

5.1 Introduction � 61

5.2 Image Similarity Criteria � 61

5.3 Search Strategy � 62

5.3.1 Direct Access Queries: 2 � m � Kmax � � � � � � � � � � � � � � � 62

5.3.2 Indirect Access Queries: m � Kmax � � � � � � � � � � � � � � � � 63

5.4 Performance Evaluation � 63

5.4.1 Experimental Results � 65

5.5 Tailoring Parameters to an Application � � � � � � � � � � � � � � � � � � � 72

5.5.1 Specification of the Number of Primary Attributes � � � � � � � � � 73

5.5.2 Specification of Kmax � 73

5.6 Indexed Search Versus Search by 2-D Strings � � � � � � � � � � � � � � � � 74

5.7 Indexing of 2-D Strings � 77

5.8 Retrievals on a Medical IDB � 79

5.8.1 Examples of Retrievals � 81

5.9 Accuracy of Retrievals � 86

iv

6 Epilog 87

6.1 Conclusions � 87

6.2 Directions for Further Research � 89

6.3 IDB System Characteristics � 91

A Image Indexing by 2-D Strings 94

A.1 Introduction � 94

A.2 Image Representation by 2-D Strings � 95

A.3 Image Matching Using 2-D Strings � 97

A.4 Extensions to 2-D Strings � 101

A.5 Correctness of 2-D String Matching � 103

B User Interface 110

List of Figures

3.1 Example of an original grey-level image (left) and its segmented form (right). 32

3.2 A 3 � 3 rectangular grid (left) placed over the example image of Figure 3.1

(right). � 38

3.3 Tree representation of string w corresponding to the example image of Fig-

ure 3.1. � 41

3.4 Function valid determines whether w can be an inclusion string correspond-

ing to an image containing k objects. � 42

3.5 Examples of graph structures and w strings not corresponding to inclusion

relationships. � 43

4.1 File structure Hk with directory of size Dk . � � � � � � � � � � � � � � � � � 57

4.2 Number of image subsets produced from an image, as a function of the

number of objects it contains and the maximum size of image subsets. � � � 59

5.1 Average size of answer set corresponding to direct access queries, as a per-

centage of image subsets retrieved, plotted against the number of query objects. 67

5.2 Average size of answer set corresponding to direct access queries, as a per-

centage of images retrieved, plotted against the number of query objects. � � 68

v

vi

5.3 Average retrieval response times corresponding to direct access queries, plot-

ted against the number of query objects. � � � � � � � � � � � � � � � � � � � 69

5.4 Average size of hypothesized answer set corresponding to indirect access

queries, as a percentage of images retrieved, plotted against the number of

query objects. � 71

5.5 Average retrieval response times corresponding to indirect access queries,

plotted against the number of query objects. � � � � � � � � � � � � � � � � � 72

5.6 Average retrieval response times as a function of the number of query ob-

jects corresponding to the first ordering criterion and (a) indexed search, (b)

exhaustive search using 2-D strings and match2D algorithm. � � � � � � � � 75

5.7 Average retrieval response times as a function of the number of query objects

corresponding to the second ordering criterion and (a) indexed search, (b)

exhaustive search using 2-D strings and match2D2 algorithm. � � � � � � � 76

5.8 Medical IDB: average size of answer set, as a percentage of images retrieved,

plotted against the number of query objects. � � � � � � � � � � � � � � � � � 79

5.9 Medical IDB: average retrieval response times plotted against the number of

query objects. � 80

5.10 Retrieval example 1. � 82

5.11 Retrieval example 2. � 83

5.12 Retrieval example 3. � 84

5.13 Retrieval example 4. � 85

A.1 A symbolic image (left) and its corresponding augmented 2-D string (right). 96

vii

A.2 Function agree determines whether the pair of objects ��� �� is a type-i

(i � 0� 1� 2) match of the pair �j� k�. � 99

A.3 Function match2D determines whether the 2-D string �x1� r1� s1� is a type-i

(i � 0� 1� 2) subsequence of the 2-D string �x2� r2� s2�. � � � � � � � � � � � � 104

A.4 Function sequences produces all type-i (i � 0� 1� 2) matched subsequences

when called before match2D exits. � 105

A.5 Functionmatch2D2 determines whether the 2-D string �x1� r1� s1� is a type-2

subsequence of the 2-D string �x2� r2� s2� and produces all matched subse-

quences. � 106

A.6 Function check determines whether the pairs of objects ��� ��, �front���� ��

and ��� back���� are type-1 matches of the pairs �j� k�, �b�front����� j� and

�j� b�back����� respectively. � 107

A.7 Function curb computes, the indices of the “front” and “back” objects of the

objects in a query image. � 108

A.8 Function iorelations constructs, using the inclusion string w, the array io

which holds the inclusion relationships between objects in an image. � � � � 109

B.1 Image editing and query drawing tool. � 111

B.2 Image browsing tool. � 112

List of Tables

3.1 Centers of mass corresponding to the objects contained in the example image

of Figure 3.1. � 35

3.2 Positions corresponding to the objects contained in the example image of

Figure 3.1 computed with respect to a 3�3 rectangular grid of size �X�Y � �

�256� 256�. � 39

4.1 Coefficient of variation computed for all attribute indices corresponding to

image subsets of size k � �2� 6�, derived from a set of medical images. � � � 54

4.2 Size of address space for values of k in the range [2,6] corresponding to the

attributes of position and roundness. � 55

viii

Chapter 1

Introduction

I N MANY applications, images comprise the vast majority of acquired and processed data.

For example, in remote sensing and astronomy, large amounts of image data are received daily

by land stations for processing, analysis and archiving. A similar need of processing, analysis

and archiving of images has been identified in applications such as cartography (images

are analog or digitized maps) and meteorology (images are meteorological maps). The

medical imaging field, in particular, has grown substantially in recent years and has generated

additional interest in methods and tools for the management, analysis, and communication

of medical images. Picture Archiving and Communication Systems (PACS) are currently

used in many medical centers to manage the image data produced by computed tomography

(CT), magnetic resonance (MRI), digital subtraction angiography (DSA), digital radiography,

ultrasound, and other diagnostic imaging modalities which are available and routinely used

to support clinical decision making. It is important to extend the capabilities of techniques

used in such application fields by developing database systems supporting the automated

archiving and retrieval of images by content.

An “Image DataBase” (IDB) is a “system in which a large amount of image data are

integratedly stored” [1]. Image data may include: the raw images themselves, attributes

1

2

(e.g., dates, names), text (e.g., diagnosis related text), information extracted from images

by automated or computer assisted image analysis, modality and image file header informa-

tion (e.g., ACR/NEMA [2]) etc. Such data can be viewed as forming either “multimedia

documents” [3], or “objects” [4].

Important considerations in the design and implementation of IDB systems are: image

feature extraction, image content representation and organization of stored information,

search and retrieval strategies, and user interface design. Traditional database concepts such

as data independence, data integrity and control of shared information are also of great

significance. Addressing such issues has become the object of intensive research activities

in many areas of Computer Science over the past few years. In particular, advances mainly

in the areas of Databases and Computer Vision research resulted in the development of

techniques which can be used for purposes of image archiving, retrieval, and general IDB

work. Furthermore, the development of optical disk technology has made the production and

usage of such systems feasible, at a relatively low cost.

1.1 Problem Description

The effectiveness of an IDB system, which supports the archiving and retrieval of images

by content, ultimately depends on the types and correctness of image representations used,

the types of image queries allowed, and the efficiency of search techniques implemented. In

selecting an appropriate type of image representation, an attempt must be made to reduce

the dependence on the application domain as much as possible and to ensure some tolerance

to uncertainty with regard to image content. Furthermore, image representations must be

compact to minimize storage space, while image processing, analysis and search procedures

must be computationally efficient in order to meet the efficiency requirements of many IDB

applications. Query response times and the size of the answer set depend highly on query

type, specificity, complexity, amount of on-line image analysis required and the size of the

3

search. In addition, query formulation ought to be iterative and flexible, thus enabling a

gradual resolution of user uncertainty. All images (and/or information related to images)

satisfying the query selection criteria are retrieved and displayed for viewing.

The retrieval capabilities of an IDB must be embedded in its query language. Command

oriented query languages allow the user to issue queries by conditional statements involving

various image attributes (values of attributes and/or ranges of such values). Other types of

image queries include: queries by identifier (a unique key is specified), region queries [5] (an

image region is specified and all regions that intersect it are returned), text queries [6] etc.

The highest complexity of image queries is encountered in queries by example. In this case,

a sample image or sketch is provided and the system must analyze it, extract an appropriate

description and representation of its content and, finally, match this representation against

representations of images stored in the database. This type of query is easy to be expressed

and formulated, since the user need not be familiar with the syntax of any special purpose

image query language.

So far, in order to determine which images must be retrieved, content representations

corresponding to all stored images are compared (one by one) with a similar representation

extracted from the query image. Thus, retrievals can be inefficient due to the fact that

comparisons often involve time intensive operations such as graph matching [7, 8]. Various

other techniques, with lower time complexity, can be used to resolve such queries. An

example of such a technique is matching based on “2-D strings” [9]. A successful match

associates the query image with only part of a stored image (a subset of the objects it contains),

but, it is usually the whole image which is retrieved.

The effectiveness of an IDB system supporting the archiving and retrieval of images

by content can be significantly enhanced by incorporating into the IDB storage and search

mechanisms efficient techniques supporting the indexing of images by content. However,

the problem of indexing images by content is difficult due to reasons related to complexity

and uncertainty inherent to image analysis and interpretation tasks, the large amounts of data

4

involved in derived image representations, as well as the dependence of such techniques on

the content of images relating to a specific application.

1.2 Overview of the Present Work

In this thesis, a new methodology is presented which supports the representation, indexing

and retrieval of images by content. This methodology supports the efficient processing of

queries by image example and avoids exhaustive searching through the entire IDB. Images

may be indexed and accessed based on spatial relationships between objects, properties of

individual objects, and properties of object classes. The proposed methodology works by

decomposing a given image into groups of objects, called “image subsets”. All image subsets

up to a maximum size are considered. The maximum size of image subsets is constant for a

particular implementation and must be specified in advance.

The content description of each image subset is given in terms of certain types of spatial

relationships between objects, such as the “left/right”, “below/above” and “inside/outside”, in

terms of properties specific to individual objects, such as size (area), roundness (elongation),

orientation with respect to a reference direction, and in terms of properties of object classes.

Such image properties have the advantage of being generally useful for many kinds of images

and imaging applications.

The objects contained in each subset are first ordered. Two ordering criteria are presented

and discussed. The first ordering criterion can be used when images are scaled with respect

to each other, while the second ordering criterion can be used only when images are at a

fixed scale. Each of these ordered image subsets is then represented by a set of attribute

strings corresponding to the set of properties involved in a particular image description. An

image is indexed based on addresses computed to all the derived image subsets. In particular,

indexing is performed by computing an address, first to each individual attribute string and

then to each ordered subset as a whole.

5

The IDB consists of two parts: the “physical database” which stores the original image

files and the “logical database” [10] which stores the image subsets together with their

representations. The logical database consists of a set of data files each storing subsets of

equal size. Each data file is partitioned in segments (data pages) of fixed capacity, each

corresponding to a unique address. Each subset is stored together with image subsets having

the same address. Overflows are handled by creating linked lists of data pages. The address

space (i.e., number of different addresses) corresponding to a data file increases with the size

of image subsets stored in that file and with the number of properties which are used for

the computation of addresses, called “primary properties”. Pointers are implemented from

the logical to the physical database representing the association between the stored image

subsets and the images from which they have been derived.

All queries address the logical database rather than the raw image data stored in the

physical database. Searching is performed in two steps, namely “hypothesis generation” and

“hypothesis verification”. During the first step, a set of candidate images is retrieved. In

particular, all images which contain at least one image subset having the same address with

the query image are retrieved. The number of candidate images is always less than the total

number of images stored. During the second step, all candidate images are compared (one

by one) to the query image and the final answer set is produced. All images containing at

least one image subset matching the query (i.e., having both equal size and same property

strings) are retrieved and displayed for viewing. Representations of image subsets of equal

size having the same property strings with those of the query are also retrieved and displayed.

Query processing depends on the number of objects contained in the query image. In

particular, queries are distinguished into “direct access queries”, corresponding to queries

specifying a number of objects which is less than or equal to the maximum size of image

subsets stored, and into “indirect access queries”, corresponding to queries specifying more

objects than the maximum size of image subsets stored. Direct access queries address files

which store image subsets of the same size. Indirect access queries address the file which

6

stores subsets of maximum size. In this case, the objects of a given query image are taken in

groups of maximum size. Each group acts as a separate direct access query and retrieved a set

of candidate images. The intersection of these sets is then obtained and used to hypothesize

the existence of images matching the original query.

Evaluations of the performance of retrievals have been carried out based on a number of

test queries addressing an IDB consisting of 1�000 simulated images. Measurements of both

the size of answer sets (i.e., percentage of images returned with respect to the total number

of images stored) and of the retrieval response times have been taken. To obtain average

performance measures, the average performance to queries specifying an equal number of

objects has been computed. Both, the size of an answer set and the retrieval response time

decrease with the number of query objects and with the number of image properties used in

image comparisons.

Direct access queries perform much faster than indirect access queries. Compared to direct

access queries, indirect access queries incur an overhead due to the retrieval and processing

of intermediate query results. The performance of indirect access queries improves when the

maximum size of image subsets stored increases, since intermediate queries contain more

objects and return smaller answer sets. Queries respond faster, since the intersection of these

sets contains fewer candidate images. In general, the performance depends on the size of the

address space corresponding to the addressed data file and on the maximum size of image

subsets stored. The dependences of the performance on both the size of the address space

and on the maximum size of image subsets stored are explored.

In developing a prototype IDB which supports the indexing and retrieval of images by

content, we have chosen to work with two-dimensional tomographic images of the human

body (i.e., CT and MRI) and an IDB of 226 computed tomographic (CT) and magnetic

resonance (MR) images has been constructed. The choice of this particular type of images

is based mostly on their relatively well-structured content and their widely acknowledged

clinical significance. Prior to any processing, images are segmented into regions. Segmen-

7

tations are performed interactively and under supervision. An appropriate user interface has

been designed and implemented to facilitate the editing of primal segmentations, support

the flexible formulation and drawing of example queries, and the browsing of query results.

Examples of typical retrievals on this database are also presented and discussed.

1.3 Contributions of the Present Work

Representations in the form of strings, and in particular in the form of two-dimensional

strings (2-D strings), have been previously proposed in [9]. 2-D strings represent the

“left/right” and “below/above” relationships between objects contained in an image. Each

individual object is represented by a single value corresponding to a class or a name. The

representations used in this work may be considered as extensions of the original representa-

tions of 2-D strings to take into account the inclusion relationships between objects, as well

as more than one object properties. Furthermore, two ordering criteria are introduced and

the representation of 2-D strings is specialized to the cases of scaled and unscaled images

respectively.

The methodology presented in this thesis and 2-D strings can both be used to resolve

queries based on image content. However, the search based on 2-D strings is exhaustive: in

order to determine which images must be retrieved, 2-D string representations corresponding

to all stored images are compared (one by one) with a similar representation extracted from

the query image. Three algorithms for 2-D string matching are considered. The proposed

methodology outperforms 2-D strings in all cases of direct access queries. 2-D strings

perform better in certain cases of indirect access queries (e.g., when the maximum size of

image subsets stored is less than 5). The IDB of simulated images has been used as a testbed

for all comparisons.

An independent research activity which took place in parallel to ours and was published

at the time of writing [11], resulted in the proposal of a technique for image indexing which

8

is also based on 2-D strings. This technique focuses entirely on the problem of indexing. In

particular, an image is indexed based on representations corresponding to all pairs of image

objects. Each pair of objects is assigned an index and entered into a hash table. Similarly,

the objects contained in a given query image are taken in pairs. Each pair of query objects

acts as a separate query and used to retrieve a set of images. The intersection of the retrieved

sets contains images which are then compared to the original query.

There are certain overlaps between the technique in [11] and our methodology. However,

our methodology takes into account, in addition to indexing, the problems of the representa-

tion and retrieval of images, as well as the problem of the evaluation of the performance of

retrievals. Regarding indexing, the technique in [11] is similar to our approach in the case

where the maximum size of image subsets which are stored is 2. Queries which specify more

than 2 objects are indirect access queries and, therefore, incur a significant overhead due to

excessive data transfers and processing of intermediate query results.

The addressing scheme proposed in [11] requires that the images to be stored in the IDB

are known in advance. A preprocessing step is followed to derive a hash function which is

optimum for this particular set of images (i.e., guarantees that no two pairs of objects are

mapped to the same address unless they have the same properties). However, if new images

are entered into the IDB, the hash function ceases to be perfect. The addressing scheme

proposed in this thesis, requires no preprocessing, the number of images need not be known

in advance and remains perfect regardless of the number of images which are entered in the

IDB.

Previous work, referred to in the literature as “image indexing” or “spatial indexing”

addresses the following problem: given a region, find all regions in the IDB which intersect

it (“region queries”) or, given a point in an image, find all regions which contain it (“point

queries”). Such queries (spatial queries) are common in applications where it is important

to retrieve images based on the position and the size of individual regions or objects (e.g.,

CAD/CAM and geographic database applications). Techniques such as the R-trees [12]

9

and techniques based on fractal curves [13] can be used to resolve such queries. However,

such techniques cannot index or access images by content (i.e., in terms of relationships and

properties of objects).

1.4 Thesis Outline

A review of related work done in the areas of Computer Vision and DataBases is pre-

sented in Chapter 2. Image preprocessing, the ordering criteria, the representation of image

properties by attribute strings, and the mapping of attribute strings to addresses, are the issues

discussed in Chapter 3. The indexing scheme and the storage file structure used are presented

in Chapter 4. The retrieval of images by content, the search strategy, as well as the eval-

uation of the performance of retrievals are discussed in Chapter 5 followed by conclusions

and directions for further work in Chapter 6. The representation of 2-D strings, extensions

implemented as part of this work, and three algorithms for 2-D string matching are presented

in Appendix A. Finally, a description of the user interface is given in Appendix B.

Chapter 2

Related Work

2.1 Introduction

I SSUES related to IDB system design and implementation have been raised previously by

many investigators [14, 1, 15, 16]. However, a general methodology for the design of such

systems has not been developed so far. Only when the requirements of a particular application

domain have been determined, techniques of image analysis, description, and image content

representation, with known database design methods, are adopted to develop an IDB system

which satisfies these requirements. The analysis and representation of images in an IDB

system, is closely related to the indexing, storage and retrieval of images by content. In the

following sections, we discuss related issues separately for ease of presentation.

2.2 Image Analysis and Interpretation

Techniques of image analysis and interpretation have been used in other domains (e.g.,

character recognition, industrial automation, remote sensing, robot vision, medical imaging

etc.) to describe and model images and image classes [17, 18, 19, 20]. The content of

10

11

images can be determined, based on the correspondence between the derived description of a

particular image and some appropriate model(s) of an image class [21, 22, 23]. So far, most of

the techniques which have been developed are knowledge-based, making use of application

and domain-specific knowledge and are not particularly well suited for image retrieval by

content and general IDB work; this is mostly due to problems related to computational

efficiency, uncertainty, and general knowledge representation issues [24, 25]. Nevertheless,

for certain applications within well specified domains, it is possible to develop and implement

techniques of image analysis, content representation and modeling which can be used to

manipulate images in IDB systems efficiently.

Image descriptions are generally given in terms of properties of objects or regions, con-

tained within the image and relationships among such objects or regions. An image de-

scription may also consist of property values which are defined for the image as a whole.

In the case when image descriptions are based on object/region recognition and labeling,

the descriptions can be represented by relational structures such as graphs. The specific

properties which are used in image descriptions are derived from the raw image data and can

be geometric (i.e., independent of pixel values), statistical or textural, or properties specified

in some transform domain (e.g., Fourier, Hough). They can also be characterized as local or

global depending on their short or long range impact.

The description of a given image is the task of low to intermediate-level vision. The task

of high-level vision is to find correspondences between descriptions of specific images and

models of image classes for the purpose of understanding and interpreting image content

[22, 26]. The effectiveness of both low and high level vision is strongly constrained by

the effectiveness of segmentation. The purpose of segmentation is to group image pixels

into meaningful units on the basis of a number of predetermined criteria (i.e., proximity,

similarity, continuity) [27, 28]. Segmentation becomes very difficult especially when images

are noisy or taken under poor lighting conditions.

At each level of image description and modeling mentioned above, there are two general

12

types of models which can be used to describe classes of images: declarative and procedural

[29]. Declarative models consist of constraints on the properties of pixels, objects or regions

and on the relationships among such image components. Procedural models are implicitly

defined in terms of processes which generate or recognize images. An important class of

procedural models is that of syntactic models, based on the definition of various types of

grammars for the generation and modeling of arrays, region shapes and relational structures.

Such grammars can also be attributed, allowing numerical parameter values to be included

in the model which may be used to increase its specificity. Both declarative and procedural

models can be fuzzy or probabilistic, involving probabilistic constraints and probabilistic

control of syntactic rules respectively.

In order to interpret the content of a given image, so that objects and regions can be

identified correctly, descriptions of the image at different levels must be matched with one

of possibly many models of different classes of images. This task can become very difficult

and computationally intensive if the models are complex and a large number of models must

be considered. Matching with the complex models is attempted only when matching with

simpler models has been achieved. Furthermore, in a top-down approach to model matching,

the model may be used to guide the generation of appropriate image descriptions, rather

than first generating the description and then attempting to match it with a model. Another

alternative is to combine top-down and bottom-up processes in order to avoid certain problems

with uncertainty involved in hypothesizing the existence of a particular object in the image

on the basis of a model. Such problems are inherent in the top-down approach [22].

The above control strategies for image analysis and understanding are simplified when

one is dealing with two-dimensional images taken under certain conditions of good lighting

and low noise. Such images can be found in applications such as microscopy, character

recognition etc. Many of the problems alluded to above are not encountered in this case

and image descriptions and class models are easier to construct. The set of properties which

can be used to build image descriptions is then smaller and complex model matching can be

13

avoided. However, even in two dimensions, in applications such as medical imaging and

remote sensing, images are often very noisy, segmentations are inexact, while image models

are difficult to formulate and use.

2.3 Image Representation

Prior to storage, derived image descriptions need to be appropriately represented (mapped)

in database storage structures and models (e.g., relational tables). The amount of stored data,

data processing and communication overhead can be reduced when compact (economical in

space) image representations are used. The choice of a particular type of representation is

closely related to the types of image queries allowed and to the specific access mechanisms

developed to process such queries. In general, we distinguish between two kinds of image

representations: (a) representations of the image semantic or structural content given in terms

of properties of objects or regions and relationships among them, and (b) representations

specific to individual image objects or regions.

Representations of the image semantic or structural content are of particular importance.

At one extreme, once an image description has been derived, it can be easily mapped

to database relations, stored in database relational tables and indexed using the indexing

mechanisms provided by a particular DBMS [30, 31, 32]. Such representations can be used

to answer image queries (see Section 2.5) specifying constraints on property values. Queries

by image example will have to be translated into conditional statements involving constraints

on object properties and relationships. However, such queries are difficult to be processed

due to reasons related to the complexity of search, especially when queries specify more than

two objects and many image properties.

“2-D strings” [9] is one of a few representation structures originally designed for use

in an IDB environment. The technique provides a simple and compact representation of

spatial image properties in the form of two one-dimensional strings. Before the 2-D string

14

representation of a given image can be derived, the image must first be segmented into

disjoint regions or objects and transformed into a “symbolic image”. The positions of objects

in a symbolic image are represented by their center of mass, while the objects themselves are

represented by values corresponding to names or classes. By taking the objects in a symbolic

image from left to right and from below to above, two one-dimensional strings are produced

forming the 2-D string representation of the original image.

The technique of 2-D strings is applicable whenever information concerning object names

or classes and the “left/right”, “below/above” relationships between objects is an adequate

representation of the semantic or structural image content. This is the case in applications

where images contain objects which are mutually disjoint and have rather simple shapes.

However, there are applications in which images may contain overlapping objects having

complex shapes. The spatial relationships between overlapping objects cannot be clearly

identified based on their center of mass and, therefore, symbolic images and 2-D strings

are not sufficient to provide a complete representation of the semantic or structural image

content. To deal with such situations, various extensions of the original representations of

2-D strings has been proposed.

2-D C strings [33] is a representation structure based on 2-D strings. 2-D C strings provides

a more precise and complete representation of object spatial relationships than 2-D strings in

cases of images consisting of complex and overlapping objects. It is complete, in the sense

that every spatial relationship can be derived from it. Overlapping objects are segmented

into smaller subparts for which their spatial relationships can be classified uniquely either as

“disjoint”, “same position” or “edge to edge”. Based on these three new types of relationships

between object subparts, up to 169 different spatial relationships between any two objects

can be identified and coded in the 2-D C string representation of a given image. However,

the 2-D C string representation of an image is not as simple and compact as the original 2-D

string representation, nor can it be produced very efficiently.

A symbolic image can be reconstructed from its 2-D or 2-D C string representation.

15

Symbolic images reconstructed from their stored 2-D or 2-D C representations can be used

for browsing the IDB. 2-D or 2-D C strings can also be used for purposes of image retrieval

by content (see Section 2.7.2). However, retrievals based on 2-D C strings are less efficient

compared to retrievals based on 2-D strings.

Fractal codes are examples of representations of the second type. They are used to repre-

sent image regions of arbitrary shape and facilitate database search and retrievals to queries

specifying points or regions (spatial queries). Such image representations are discussed in

Section 2.8 in the context of spatial indexing techniques.

2.4 Image Data Modeling

There are various types of image data that need to be stored and manipulated within

an IDB including original image files, image content descriptions, text descriptions, voice,

attributes (e.g., names, dates) etc. In developing an IDB system which supports the efficient

management of various kinds of image data, while being extensible and easy to use, an

appropriate data model and a database management system (DBMS) must be adopted. Such

a DBMS must provide persistent storage of both the model (database schema) and the data, as

well as mechanisms for defining, creating, modifying and accessing both the model and the

data. Furthermore, it must provide a query language, transaction management, concurrency

control and authorization for a multiuser environment, as well as performance features such

as secondary indexing and clustering. Such features and mechanisms are inherent within

classical DBMSs such as the relational ones [34].

Earlier approaches to IDB systems design distinguish image data into: original image files,

called “physical images”, and image related data (i.e., descriptions, attributes etc.), called

“logical images” [35, 10]. Physical and logical images are stored into a physical and a logical

database respectively. There may be a need to treat physical and logical data independently

since, in most cases, they serve different purposes. Access methods are usually applied to

16

logical data rather than the vast amount of physical data. Furthermore, logical images are

subject to updates, while physical images are permanently stored (e.g., on an optical disc),

and retrieved only for viewing.

In earlier IDB systems (REDI, GRAIN, IMAID) [1] the logical database is implemented

as a conventional database using the relational data model and a relational DBMS. This

was a very natural way to extend conventional database technology to handle image data.

The physical database is implemented as a separate image store holding the original image

files. Pointers are implemented from the logical database to the images stored in the physical

database. Prior to storing physical images, image compression techniques [36] can be applied

to reduce storage requirements.

Recent proposals regarding the design of IDB systems and the management of image

data are influenced by the “object oriented” approach [37, 4, 38, 39]. This approach offers

a framework within which different types of entities (e.g., different kinds of image data)

and operations (e.g., image processing functions, image access mechanisms etc.) may be

uniformly represented as “objects”. An object, is defined as either a primitive or composite

entity integrating within the same representation both data and operations. Objects are

grouped into “classes” which can also be objects. Object classes are organized into hierarchies

thus, taking advantage of the property of “inheritance”. PROBE [40] is an instance of an

IDB system which has been designed based on the object oriented paradigm.

Other approaches consider image data to be part of “multimedia documents” [3]. A

multimedia document can be regarded as a structured collection of image, voice, text and

attribute data. MUSE [41] and MINOS [42] are two characteristic instances of multimedia

document systems.

17

2.5 Image Query Languages

The retrieval capabilities of an IDB must be embedded in its query language. Query

response times and the size of the answer set depend highly on query type specificity,

complexity, amount of on-line image analysis required and the size of the search. Query

formulation ought to be iterative and flexible, thus enabling a gradual resolution of user

uncertainty. All images (and/or information related to images) satisfying the query selection

criteria are retrieved and displayed for viewing. Furthermore, a query response can be refined

by “browsing”: before a final selection is made, characteristic representations (e.g., icons,

image miniatures) corresponding to all images contained in the answer set are displayed.

Browsing can be especially helpful when the specification of pictorial content is ambiguous

and it may be the only method for making a difficult final selection [29]. In addition,

displaying such image forms, instead of the original images, avoids extensive data transfers

through a communication network during retrievals.

Command oriented query languages allow the user to issue queries by conditional state-

ments involving various image attributes (i.e., exact values of attributes or ranges of such

values). Other types of image queries include: queries by identifier (i.e., a unique key is

specified), region queries [5] (i.e., an image region is specified and all regions that intersect

it are returned), text queries [6] etc. The highest complexity of image queries is encountered

in queries by example. In this case, a sample image or sketch is provided, the system must

analyze it, extract an appropriate description and representation of its content and, finally,

match this representation against representations of images stored in the database.

Most of the known IDB systems make use of a command-oriented query language ex-

tended to manipulate all kinds of image data. For example, GRAIN [10] makes use of a

relational query language (RAIN) which has been extended with additional commands for

image display and sketch drawing. In addition, query formulation may be assisted through

the use of appropriately designed user interfaces [43, 44], as well as by special purpose tools

18

(e.g., graphic tools) and techniques such as the “zooming technique” [45] used in GRAIN.

REDI [30] makes use of the QPE (Query by Pictorial Example) query language [46] which

is an extended version of the relational QBE (Query By Example) language. Various pic-

torial query languages related to a specific underlying image representation have also been

proposed: PSQL [47] is an SQL-based query language operating on representations based

on R�-trees [48]. PIQUERY [49] is an image query language based on the paradigm of QBE

operating on “grid” image representations.

In most cases, the definition of an image query language is based on a conventional query

model, such as a relational one. Relational query models, have the advantage of being

powerful and simple. However, object oriented database models do not provide simple and

powerful query languages. The main reason is that, the set and join operations cannot be

easily defined on hierarchies of classes. Most of the recent proposals, such as the query model

developed for ORION [4, 38], restrict the target of a query to a single class or a hierarchy

rooted at that class. This, may be found to be a serious constraint in designing an image

query language which satisfies the requirements of a specific imaging application.

2.6 Image Similarity

The definition of similarity criteria influences significantly the performance of retrievals.

Similarity criteria can be either global or local depending on whether they are defined for

images as a whole or for parts of images (e.g., objects). Similarity (conversely dissimilarity)

is usually computed in terms of appropriate “distance measures” [50]. In general, distance

measures are defined with regard to specific matching techniques and specific kinds of image

representations [51, 52, 53, 54]. For example, a distance measure between two “attributed

relational graphs”, representing the content of two images which are compared, is defined as

the cost of the minimum cost transformations required in order to transform the first graph

to the second [55, 31].

19

The similarity between images often depends on the definition of appropriate threshold

values: when the value of a distance measure is less than a predefined threshold value,

the match is successful; otherwise it is rejected. In particular, when the value of a global

distance measure is less than the value of the corresponding threshold, the candidate image

is considered similar to the query; otherwise it is considered dissimilar and the match is

rejected. The similarity criteria are usually defined for pairs of entities (e.g., images, objects

etc.). However, it can also be defined between an image and a group of images (e.g., an

image and a class of images) or between two groups of images (e.g., two image classes).

2.7 Image Retrieval by Content

The highest complexity of image queries is encountered in the case of queries by example

image. A query by example may specify: (a) an object (or a part of an object), in which

case, all images containing objects which are similar to it (e.g., have similar shape) must be

retrieved, and (b) the semantic or structural content of an image, in which case, all images

containing similar objects having the same relationships with those between corresponding

query objects must be retrieved.

2.7.1 Image Retrieval Based on the Shape of Objects

The problem of retrieving images containing objects which are similar to the objects speci-

fied by a query is transformed into a problem of “object recognition” or “object classification”

which are well known problems in Computer Vision research. So far, a large number of tech-

niques for object recognition and classification are known to exist. A review of this kind of

techniques can be found in [56]. However, such techniques, are not particularly well suited

for IDB work. This is mostly due to the following reasons: most of them are “model based”,

since they assume that the number and the kinds of objects (i.e., classes) to be recognized

20

are known in advance. Others, such as those proposed in [57, 58, 59, 60, 61, 53, 62, 63],

perform an exhaustive search: all database objects or object class models are compared (one

by one) against all query objects. To our knowledge, none of the above techniques has ever

been tested on large databases storing hundreds or thousands of objects or models.

An object recognition technique is well suited for the retrieval of images based on the shape

of objects they contain, if: (a) it is robust against noise, (b) it can recognize similar objects

even if they are partially visible and (c) it is translation, scale and rotation invariant (i.e.,

it can recognize similar objects at various positions, scales and orientations). Furthermore,

it must avoid an exhaustive database search by allowing the indexing of objects based on

characteristics of their shape. Some of the most important known techniques, which fulfill

the above requirements, are reviewed in the following paragraphs.

The “geometric hashing” technique is one of the first to be proposed [64]. This tech-

nique uses translation and rotation invariant representations of contour segments called

“footprints”, obtained by taking sequences of constant-length segments and computing the

“angle-arclength” (� � s) representation of their shape. Footprints are Fourier-analyzed and

represented by feature vectors consisting of a number of their first order Fourier coefficients.

Finally, footprints are indexed in a multi-dimensional feature space. The technique proposed

in [65] uses a K-D-tree to index feature vectors derived in a similar manner: a number of local

contour segments near high curvature points are obtained, represented in the angle-arclength

space and transformed into multi-dimensional vectors using the Karhunen-Loeve expansion.

A simpler technique is proposed in [66]: the contour of objects is first approximated by

polygons. Groups of successive line segments, called “super segments”, are obtained, repre-

sented by a set of attribute values, and entered into a hash table. This technique performs at

a fixed scale. When a query object is given, the same process is followed, a representation

similar to those of stored objects is derived and all objects having the same representation or

the same class with it are retrieved.

A technique capable of indexing and recognizing partially visible objects at various scales

21

and orientations has been proposed in [67]. Objects are represented by sequences of their

most significant boundary segments obtained from the resampled curvature scale space.

The database consists of two components: an Artificial Neural Network (ANN), which has

been taught to classify contour segments and a model database consisting of multiple ANNs

structured in a hierarchical manner. Each of these ANNs has been trained to recognize an

object model based on a specific number of segment classifications. When a query object is

given, the object contour is segmented starting from a coarse resolution and moving to a finer

one. Segments obtained at a specific resolution are forwarded to the ANN representing the

first component of the database in order to be classified. The proper ANN in the hierarchy

is then chosen to perform the recognition of the unknown object, based on the segment

classifications of the first component.

2.7.2 Image Retrieval Based on Structural Image Content

Queries specifying the semantic or structural content of images are difficult to be resolved:

so far, in order to determine which images must be retrieved, content representations cor-

responding to all stored images are compared (one by one) with a similar representation

extracted from the query image. Thus, retrievals can be inefficient due to the fact that,

comparisons often involve time intensive operations such as graph matching [7, 8, 58, 31].

The time complexity of matching increases exponentially with the number of objects in the

images which are compared. Various other techniques with lower time complexity, can be

used to resolve such queries. Such a technique is matching based on 2-D strings [9]. Tech-

niques such as [68, 69, 70, 71, 72, 73] provide alternative solutions to reduced complexity

matching.

The similarity between two images (e.g., a query and a stored image) whose content is

represented by 2-D strings, can be determined based either on exact or approximate matching

techniques. In the first case, in order for two images to be similar, every object in the

first (query) image has to be associated to at least one similar object (i.e., an object having

22

the same name or class with it) in the second (stored) image and the matched objects in

these two images must have exactly the same relationships. The problem of determining

the similarity between two images is then transformed into one of 2-D string subsequence

matching. Algorithms of polynomial time complexity for determining whether a given 2-D

string is a two-dimensional subsequence of a second 2-D string can be found in [9, 74]. To our

knowledge, algorithms for subsequence matching performing on 2-D C string representations

of images has not been proposed so far.

The definition of similarity is less strict in the case of approximate matching techniques,

since the 2-D string of the query need not be an exact subsequence of the second 2-D string.

The approximate similarity between two 2-D strings can be determined based either on a

maximum likelihood or a minimum distance criterion. In the first case, the similarity is

determined based on the longest 2-D string subsequence that the two 2-D strings under

consideration have in common. Regarding image retrieval, the problem is then to retrieve the

most similar image from a set of stored images. This is the one having the longest common

subsequence with the query among the images stored in the IDB. The problem of finding

the longest common subsequence between two 2-D strings is transformed into a problem of

finding the maximal complete subgraphs (cliques) of a given graph. Therefore, the 2-D string

longest common subsequence problem has nonpolynomial time complexity. The problem of

finding the longest common subsequence between 2-D strings is treated in [75]. The problem

of finding the longest common subsequence between 2-D C strings is treated in [76].

The similarity between two two-dimensional strings can also be determined based upon

a minimum distance criterion. For example, the minimum distance between two 2-D or 2-D

C strings can be defined as the cost of the minimum cost transformations required in order

to transform the first string to the second. Algorithms for determining the minimum distance

between 1-D strings do exist [77, 78] and can be generalized to the case of two dimensional

strings.

23

2.8 Image Indexing

The image indexing techniques proposed to date, referred in the literature as “region” or

“spatial indexing techniques”, are related to certain types of image representations and to

two specific types of image queries, namely “region” and “point queries” [5]. In a typical

region query, a region (or object) is specified and all regions (or objects) that intersect it (i.e.,

share a common area with it) are returned. In point queries, a point is given and all regions

(or objects) that contain it are returned. Such queries are common in applications where

it is important to retrieve images based on the position and the size of individual regions

or objects (e.g., CAD/CAM and geographic database applications). Techniques such as the

“R-trees” [12] and techniques based on “fractal curves” [13] can be used to resolve such

queries.

There are certain application domains (e.g., medical imaging, robotics, geographic

database applications etc.) in which images need to be accessed by content. To our knowl-

edge, techniques which support the indexing of images by content have not been proposed

so far, with the exception of the technique proposed in [11]. The technique is based on

2-D strings. Each pair of image objects is assigned an index and entered into a hash table.

Similarly, the objects contained in a given query image are taken in pairs. Each pair of

query objects acts as a separate query and used to retrieve a set of images. These are images

containing at least one pair of objects having the same index with it. The intersection of all

retrieved sets is then obtained and used to hypothesize the existence of images matching the

original query.

2.8.1 Database Indexing Techniques

Indexing techniques are used widely in a variety of database applications to increase

the efficiency of retrievals. In particular, indexing ensures fast data retrieval by providing

efficient address calculation of data in secondary storage based on the values of one or more

24

attributes which uniquely specify data entities (records), called “keys”. Retrievals become

much faster compared to those corresponding to an exhaustive file search.

Indexing techniques fall into two broad categories: those making use of tree structured

indices, which achieve logarithmic access times and those based on “hashing” which achieve

constant access times. Data records are stored in “data pages” or “data buckets” of fixed

capacity. An attempt to store one more record in an already full page causes an “overflow”.

Overflows are handled by “open addressing” or “separate chaining”, as well as with splitting

overflowed pages. Furthermore, unless the keys are known in advance, it is impossible to

guarantee that no “collisions” will occur, in which case, two or more records are mapped to

the same address.

The “B-tree” is one of the first and most important tree-indexing techniques proposed so

far. B-trees have become a standard and a large number of database systems along with a

very wide variety of access methods have been proposed and implemented based on B-trees.

The major variants of the B-tree are discussed in [79]. B-trees ensures fast access times by

allowing high “branching ratios” (i.e., up to a large number of entries can be stored in each

node of a B-tree). Therefore, tree height is usually very small. A B-tree adapts its storage

space to the amount of stored data and always remains balanced, that is the length of each

path from the root to each leaf-node (and therefore the access time to each leaf-node) is the

same.

Hashing schemes are distinguished into “static” and “dynamic”. In static hashing schemes,

storage space is allocated statically and cannot be changed during processing without exces-

sive overhead. As the number of stored records increases, collisions and overflows become

frequent thus resulting in deterioration of performance. Dynamic hashing schemes adapt

their storage space dynamically to the amount of stored data. When a page overflows it is

split and its contents are distributed between itself and a newly allocated page. Conversely,

two pages may be merged, in which case a page is freed.

Dynamic hashing schemes can be further distinguished into those making use of a “di-

25

rectory” (i.e., an array of pointers to the actual data pages) and those without a directory

[80, 81]. “Dynamic hashing” [82] and “extendible hashing” [83] are characteristic instances

of techniques of the first category. In directory schemes (such as the above mentioned), re-

trievals can be completed in two disk accesses: one to access the directory (if stored on disk)

and one to access the data page itself. Directoryless schemes assume that a large contiguous

storage space is available. Instead of addressing a table, addresses are assigned to the data

pages themselves. “Linear hashing” [84], “linear hashing with partial expansions” [85] and

“spiral storage” [86] are characteristic instances of techniques of this category. However,

directoryless hashing schemes cannot ensure retrieval in one disk access. Hashing schemes

ensuring retrieval in one disk access do exist [87].

In comparison to tree indexing schemes, hashing schemes suffer from a serious drawback.

Specifically, keys are stored unordered, thus making the treatment of “range queries” ineffi-

cient. In this case, all records having keys within a certain range of values must be retrieved.

Techniques capable of treating such queries are discussed in Section 2.8.2. The techniques

discussed so far perform on single keys. However, techniques which perform on multiple

keys also exist. Earlier approaches, such as “inverted lists” and “multilists” [88] perform

well for queries involving a single key chosen among a set of keys. Queries involving more

than one keys, take much longer to answer. Others, such as the “K-D-B-tree” [89], can

be regarded as extensions of one-dimensional techniques in multiple dimensions. Multi-

dimensional indexing can be reduced to one-dimensional indexing by mapping every point

of the multi-dimensional space into one dimension [13, 90]. This way, every multiple-key

record is assigned a single-key and any of the known single-key indexing techniques can be

used.

The most important among the known techniques for multi-dimensional indexing is the

“grid file” [91], which was originally designed for multi-dimensional indexing and retrieval.

This technique makes no distinction between primary and secondary keys. The grid file

achieves retrieval in two disk accesses, one to access the directory (if stored on disk) and

26

one to access the data page. Furthermore, the grid file supports efficient treatment of range

queries.

2.8.2 Spatial Indexing Techniques

Spatial (region) indexing techniques fall in two broad categories: those based on tree-

index structures and those based on “fractal curves” or “space filling curves” [13]. With the

sole exception of the grid file technique, hashing techniques are not particularly well suited

for region indexing and range queries since they store keys unordered. Tree indices avoid

this problem, but result in slower retrieval times. For further reading on the subject, the

reader is referred to [92].

Among the tree-indexing techniques, “R-trees” [12] seem to be most efficient. R-trees

behave much like B-trees. R-trees are especially designed to index data represented by

intervals in multiple dimensions (e.g., two or three-dimensional image regions). They are

dynamic, since the storage space they require may grow or shrink gracefully according to the

number of stored entries (e.g., image regions). Like B-trees they always remain balanced.

R-tree nodes represent regions in the two-dimensional (in general multi-dimensional) space.

Each such region completely covers the regions represented by all its sibling nodes. Regions

corresponding to adjacent nodes may be overlapping. Searching always starts at the root of

the tree and descends to the leafs. At each level, the decision of which path to follow is taken

based on whether the query region is completely covered by the region represented by the

nodes. Since overlapping among node regions is allowed, more than one nodes may need to

be searched, thus resulting in a degradation of performance.

“R�-trees” [48] avoid overlapping, and thus searching on multiple paths, at the expense

of space while increasing the height of the tree. R�-trees outperform R-trees (i.e., result

in less disc accesses for searching the tree of indices) in most cases and especially when

point queries are processed. R�-trees [93] is yet another variant of the original R-tree which

27

achieves better retrieval performance.

Similar to R-trees are a number of other techniques [94, 95], such as “k-d-trees” and

“quad-trees” [96]. Compared to R-trees, quad-trees and k-d-trees have the disadvantage

of not taking paging of secondary storage into account. They are mostly useful as image

representation data structures or for indexing image regions in main memory. Indexing

techniques performing in multiple dimensions such as the grid file can also be used for

spatial indexing and range searching [97]. Image regions must first be represented by points

in a higher dimensionality space. For example, a two-dimensional rectangle can be mapped

to a point in a four dimensional space if each of its four coordinates (lower x, lower y, upper

x and upper y) is considered to be a separate attribute.

A second important category of spatial indexing techniques is based on fractal curves

[13]. Fractal curves provide a linear ordering of multi-dimensional points or a mapping of a

multi-dimensional space onto one dimension in a way that preserves proximity: neighboring

points in the multi-dimensional space are likely to be also neighbors in the one dimension.

Such a mapping is called “distance preserving mapping”. Regarding image indexing, fractal

curves work as follows: consider a disc being a one dimensional space on which two-

dimensional image regions are to be stored (mapped). Region queries require mostly the

retrieval of neighboring image points. After a distance preserving mapping has been applied,

neighboring points are coded by successive code values. A technique for single-key indexing

and capable of range searching, such as the B-tree technique, can be used to index the coded

image regions. The number of disk accesses (and thus response time) required by range

queries is then minimum and depends on how well the mapping which has been used

preserves the distances in the one dimension.

The use of fractal curves to treat spatial indexing and searching was first introduced

in [98]. “Z-curves” (known also as “Peano curves”) were proposed for mapping two-

dimensional image regions onto one dimension. Image regions are represented by sequences

of successive “Z-codes” (values), grouped on the basis of their common prefix and stored

28

in database relations. To determine whether any two image regions are either overlapping

or disjoint, a procedure similar to the classical “natural join” database operation is followed.

Such a procedure is the basis of PROBE’s [40] “geometry filter” which acts as an optimizer

for spatial queries. The purpose of PROBE’s geometry filter is to produce a list of all

candidate image regions which are either overlapping or disjoint with respect to a given

query region. Results are then fine-tuned by further processing. Any relational database

management system can be easily extented to support spatial indexing and searching. Two

more curves providing better distance preserving mappings than the Z-curve, namely the

“Gray curve” [99] and the “Hilbert curve” [13] have been proposed as well. The Hilbert

curve has been proven [13, 90] to outperform the other two (i.e., results in less disk accesses

for searching the indices).

2.9 Image Database Systems

In early IDB systems [1, 14], the archiving and retrieval of images is mostly based on

information already available in some form (e.g., dates, serial number etc.) or provided by

a user (e.g., names, dates, quantities etc.). Such information is then stored in IDB tables

together with pointers to the original image files which are stored separately. Accordingly,

image retrievals are performed by providing values to specific key-attributes and by forming

simple types of image queries (e.g., queries by identifier, by conditional statement etc.).

Corresponding images are then retrieved and returned to the user for viewing or processing.

More recently, IDB systems have been developed which support the use of simple tech-

niques of image analysis and representation of image content. Derived image representations

are stored in the database together with other kinds of image data already provided (e.g.,

names, dates etc.) and which may be used by retrievals. REDI [30, 1] and GRAIN [10, 1]

are two of the most important instances of this kind of IDB systems. From organizational

and functional point of view the above two systems are rather similar. Both make use of

29

a relational database in which logical images (i.e., image descriptions) are stored while,

physical images (i.e., original images) are stored separately. Queries always address the

logical database. Both use query languages (namely QPE and GRAIN respectively) which

are extensions of relational query languages to handle image data (e.g., by providing new

commands for image display, query drawing etc.). A third IDB system based on the relational

approach and the R�-trees for the indexing of image regions has been proposed in [47]. The

system supports the efficient processing of region queries and makes use of the PSQL query

language.

Modern IDB design proposals are mostly influenced by the object-oriented paradigm.

PROBE [40] is one of the most important systems falling in this category. PROBE supports

the processing, representation and retrieval of images based on Z-codes. There are two types

of objects defined in PROBE, namely the “entities” which represent concepts, quantities,

image objects etc., and the “functions” which represent properties of entities, relations

among entities and operations on entities. Both types of objects are organized into classes

which consist of objects sharing common characteristics. Classes are further organized into

a “generalization hierarchy” [100], thus taking advantage of the property of inheritance.

Database search is facilitated through the use of the geometry filter (see Section 2.8.2). ISR

[101] is a newly proposed system based on “frame” representations of image data. ISR

is based on low to intermediate level representations of image content such as points and

polygonal lines. Using appropriate models and techniques (e.g., decision trees) higher level

representations can be derived. ISR supports image retrievals based on proximity and simple

image properties.

A prototype IDB system based on 2-D string representations is proposed in [9]. Database

search is performed by comparing the 2-D string representation of a query with similar

representations corresponding to all stored images. The system introduces the use of “iconic

indices”, which are simple iconic representations of the original images reconstructed from

their corresponding 2-D strings. Iconic indices are then used for image display and for

30

browsing the IDB in place of the original images themselves. In [29, 102] 2-D strings are

considered to be an integral component of a multimedia document representing the content

of images in terms of properties of both objects and relationships. Document retrieval by

image content can be done by specifying properties of objects, relationships among objects

or both.

Other IDB designs have been proposed in the context of “Geographic Information Sys-

tems” [1, 103] in order to enhance their capabilities with efficient user interfaces [43] and

flexible query languages [49]. In such systems emphasis is also given to issues related to the

processing of maps such as the digitization and visualization of analog maps, the automated

reading of printed names, the characterization of geographic forms (e.g., mountains, rivers,

borders) etc.

Chapter 3

Image Representation

3.1 Introduction

THE PROPOSED methodology works by decomposing the set of objects contained in a

given image into groups of objects, called “image subsets”. The content description of each

image subset is given in terms of certain types of spatial relationships between the objects it

contains such as “left/right”, “below/above” and “inside/outside”, and in terms of properties

specific to individual objects such as size (area), roundness (elongation), orientation with

respect to a reference direction, and properties of object classes. Such image properties have

the advantage of being generally useful for many kinds of images and imaging applications.

The objects contained in each group are first ordered. Each of these ordered subsets is then

represented by a set of attribute strings corresponding to the set of properties involved in a

particular image description. An address to each attribute string is then computed.

31

32

5

4 0
1

2

3

Figure 3.1: Example of an original grey-level image (left) and its segmented form (right).

3.2 Image Preprocessing

The search and retrieval of images by content, using the method to be described in this

thesis, relies on image descriptions based on the segmentation of images into dominant

disjoint regions or objects. Although accurate and robust image segmentation techniques are

currently becoming available [104, 105, 106], this is an independent area of active research

and is beyond the scope of this work. However, it should be pointed out that the requirement

for accurate and robust image segmentation is more relaxed for indexing and retrieving images

by content than it is for image analysis and image understanding. Thus, we have opted for a

conventional image segmentation technique resulting in polygonal approximations of object

contours. The desired segmentation results are obtained by editing (i.e., the user may delete

insignificant segments or correct the shape of others). The edited segmented forms are then

used to compute a variety of image features constituting a particular image representation,

and for efficient browsing of the query response sets. Figure 3.1 shows an example of an

original grey-level MRI image and its corresponding final segmented polygonal form. The

segmented image contains 6 objects numbered 0 through 5.

33

3.3 Image Decomposition into Subsets

An image containing n objects is decomposed into groups of image subsets. The subsets in

each group contain an equal number of objects k, with k ranging from 2 up to a prespecified

number Kmax. In particular, k �
�
2�min �n�Kmax�

�
. An image subset of size k can be

viewed as an answer to a possible image query specifying k objects. Therefore, Kmax can

be set equal to the maximum number of objects allowed in queries, if such a value can be

specified in advance. Typically, the number of objects specified in image queries is not

greater than 6. Therefore, we can arbitrarily set Kmax � 6. In general, the value of Kmax

depends on the application (see Section 5.5).

Producing all subsets of a given image containing n objects is equivalent to generating all

“combinations” of n elements taking them k at a time. Algorithms for producing combina-

tions can be found in [107, 108]. Such algorithms have linear time complexity with respect

to the number of combinations produced. For each value of k,
�
n

k

�
� n!

�n�k�!�k! image subsets

are produced. Taking all subsets for all values of k, results in a total of
Pmin �n�Kmax�

k�2

�
n

k

�
subsets. For example, the image of Figure 3.1 which contains 6 objects, gives rise to 15

image subsets of size 2, 20 subsets of size 3, 15 subsets of size 4, 6 subsets of size 5 and 1

subset of size 6 (which is the original image itself).

Subsets of size 1 correspond to individual objects and are not taken into account. Emphasis

is given to indexing images in terms of properties of relationships rather than properties of

individual objects. However, objects can still be indexed and recognized on the basis of

attributes corresponding to global object characteristics such as size, roundness etc., and

attributes representing object classes.

Subsets are inherently unordered: no distinction can be made among subsets containing

the same elements in different order. For example, subset (0, 1, 2) is equivalent to subsets

(1, 0, 2) and (2, 1, 0). Prior to indexing, image subsets are ordered. Each object can then

be associated, through its position, with attribute values. Ordering must be based on criteria

34

that clearly differentiate the objects among them. Position is such a criterion, since objects

are usually scattered in the image. However, size or shape do not necessarily provide good

ordering criteria, since in certain cases images may contain similar objects. Therefore, we

have chosen to base ordering mainly on criteria relating to position.

Ordering can be avoided if, instead of combinations, the “permutations” of n objects taken

k at a time are used. Permutations can easily be produced from combinations by repeating

the elements of each subset in all possible orders. However, the use of permutations results

in a large space overhead. For example, 1910 subsets are produced from the example image

of Figure 3.1.

3.4 Representation of the “Left/Right” and “Below/Above”

Relationships

Two ordering criteria are presented and discussed. The first criterion can be used in cases

where images are scaled with respect to each other, while the second ordering criterion can

be used only in cases where images are at a fixed scale. Ordering is the first step towards

producing the string representations of the “left/right” and of the “below/above” relationships

between the objects contained in an image subset.

3.4.1 First Ordering Criterion

Let �a0� a1� � � � � ak�1�, be an image subset of size k, where k �
�
2�min �n�Kmax�

�
. For

any two objects ai, aj, where i� j � �0� k � 1�, with centers of mass �xi� yi� and �xj� yj�

respectively, either ai is a “predecessor” of aj which is written as ai � aj , or ai is a

“successor” of aj which is written as ai � aj . Specifically, the first ordering criterion is

35

object center of mass: �x� y�

a0 � 0 (193.19, 88.58)

a1 � 1 (126.93, 77.69)

a2 � 2 (124.12, 122.60)

a3 � 3 (188.30, 90.94)

a4 � 4 (96.09, 141.16)

a5 � 5 (129.65, 104.12)

Table 3.1: Centers of mass corresponding to the objects contained in the example image of

Figure 3.1.

written as follows:

� i� j � �0� k � 1�

�
ai � aj� if xi � xj OR, yi � yj if xi � xj;

ai � aj� otherwise.
�3�1�

The application of this ordering criterion to the objects contained in an image subset gives

rise to a permutation string p, which is actually the ordered sequence of indices corresponding

to the above objects. In particular, string p corresponds to the sequence of objects produced by

projecting their positions along the x axis and by taking them from left to right. Henceforth,

string pwill be used to represent the original image subset itself. For example, the permutation

string p corresponding to the image subset (2 3 4 5) is (4 2 5 3). Table 3.1 lists the centers of

mass of the objects contained in the example image of Figure 3.1.

A second permutation string p
�

is produced by projecting the positions of objects along

the y axis and by taking them from below to above. In particular, string p
�

is produced by

ordering objects according to the following rule:

� i� j � �0� k � 1�

�
ai � aj� if yi � yj OR, xi � xj if yi � yj;

ai � aj� otherwise.
�3�2�

We now define a new entity called “rank”. The rank ri of object pi is defined as the number

36

of objects preceding it in string p
�

. The rank ri of object pi can be viewed as the number of

objects which are below it. Given strings pi and p
�

, ri is computed as

ri � j �	 pi � p�j � 0 � i� j � k� �3�3�

Equation 3.3, a rank string r is produced corresponding to the ordered sequence p. For

example, the permutation string p� corresponding to the image subset (2 3 4 5) is (3 5 2 4)

and its rank string r is (3 2 1 0).

The first ordering criterion guarantees that objects are ordered with respect to the x-axis.

The i-th object from the left is object pi. Moreover, the rank string r is such that ri denotes

the number of objects which are below the i-th object from the left. Therefore, the rank string

r completely characterizes the relative positions of the objects contained in image subset p.

String r defines a permutation over the set f0� 1� � � � k � 1g, since no two objects have equal

ranks. Thus, string r may take k! different values. An ordered image subset p is mapped to a

unique address in an address space of size k! by computing the rank (order) of r with respect

to a listing of permutations. For example, the rank corresponding to the ordered image subset

(4 2 5 3) is 12. The ranking algorithm we used is that by Johnson and Trotter [108].

It has been assumed that no two objects have the same center of mass. The ordering

of image subsets containing concentric objects (this may happen when one object contains

another) is ambiguous and may result in different representations of subsets with similar

spatial relationships (see also Section 3.7). In such cases, the ordering of objects can be

based on more image properties in addition to the center of mass. For example, given two

objects with the same center of mass, the first ordering criterion can be defined so that the

object having the smaller size proceeds the second in the ordered sequence. If the objects

have the same size, then a third property (e.g., the roundness), a fourth and so on, can be used

to resolve ambiguities related to the order of objects. However, such situations are very rare.

37

3.4.2 Second Ordering Criterion

Let �a0� a1� � � � � ak�1�, be an image subset of size k, where k �
�
2�min �n�Kmax�

�
. The

image area is partitioned by an M � N rectangular grid, whose cells are indexed from 0 to

M
 N � 1. Each object is assigned a rank or position ri equal to the index of the grid cell

containing its center of mass �xi� yi�. In particular, the rank ri of object ai is computed as

follows:

ri � sxi
N � syi � 0 � i � k� �3�4�

where

sxi �
�
xi
X

�

N ; syi �

�
yi
Y

�

M ; 0 � i � k� �3�5�

X and Y are the actual sizes (in pixels) of the rectangular grid along the horizontal and

vertical dimension respectively, while sxi and syi are the x and y coordinates of the position ri

of object ai with respect to theN�M rectangular grid (sxi � �0� N�1� and syi � �0�M�1�).

Figure 3.2 illustrates a 3� 3 grid of size 256� 256 (left). The same grid is then placed over

the example image of Figure 3.1 (right). Table 3.2 lists the positions of the objects contained

in the example image, computed with respect to the above grid.

Ordering is based on object positions. However, objects sharing the same grid position

cannot be ordered unless a secondary criterion is used. We have chosen to base such a

secondary criterion on object properties. In the definition given below, the size of objects

is used as a secondary criterion: among two or more objects sharing the same position,

ordering is based on size. In particular, for any two objects ai, aj , where i� j � �0� k � 1�,

with positions ri, rj respectively, the second ordering criterion is written as

� i� j � �0� k � 1�

�	

ai � aj� if ri � rj OR, size�ai� � size�aj� if ri � rj;

ai � aj� otherwise.
�3�6�

If among objects sharing the same grid position there are objects of equal size, then the

ordering is ambiguous and a third criterion has to be used (e.g., roundness). In general, the

38

8

7

6

5

4

3

2

1

0

5

4
0

1

2

3

Figure 3.2: A 3 � 3 rectangular grid (left) placed over the example image of Figure 3.1

(right).

definition of the second ordering criterion can be extended to included any number of criteria

(e.g., object roundness, orientation etc.) in addition to the position and the size of objects.

However, ambiguities are reduced when grids are dense (e.g., N�M � 3) and the number of

objects contained in image subsets is low (e.g., 2 - 6).

The application of the second ordering criterion to the objects contained in a given image

subset gives rise to a permutation string p, which is the ordered sequence of object indices,

and a string r of positions (ranks) corresponding to the above ordered sequence of objects.

For example, the permutation string p corresponding to the image subset (2 3 4 5) is (5 4 2

3) and the rank string r is (4 4 4 7). String r represents the relative positions and the relative

distance between objects in p. In particular, if the x, y coordinates �sxi � syi� of each object pi

are used instead of ri, the relative distance between any two objects in p can be computed as

follows:

dij �
q
�sxi � sxj�

2 � �syi � syj �
2� 0 � i� j � k� �3�7�

The number of different ways for placing k objects on an M � N rectangular grid, is

equal to the number of “l-part compositions of k”, where l � N
M . Therefore, the number

39

N � 3� M � 3� X � 256� Y � 256

object sxi syi position: ri

a0 � 0 2 1 7

a1 � 1 1 0 3

a2 � 2 1 1 4

a3 � 3 2 1 7

a4 � 4 1 1 4

a5 � 5 1 1 4

Table 3.2: Positions corresponding to the objects contained in the example image of Figure 3.1

computed with respect to a 3� 3 rectangular grid of size �X�Y � � �256� 256�.

of different values a string r may take is equal to
�
k�l�1
l�1

�
�
�
k�l�1

k

�
� �k�l�1�!

k!��l�1�! . An ordered

image subset p can be indexed in terms of the “left/right”, “below/above” relationships, as

well as in terms of the relative distances between the objects it contains, by computing the

rank of string r with respect to a listing of compositions [109]. For example, the index

computed to the ordered image subset (5 4 2 3), which has rank string (4 4 4 7), is 244.

3.4.3 Comparison of the Two Ordering Criteria

Representations derived by the application of the first ordering criterion are both translation

and scale invariant (i.e., images translated or scaled with respect to each other result in the

same representation). Translation invariance is assured, since only relative positions are

taken into account in determining the order of objects. Similarly, scale invariance is assured,

since no distance criterion is used. Therefore, when the first ordering criterion is used,

the property of distance cannot be used in queries. However, in certain situations, and in

particular in cases where all images are at a fixed scale, distance is important in determining

the positions of objects. This may be the case when objects which are close enough to each

40

other or the one contains the other must be assigned the same position. In such cases, the

second ordering criterion must be used.

Representations derived by the application of the second ordering criterion are neither

scale nor translation invariant. Translation invariance can however, be easily achieved by

a simple coordinate transformation: first, the minimum enclosing rectangle specified by the

centers of mass of the objects contained in p is computed. Let ��x� �y� be the coordinates of its

lower left corner. The position ri of each object pi is then computed according to Equation 3.4

by using, in place of the pair of coordinates �sxi� syi�, the pair �sxi��x� syi��y�. Translated

image subsets make use of a smaller part of the rectangular grid (i.e., the upper left and right

positions of a grid are not used in most cases). Therefore, the actual size of the address space

is less than that computed by compositions. In general, the second ordering criterion results

in larger address spaces than the first ordering criterion.

Both kinds of representations are rather sensitive to image rotations. Rotation invariance

can be achieved only in cases where a reference direction can be identified (e.g., specified

interactively by the user) so that, prior to any processing, images are rotated to a standard

orientation.

3.5 Representation of the Inclusion Relationships

Given an ordered image subset p � �p0� p1� � � � pk�1�, an inclusion string w �

�w0� w1� � � �wk�1� representing the “inside/outside” relationships between objects is con-

structed as follows:

� i � �0� k � 1�� wi �

�
j if pi is both closer and inside pj � 0 � j � k;

i if pi is contained by the image frame only.
�3�8�

An object is contained by another, if all its contour points are contained by the polygonal

contour corresponding to the second object. Algorithms for determining the relative position

41

541 0

p[0] = 4, p[1] = 2, p[2] = 1, p[3] = 5, p[4] = 3, p[5] = 0

w[0] = 1, w[1] = 1, w[2] = 1, w[3] = 1, w[4] = 5, w[5] = 1

image frame

3

2

Figure 3.3: Tree representation of stringw corresponding to the example image of Figure 3.1.

String p has been derived by applying the first ordering criterion.

between polygons can be found in [110]. Besides, the minimum distance between all pairs

of objects contained in the image under consideration must be computed. In particular,

for each pair of objects, all pairs of line segments are taken (one from each contour) and

their minimum distance is compared against the minimum distance value computed so far.

The computation of both the inclusion relationships and of the minimum distances between

objects are time intensive operations. Such relationships are computed once for all pairs of

objects in an image and not separately for each individual image subset.

A string w depends on the ordered sequence p, which is turn depends on the ordering

criterion applied. A string w may be considered as one of the “k-base representations of

k” elements. These are kk . Therefore, an ordered subset p can be indexed in terms of the

inclusion relationships between objects it contains by computing the rank of w with respect

to a listing of the k-base representations of k elements [111]. For example, the inclusion

string w corresponding to the ordered (according to the first criterion) subset (4 2 5 3) is (1 1

42

function valid(w, k)

for i � 0 to k � 1 do

path � 0;

j � w�i�;

while j �� w�j� do

path � path� 1;

if path � k � 1 then return(0);

j � w�j�;

end; while

end; for i

return(1);

end. valid

Figure 3.4: Function valid determines whether w can be an inclusion string corresponding

to an image containing k objects.

1 1) and has rank 85.

The inclusion relationships between objects can be represented by a tree data structure:

each object corresponds to a node and the parent of each node is the node corresponding to the

object which is both closer to it and contains it. For the objects whose inclusion relationships

are represented by w, such a tree representation can be constructed as follows:

� i � �0� k � 1�� parent of pi �

�
pwi if i �� wi;

image frame otherwise.
�3�9�

Figure 3.3 illustrates the tree representation corresponding to the example image of Figure 3.1,

whose objects are ordered according to the first ordering criterion.

The actual size of the address space corresponding to inclusion strings w of size k is less

than kk. Spare addresses correspond to graph structures which are not trees (i.e., contain

cycles). Two such strings and their corresponding graphs are shown in Figure 3.5. The actual

43

p[0] = 0, p[1] = 1, p[2] = 2

w[0] = 2, w[1] = 1, w[2] = 0

p[0] = 0, p[1] = 1, p[2] = 2, p[3] = 3

w[0] = 1, w[1] = 2, w[2] = 0, w[3] = 0

1

2

3

1

0 20image frame

Figure 3.5: Examples of graph structures and w strings not corresponding to inclusion

relationships.

size of the address space corresponding to inclusion strings w of size 2 is 3 (32 � 4), 16 for

strings of size 3 (33 � 27), 125 for strings of size 4 (44 � 256), 1�296 for strings of size 5

(55 � 3�125) and 16�807 for strings of size 6 (66 � 46�656).

The function of Figure 3.4 examines whether the argument string w can be an inclusion

string corresponding to an image containing k objects, in which case it returns 1; otherwise

it returns 0. If w is an inclusion string, then a path from any object to all its ancestors has

length less than k � 1, since an object may not have more than k � 1 ancestors; otherwise

a cycle has been found and the path never ends. In the worst case, the algorithm has square

time complexity with respect to k: for each wi, i � �0� k � 1�, a “while” loop which counts

the length of the path from pwi to its ancestors is executed at most k � 1 times.

44

3.6 Representation of Object Properties

The description of individual objects is given in terms of properties corresponding to

global object characteristics such as area, perimeter, roundness, orientation with respect to a

reference direction, properties of classes etc. In general, the description of individual objects

must consist of features that are shown to be effective in quickly narrowing down the search

space for the purpose of image retrieval by content in a particular application domain. Given

an ordered image subset p, each of the above properties gives rise to a separate attribute

string �u0� u1� � � � uk�1�, where

� i � �0� k � 1�� ui �

�
property value of pi

maximum property value

�

 q� �3�10�

If the property value of pi equals to the maximum property value, then ui � q � 1.

The “maximum property value” is usually different for different properties. For example,

roundness has maximum value 1 (corresponding to a circle), orientation has maximum value

	 � 3�141 � � �, etc. In cases where the resulting representation has to be independent of

scale (e.g., when the first ordering criterion is used), maximum size values (e.g., perimeter,

area) are set equal to the size of the biggest object in the image. Otherwise, maximum size

values can be set equal to a reference size (e.g., the size of the image). q is an integer, called

“quantization value”, corresponding to the number of different values a property may take. In

particular, an object is assigned an integer property value in the range �0� q�1�. For example,

if q � 3 the property of orientation takes values 0, 1, 2 corresponding to objects having

orientation (with respect to the horizontal direction), between 0 and �

3 , �

3 and 2�
3 , 2�

3 and 	

respectively. The quantization of continuous property values may result in an information

loss and properties with similar continuous values may be assigned different discrete values

(see Section 3.7).

Properties such as roundness, orientation etc., are computed based on the polygonally

approximated contours of objects. In particular, the orientation of an object is defined to

be equal to the angle, with respect to the horizontal direction, of the axis of elongation.

45

This is the axis of least second mement. The roundness of an object is defined as the

ratio of the smallest to the largest second moment [112]. Moreover, the area of an object

may easily be computed from its polygonal contour

�x0� y0�� �x1� y1�� � � � �xm�1� ym�1�

�
as

1
2

Pm�1
i�0 (xi�1
 yi � xi
 yi�1), where subscript calculations are modulom (number of contour

points). Such computations have time complexity proportional to the number of contour

points. The computation of all properties for all objects contained in an image is done once

for all objects and not separately for each individual image subset.

Each attribute string of size k is mapped to a unique address in an address space of

size qk by computing its rank with respect to a listing of the “q-base representations of k”

elements. Higher (lower) quantization values increase (decrease) the size of the address

space exponentially. Higher (lower) quantization values increase (decrease) the accuracy of

representations. The ordered image subset (4 2 5 3) has size (area) string (1 2 0 0) which has

rank 7, roundness string (1 2 2 2) which has rank 79 and orientation string (0 0 0 2) which

has rank 54. In all cases q � 3.

3.7 Stability of Image Representations

Image representations are unique; only subsets having similar properties result in the

same attribute strings and are mapped to the same indices. However, in certain cases,

representations are not tolerant to small variations of property values and become unstable;

subsets with slightly different property values may be mapped to different attribute strings

and, therefore, different indices.

Instabilities may occur when (a) objects are close enough to each other and the first

ordering criterion is used (e.g., objects 0 and 3 of the image of Figure 3.1) or (b) they have

centers of mass near the borders of a grid cell (e.g., object 3) and the second ordering criterion

is used. A slight translation of such an object along the x or the y direction would change

the ordered sequence of object indices. To deal with such situations, one must consider

46

all possible orders of sequences containing objects which are very close to each other. For

example, for the image subset consisting of objects 0, 3 and 4, two ordered subsets, (4 3

0) and (4 0 3), must be represented and stored separately. In addition, object 3 of the right

image of Figure 3.2 must be considered as having both positions 6 and 7. An image subset

containing object 3, e.g., (5 4 3), must then be represented and stored twice, once with rank

string (4 4 6) and once with rank string (4 4 7).

Instabilities may also occur when objects have continuous property values approximately

equal to the threshold values. For example, for the property of roundness and a quantization

value q � 3, the threshold values are 0�33 � � � and 0�66 � � �. Object 4 in Figure 3.2 has

roundness 0�33 and may take a discrete value of 0 or 1. The representation of image subsets

containing object 4 is unstable. Such objects must be assigned two discrete property values

and an image subset containing such an object must be represented and stored twice. For

example, the image subset (4 1 5) must be represented and stored twice, once with roundness

string (0 2 2) and once with roundness string (1 2 2).

Finally, instabilities may occur when objects are very rounded (e.g., objects 1, 2, 3 and 5

of the image of Figure 3.1). The orientation of a very rounded object is ambiguous and may

take any discrete value in the range �0� q� 1�. Each image subset containing a very rounded

object must be taken and stored q times. For example, for quantization value q � 3, the

image subset (4 3 0) must be taken and stored three times, once with orientation string (0, 0,

0), once with orientation string (0, 1, 0) and once with orientation string (0, 2, 0).

3.8 Completeness of Image Representations

The proposed representations succeed in capturing image content in cases of images

consisting of disjoint objects having simple shapes. However, such representations cannot

be used when images contain occluded objects. Global object characteristics (e.g., size,

roundness) change drastically and become unreliable if substantial parts of objects are hidden;

47

Similarly, such representations cannot capture information related to details of object shapes.

However, in each of the above two cases, such representations can be used to index the

images of an IDB. In particular, even if objects are partially visible, if object positions are

identified correctly (e.q., specified by the user), indexing can still be based on relationships.

In addition, even if objects have complex shapes, indexing can still be based on global object

properties. Retrievals respond with a set of candidate images which can then be compared

against the query on the basis of additional properties, either relational or specific to the shape

of objects they contain, using techniques such as those proposed in [53, 64, 66].

Object positions play an important role in deriving reliable image representations and must

be specified precisely. So far, it has been assumed that object positions are defined by their

center of mass. In cases where the true center of mass cannot be obtained or falls outside the

object contour, a point which is representative of the object position can be specified by an

expert user.

Chapter 4

Image Indexing and Storage

4.1 Introduction

I MAGE DATA can be distinguished into “physical” and “logical” data [10]. Original

(grey-level) images and segmented images, are physical images. Image related data (i.e.,

information extracted from images, attributes, text etc.) are logical images. Physical and

logical images are stored separately in a physical and a logical database respectively. Pointers

are implemented from the logical to the physical database.

The physical database has been implemented as a separate disk space storing the original

image files together with their polygonal contours. To reduce storage requirements, physical

images are compressed prior to storage and decompressed upon retrievals. No image file

structure has been introduced. However, images will eventually be stored in clusters based

on the likelihood of being retrieved together in response to a particular query (e.g., the set of

all images corresponding to a patient’s exam may be stored close together on the disc).

The logical database stores computed representations of subsets derived from images

stored in the physical database. The logical database consists of a set of data files, each storing

subsets of equal size. A data file is divided into segments (data pages), each corresponding to

48

49

an address. In turn, a data page stores image subsets mapping to the same address. Overflows

are handled by creating linked lists of data pages.

4.2 Indexing Image Subsets

The logical database consists of a set �H2 � � � �HKmax� of files, whereKmax is the maximum

size of image subsets under consideration. The image subsets of size k� 2 � k � Kmax,

together with their representations are all stored in file Hk. Each image subset p (which is the

ordered sequence of object indices) is represented by a tuple of strings of the form �r� w� � � ��

where, r is its corresponding rank string representing the “left/right” and “below/above”

relationships between objects, w is the inclusion string, and the remaining strings correspond

to properties of individual objects. Three such strings are used: s to encode the size property,

c to encode the roundness property and o to encode the orientation property of those objects

whose indices are in p. Therefore, the representation of an image subset p is given by a tuple

of the form �r� w� s� c� o�.

The relational model and a relational database management system (DBMS) offer the most

direct and easy way of implementing the logical database: each Hk file is implemented as a

relational table storing tuples of the form �image� p� r� w� s� c� o�, where “image” is a name

or an index corresponding to the original image file from which p has been derived. Indexing

can be performed by creating a secondary index for each attribute string or for combinations

of strings. Image subsets are then stored, indexed and accessed using mechanisms specific

to the particular DBMS. However, such mechanisms may not be well suited for indexing and

accessing image subsets, while usually, they are not even known to the end-user.

The problem of indexing image subsets can be viewed as a problem of multi-dimensional

(multi-key) indexing, if each attribute string or the address computed to each attribute string

is treated as a separate key-value. It can be reduced to a problem of single-key indexing by

mapping the set of keys representing each image subset into a single key. Techniques for

50

both single-key and multi-key indexing are known to exist (see Chapter 2). However, we

have to be careful in using such techniques for the purpose of indexing image subsets. In

particular, most of these techniques (e.g., B-trees, extendible hashing, linear hashing, etc.)

are intended for organizing a file based on the primary key which must be unique; otherwise

they may fail. This will happen as soon as subsequent insertions cause a data page storing

records with same keys to split. Furthermore, they are dynamic, since they assume that the

keys and the size of the address space are not known in advance.

Here, we are faced with a different situation. Both the keys and the size of the address

space corresponding to attribute strings are known in advance. Furthermore, there may exist

a very large number of image subsets with the same properties and, therefore, with the same

keys. All image subsets with same properties must be stored together on disk, so that they can

be retrieved together in response to a particular query. However, we may consider indexing

as being performed on the set of keys used (which are unique), rather than on the image

subsets themselves. Each key corresponds to a separate storage space where image subsets

are stored. A dynamic indexing technique will keep the size of space for the storage of keys

minimum. However, for a large database storing thousands of images it is more likely that

all keys will be in use. In such a case, there is no need for a dynamic behavior. In addition,

with the exception of hashing techniques, tree-indexing techniques will not result in optimum

performance. For example, a B-tree technique requires O�logN� page fetches to access a

page of image subsets, where N is the number of disc pages storing the keys.

There are techniques which may perform well in the case of image subsets. In particular,

“multilists” and “inverted lists” are two commonly used file organizations supporting the

indexing of records based on secondary keys. A separate index list, one for each secondary

index, consisting of all stored records (e.g., image subsets) is created. Such an organization,

will perform well for a request for all image subsets with a given attribute value, but a request

based on more than one attributes will take much more time to answer. However, given a key,

the set of keys will have to be searched in order to locate the corresponding list. Furthermore,

51

such techniques will result in a large space overhead for the storage of index lists.

In order to satisfy the needs for efficient storage and access of image subsets, an addressing

scheme is proposed and a file structure specific to the above addressing scheme is introduced.

It is similar to a hash addressing file organization. An array of key-address pairs, which

represents the association between keys and corresponding data spaces, is initially maintained

and stored on disc.

4.3 Proposed Addressing Scheme

An image subset is considered to be the basic entity in the proposed indexing scheme. In

particular, images are indexed based on representations of the set of all derived subsets. An

image containing n objects is decomposed into the set of ordered image subsets

�
plk

���� 2 � k � min �n�Kmax�� 0 � l �

�
n

k

��
� �4�1�

The representation of an image subset plk takes the form �dl�0k � d
l�1
k � � � � � d

l���1
k �, where �

is the number of attribute strings and dl�ik � 0 � i � �, is the address computed to the i-th

attribute string. In particular, the �r� w� s� c� o� representation of the l-th subset of size k can

be written as �dl�0k � d
l�1
k � d

l�2
k � d

l�3
k � d

l�4
k � or �dl�rk � d

l�w
k � dl�sk � d

l�c
k � d

l�o
k � (for clarity, the index i has

been substituted by the symbol of its corresponding attribute string). p lk can then be mapped

to a single address I lk: �d
l�0
k � d

l�1
k � � � � � d

l���1
k � is considered to be the representation of I lk in the

“mixed radix system” �D0
k�D

1
k� � � � �D

��1
k �, where Di

k� 0 � i � �, is the size of the address

space corresponding to the i-th attribute string. The index I lk is computed as follows:

I lk � dl�0k � dl�1k
D0
k � dl�2k
D0

k
D
1
k �

� dl���1

k

��2Y
i�0

Di
k� �4�2�

2 � k � min �n�Kmax�� 0 � l �

�
n

k

�
�

52

Each dl�ik satisfies 0 � dl�ik � Di
k and dl���1

k �� 0, except for I lk � 0. The size of the address

space specified by Equation 4.2 is equal to

Dk �
i���1Y
i�0

Di
k� 2 � k � Kmax� �4�3�

The size of the address space is equivalent to disk space (see section 4.5). Dk becomes

extremely large for relatively large values of k and � (e.g., for k � 4 and � � 2, Dk takes

values in the order of 109). One way to deal with large address spaces is to allow collisions,

in which cases, two or more image subsets with different representations are mapped to

the same address. If DIRSIZE is the maximum size of the address space allowed (e.g.,

DIRSIZE � 106), a mapping that allows collisions is

Al
k � I lk mod DIRSIZE� B l

k �
I lk

DIRSIZE
� �4�4�

2 � k � min �n�Kmax�� 0 � l �

�
n

k

�
�

An image subset plk is now characterized by the pair �Al
k� B

l
k�. A

l
k is a new address, called

“primary index” and takes values in the range �0�DIRSIZE � 1�. B l
k is a second address,

called “secondary index”, which takes values in the range
h
0�
j

Dk

DIRSIZE

ki
and is used to

distinguish among image subsets with the same primary indices.

The size of the address space decreases when
 � � attribute indices are used in Equa-

tion 4.2 to compute I lk. Such indices correspond to attribute strings and image properties

which are called “primary attributes” and “primary properties” respectively. The � �

remaining attribute strings, which are not primary, and their corresponding image properties

are called “secondary” and are used to compute a secondary index C l
k according to Equa-

tion 4.2. Therefore, an image subset plk is represented by a triple �Al
k� B

l
k� C

l
k� consisting of

its corresponding primary and secondary indices.

53

4.4 Selection of Primary Attributes

The primary attributes must correspond to the most discriminant image properties (see

Section 5.4). In the optimum case, primary indices have a uniform distribution and each

index holds the same number of image subsets. The selection of primary attributes is

based on measurements obtained from a prototype set of images which are considered to be

characteristic of the application under consideration. In particular, for the i-th attribute string

of a given image representation consisting of � attributes and for the indices corresponding

to all attribute strings of size k � �2�Kmax�, we compute the variance �ik as

�ik �

PDi
k
�1

j�0

�
N i

k�j �N i
k

�2

Di
k � 1

� 0 � i � �� 2 � k � Kmax� �4�5�

where Di
k is the address space corresponding to image subsets of size k and the i-th attribute

string. N i
k�j is the number of attribute strings having index j. The sum

PDi
k
�1

j�0 N i
k�j equals

to the total number of image subsets of size k. N i
k is their mean value computed over Di

k

as N i
k �

PDi
k
�1

j�0 N i
k�j

Di
k

. The variance measures the actual amount of variation of a set of data

and depends on the scale of measurement: the variance �ik is computed with respect to the

address space Di
k which varies for different attribute strings of the same size k. Therefore,

the variance is computed with respect to mean values which vary depending on the kind of

the attribute under consideration. To compare the variation of several sets of data we use the

“coefficient of variation” CV i
k , which gives the variation as a percentage of the mean values

N i
k which in turn are normalized with respect to D i

k . In particular, CV i
k is computed as

CV i
k �

q
�ik

N i
k

 100� 0 � i � �� 2 � k � Kmax� �4�6�

The coefficient of variation CV i
k is computed for all attributes and for all string sizes

k � �2�Kmax�. For a specific size k, the most discriminant attributes are those having the

smallest coefficient of variation. Therefore, different primary properties may correspond

to subsets of different size k. Based on the computed values of coefficient of variation,

54

k CV r
k CV w

k CV c
k CV s

k CV o
k

2 9�01 109�37 15�20 161�73 39�30

3 10�90 251�72 35�62 274�55 49�32

4 22�42 765�55 59�42 452�92 69�38

5 48�02 2�601�81 98�89 747�55 108�32

6 121�60 10�402�70 280�21 1�254�8 195�49

Table 4.1: Coefficient of variation computed for all attribute indices corresponding to image

subsets of size k � �2� 6�, derived from a set of medical images.

attribute strings and corresponding image properties can be ordered in terms of decreasing

discriminative power. A number of attributes (e.g., 2 or 3), of the first in this ordered

sequence, are then chosen to be the primary attributes. The specification of the number of

primary attributes is another important problem which is discussed separately in Section 5.5.

In developing a prototype IDB which supports the indexing of images by content we

used 226 computed tomographic (CT) and magnetic resonance (MR) images. We considered

this set of images to be characteristic of the application domain under consideration and

we used them for the selection of primary attributes. Table 4.1 shows the values of the

coefficient of variation computed for five attribute strings, namely the r, w, s, c and o, having

size k � �2� 6� (for clarity, the index i in CV i
k has been substituted by the symbol of its

corresponding attribute string). We used the first ordering criterion and a quantization value

of q � 3. In the computation of CV w
k , the actual size of the address space Dw

k has been

taken into account (see Section 3.5). According to Table 4.1, r is the most discriminating

attribute followed by c, o and w. In particular, the ordered sequence of attributes in order of

decreasing discriminating power is (r, c, o, s, w).

Henceforth, the roundness property of objects represented by string c, together with

the “left/right” and the “below/above” relationships of objects represented by string r, are

55

k Dr
k � k! Dc

k � qk � 3k Dk � Dr
k
D

c
k

2 2 9 18

3 6 27 162

4 24 81 1�944

5 120 243 29�160

6 720 729 524�880

Table 4.2: Size of address space for values of k in the range [2,6] corresponding to the

attributes of position r and roundness r. Dr
k corresponds to the first ordering criterion. The

quantization value q is 3.

considered to be primary image properties and primary attributes respectively and are used

to compute the primary indices. The remaining three attribute strings, namely the o, s and w

corresponding to the properties of orientation, (relative) size and the inclusion relationships

respectively are considered to be secondary and are used to compute the secondary indices.

For example, the ordered image subset (4 2 5 3) derived from the image of Figure 3.1 is

represented by the triple �1�908� 0� 562�066� of primary and secondary indices.

The sizes of the address spaces corresponding to primary attribute strings r and c and

image subsets of size k � �2� 6� are shown in Table 4.2. The address space Dr
k � k!

corresponds to the first ordering criterion. The address spaces corresponding to low values

of k are very small. In particular, subsets of size k � 2 are distributed over 18 addresses.

However, indexing for low values of k (e.g., k � 4) can be based on more primary attributes

(e.g., the c, r and o) than indexing for higher values of k (e.g., k � 4). Address spaces

become much larger for greater values of the quantization value. For example, for q � 5 and

k � 5, Dk � 5!
 55 � 375�000.

56

4.5 Proposed File Structure

All image subsets of size k, k � �2�Kmax�, are stored in theHk file. A fileHk consists of a

set of “data pages” of fixed capacity. In particular, for each subset plk having indexAl
k, a tuple

�image� plk� B
l
k� C

l
k� is stored, where “image” is the name of the image from which plk has

been derived and acts as a pointer to the original image file stored in the physical database.

Each page stores image subsets with the same primary index. A pointer is kept representing

the association between page addresses on disk and primary indices. In fact, an array of such

pointers is maintained, called “directory”. The size of a directory is computed according to

Equation 4.3. A directory entry may also contain a second address field pointing to the next

free position within a page.

An attempt to insert an image subset in an already full page causes an “overflow”.

Overflows are handled by chaining: a new page is allocated (in which the image subset is

stored) and linked with the overflowed page. Each page contains an address field pointing

to its successor page in the list. New pages are always inserted at the beginning of the list

so that nonfull pages are always directly available for writing: there is no need to search

the whole list of pages in order to locate a nonempty page. Before any data are stored, an

“empty” directory (i.e., a directory having all its pointers set to null) is maintained for each

Hk file. Figure 4.1 illustrates a file structure with the above characteristics.

The file structure described so far consists of two separate files: one storing the directory

and one storing the actual data pages. During processing, the directory is loaded in main

memory unless it is too large. In such a case, it is divided in smaller pieces (segments). Only

one segment at a time (the one containing the most recently acquired page address) is kept

in main memory. Directory segments are returned back to the disk when processing is ended

or when a required address falls outside the current directory segment. The size of segments

can be specified by the user.

The advantage of this organization is that it provides very fast direct access on the basis of

57

overflowed page
current write position

directory

6

5

4

3

2

1

.

.

.

0

xxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxx

xxxxxxxxxx

.

.

.

D
k

Figure 4.1: File structure Hk with directory of size Dk . Unused directory pointers are null.

a given address. It has the disadvantage that updates (i.e., modifications of stored data) and

deletions are difficult to be performed. However, insertions and retrievals are the two more

common operations that take place in an IDB; updates and deletions are rather rare. So far,

we have only studied insertions and retrievals.

Insertions are performed in two disc access: one to access a directory (if stored on disk)

and read the address corresponding to the first page in the list of data pages, and one to

locate the next free position within this page. Similarly, retrievals require at least two disk

accesses: one to access a directory and one to fetch the first data page. Successive disc

58

accesses may return the whole list of data pages. However, as page chains grow, the number

of disk accesses increase and retrievals are slowed down.

When a data entry has to be updated or deleted, corresponding pages have to be located

and fetched in main memory. The data entry can then be updated or removed. The page has

to be reconstructed by closing the gaps created by deletions before it is returned back on disk.

Successive deletions may cause pages to become empty. Eventually, data files may contain

holes corresponding to empty pages. If pages are not reused by future insertions, the whole

file will have to be rebuilt.

4.6 Storage Requirements

The storage space required by each Hk file structure is

SN�k � b1

NX
i�1

�
ni
k

�
� b2
min (Dk�DIRISIZE)� 2 � k � min �ni�Kmax�� �4�7�

Therefore, the storage space for the IDB as a whole is

SN�Kmax �
KmaxX
k�2

SN�k� �4�8�

The first term in Equation 4.7 represents the space occupied by the actual image data

(image subsets). It is dynamic, since it increases with the number of images stored in the

IDB.N is the number of images stored, ni is the number of objects contained in the i-th image

and b1 is the size of information stored per image subset (b1 � 15 bytes on the average). The

second term of Equation 4.7 represents the space required to store the directories. It is static,

since it never changes no matter how large or small is the number of images stored. b2 is the

amount of space required to implement the two directory pointers (usually b 2 � 8 bytes).

The number of image subsets produced, and thus the amount of data stored, can be very

large especially when the number of objects contained in images is large (e.g., more than

59

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2 3 4 5 6 7 8 9 10 11 12

nu
m

be
r

of
 im

ag
e

su
bs

et
s

pr
od

uc
ed

number of objects in an image

Kmax = 2
Kmax = 3
Kmax = 4
Kmax = 5
Kmax = 6

Figure 4.2: Number of image subsets produced from an image, as a function of the number

of objects it contains, for (a) Kmax � 2, (b) Kmax � 3, (c) Kmax � 4, (d) Kmax � 5 and (e)

Kmax � 6.

10). It can become even larger when images are noisy and segmentations are inexact. To

avoid such difficulties and to keep the amount of data manageable, segmentations need to

be carried out interactively so that insignificant segments and segments resulting from noise

are deleted. In this case and for the kinds of images found in most applications, the average

number of objects stored per image can be kept small (typically less than 10).

The number of image subsets stored per image, and thus the amount of space required,

increases also with Kmax. Figure 4.2 shows the number of image subsets produced from an

image as a function of the number of objects it contains, for (a)Kmax � 2, (b)Kmax � 3, (c)

Kmax � 4, (d) Kmax � 5 and (e) Kmax � 6. If we consider b1 � 15 bytes and Kmax � 6,

60

then images containing up to 10 objects require less than 800
15 � 12�000 bytes for storage.

Images containing more than 10 objects require much more space for storage.

For the prototype IDB consisting of 226 medical images and for Kmax � 6, there are

16�404 stored image subsets. Among them, there are 2�557 subsets of size 2, 3�917 subsets of

size 3, 4�286 subsets of size 4, 3�480 subsets of size 5 and 2�163 subsets of size 6. Assuming

b1 � 15 bytes on the average, the average required amount of storage space per stored image

subset is 1�088 bytes (the amount of storage space corresponding to the directories has not

been taken into account).

Chapter 5

Image Retrieval

5.1 Introduction

ALL QUERIES address the logical database rather than the raw image data stored in the

physical database. We concentrate our attention on the case of queries by image example: a

query image or a sketch of image segments is given, it is analyzed and a representation similar

to those of the images stored in the IDB is created. Sketches corresponding to all images

matching the query are retrieved and displayed. The user can then specify which (original)

images are going to be retrieved from the physical database using an “image browser” (see

Appendix B). Representations of image subsets of equal size having the same property

strings with those of the query are also retrieved and displayed.

5.2 Image Similarity Criteria

Let pm be a image consisting ofm objects and let �d0
m� d

1
m� � � � � d

��1
m � be its representation

corresponding to a set of � properties. Furthermore, let pk be an image subset obtained from

an image consisting of n objects and let �d0
k� d

1
k� � � � � d

��1
k � be its representation. The image

61

62

pm is “similar” to the image subset pk or pm “matches” pk , in which case we write pm pk ,

if the following condition holds:

pm pk �	 k � m � dim � dik� � i � �0� � � 1�� �5�1�

Equivalently, an image is similar to an image subset if they have both equal size and same

property strings, or they have the same representation of primary and secondary indices (see

Section 4.3). If pm matches pk, then the i-th (i � �0�m� 1�) object of pm matches the i-th

object of pk . Furthermore, an image pm matches an other image consisting of n objects if,

m � n and pm matches at least one of the image subsets of size m generated from the image

under consideration. If pm is a query image, its corresponding answer set contains all image

subsets which are similar to it.

5.3 Search Strategy

Query processing depends on m, the number of objects contained in the query image. In

particular, we distinguish between “direct access” queries corresponding to 2 � m � Kmax

and “indirect access” queries corresponding to m � Kmax, where Kmax is the maximum

size of image subsets stored. The search is performed in two steps, namely “hypothesis

generation” and “hypothesis verification”. During the first step, a number of candidate image

subsets (or images) matching the query are retrieved. During the second step, the final answer

set containing image subsets (or images) matching the query is constructed.

5.3.1 Direct Access Queries:2 � m � K
max

� Hypothesis generation: the primary and secondary indices of the query image are

computed first (see Section 4.3). The query addresses theHm file and all image subsets

with the same primary index are retrieved.

63

� Hypothesis verification: all hypothesized image subsets are matched (one by one)

against the query with respect to the secondary indices.

5.3.2 Indirect Access Queries:m � Kmax

� Hypothesis generation:given a query image specifying m objects, all subsets con-

sisting of Kmax objects are generated, thus creating � �
�

m

Kmax

�
new queries. Each

of these queries performs as a direct access query on the HKmax file and produces an

answer set consisting of names or indices corresponding to images which are similar to

it. Therefore, � answer sets namely S0� S1� � � � S��1, are produced. Their intersection

S � S0�S1 � � ��S��1 is then obtained and used to hypothesize the existence of images

matching the original query.

� Hypothesis verification: the images contained in the set S are retrieved1, all image

subsets corresponding to retrieved images are generated, their representations are

computed, and they are matched against a similar computed representation of the

original query image.

Retrieved images may also be compared on the basis of additional properties, either

relational or specific to the shape of objects they contain, using techniques such as those

reviewed in Section 2.7.

5.4 Performance Evaluation

Response time is one possible measure of the performance of retrievals. However,

response time depends on characteristics of the particular implementation and of the hardware

used (e.g., how the logical and the physical databases are implemented, how quick is the

1Instead of original images, their segmented forms are retrieved.

64

access to the secondary storage, the size of the main memory etc.). Response time depends

on the size of the hypothesized answer set and increases with it. The size of the hypothesized

answer set is independent of characteristics of the implementation and can be used as a second

measure of the performance of retrievals in addition to response time. It is computed as the

percentage of images (or image subsets) retrieved with respect to the total number of images

(or image subsets of the same size) stored.

The size of the hypothesized answer set returned in response to queries specifying k

objects, is always inverse proportional to the size of the address spaceDk . In particular, asDk

increases, the stored image subsets are distributed over a larger space and the number of image

subsets stored per index decreases. In general, the evaluation of the performance of retrievals

must be based on a mathematical formal model of the distribution of the stored image subsets,

which in addition to DK , takes into account the content of image subsets stored (which in

turn depends on the content of images of the application domain under consideration), query

content (which effects the value of the primary index) and the interdependences between

image subsets derived from the same image (two or more image subsets may differ by one

object). However, such a mathematical formal model cannot be easily derived.

In the special case where all indices appear with the same probability, the size of the

hypothesized answer set is equal to 1
Dk

. We attempt to achieve a uniform distribution by

selecting as primary, those attributes which distribute the stored image subsets uniformly

over their corresponding address space (see Section 4.4). If the distribution is uniform,

we can ignore the dependences of performance on the application domain, query content

(the performance is fairly the same regardless of query content) and the interdependences

between image subsets derived from the same image. In studying the performance of

retrievals, independence of query content is achieved by taking the average performance of

a large number of queries (i.e., more than 10). Henceforth, in order to keep the analysis of

the performance tractable, we consider performance as being only a function of the size of

the address space Dk . Specifically:

65

1. Dk depends on the size k of image subsets stored and increases with it. Therefore, the

performance of retrievals improves with the number of query objects, since queries

address files storing image subsets of equal size. In particular, the performance of

indirect access queries depends on the performance of direct access queries specifying

Kmax objects. Therefore, the performance of indirect access queries improves with

Kmax.

2. Dk depends on the number of primary attributes used and increases with it. Therefore,

the performance of retrievals improves with the number of primary attributes. If the

number of primary attributes is equal to the total number of attributes of an image

representation, then the size of the hypothesized answer set becomes equal to the size

of the final answer set. However, the size of the address space corresponds to disc

space and the number of primary attributes is limited (see Section 5.5).

3. Dk depends on the quantization value and increases with it. Greater quantization

values not only increase the accuracy of image representations, but also improve the

performance of retrievals.

4. Dk depends on the ordering criterion which has been applied. In particular, the size of

the address space corresponding to the first ordering criterion depends only on the size

of image subsets. The size of the address space corresponding to the second ordering

criterion also depends on the size of the rectangular grid which has been used and

increases with it. In general, the second ordering criterion results in larger address

spaces and achieves better performance.

5.4.1 Experimental Results

Evaluations have been carried out using a prototype IDB consisting of 1�000 simulated

images each containing between 2 and 10 objects. For each n � �2� 10�, there are over than

100 images containing n objects. The number of stored image subsets depends on Kmax.

66

For Kmax � 6, there are 18�459 stored subsets of size 2, 36�856 stored subsets of size 3,

51�439 subsets of size 4, 51�274 subsets of size 5 and 36�528 subsets of size 6. All images

are of size 256� 256 and they are not scaled with respect to each other. The second ordering

criterion has been applied using a rectangular grid of size 3� 3. The quantization value q is

set to 3 for all object properties.

Queries are distinguished based on the number m of objects they specify. Measurements

of both the size of the answer sets and of the retrieval response times have been obtained.

To obtain average performance measures, for each value of m ranging from 2 to 6, 20 image

queries have been applied and the average performance to queries specifying an equal number

of objects has been computed. By applying the methodology of Section 4.4 we found that the

ordered sequence of attributes in order of decreasing discriminating power is �r� c� o� s� w�.

Query response times account for the time spent in computing the query representation plus

the time spent in searching the database and retrieving image data. The later, characterizes the

performance of the search mechanism which has been applied and, henceforth, will be used

in performance evaluations. The IDB has been implemented on a magnetic disc connected

to a host computer (SUN 4/280). Therefore, the time delays due to data transfers through a

communications network are zero.

Performance of Direct Access Queries

First we study direct access queries and we set Kmax � 6. Figure 5.1 shows the average

size of the answer sets obtained, as a percentage of image subsets retrieved, plotted against

the number of query objects. The relative positions r and the roundness c of objects have

been used as primary attributes. For queries specifying 2 objects, the size of the hypothesized

answer set (i.e., percentage of image subsets matching the query with respect to r and c) is

5% on the average. Queries become more specific and the size of an answer set decreases as

the number of query objects increases. In particular, the size of an answer set drops to 0% for

67

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 3 4 5 6

pe
rc

en
ta

ge
 o

f
im

ag
e

su
bs

et
s

re
tr

ie
ve

d
(%

)

number of query objects (m)

r, c matched
r, c, o matched

r, c, o, s matched
r, c, o, s, w matched

Figure 5.1: Average size of answer set corresponding to direct access queries, as a percentage

of image subsets retrieved, plotted against the number of query objects.

queries specifying more than 5 objects. The same hold in the case of Figure 5.2 which shows

the average size of the answer sets obtained, as a percentage of images retrieved, plotted

against the number of query objects.

Similarly, queries become more specific and the size of an answer set decreases when

comparisons between hypothesized image subsets (or images) and queries are based on more

attributes. Attributes are used in comparisons in order of decreasing discriminative power.

As shown in Figure 5.1 and Figure 5.2, comparisons have been performed based, first on the

position r and the roundness c properties of objects (in which case the hypothesized answer

sets are obtained), then on the orientation o, then on the size s and, finally, on the inclusion

w properties of objects (in which case the final answer sets are obtained). Comparisons with

68

0

5

10

15

20

25

30

35

2 3 4 5 6

pe
rc

en
ta

ge
 o

f
im

ag
es

 r
et

ri
ev

ed
 (

%
)

number of query objects (m)

r, c matched
r, c, o matched

r, c, o, s matched
r, c, o, s, w matched

Figure 5.2: Average size of answer set corresponding to direct access queries, as a percentage

of images retrieved, plotted against the number of query objects.

w have little effect on the sizes of answer sets: either images do not differ with respect to

the inclusion properties of objects or the attributes used beforew are enough to minimize the

search space, or both. Therefore, comparisons with w are not necessary for the set of images

under consideration.

The response time accounts for the time spent in retrieving the hypothesized answer set

plus the time spend in processing the retrieved image data. All retrieved image subsets

are compared against the query on the basis of their corresponding secondary indices. The

processing takes place in the main memory and is very fast. Therefore, response time

accounts mainly to the time spend for retrievals. Figure 5.3 shows the retrieval response

times as a function of the number of query objects. Response times decrease with the number

69

0

0.05

0.1

0.15

0.2

0.25

0.3

2 3 4 5 6

re
tr

ie
va

l r
es

po
ns

e
tim

e
(s

ec
s)

number of query objects (m)

r, c primary
r, c, o primary

Figure 5.3: Average retrieval response times corresponding to direct access queries, plotted

against the number of query objects.

of query objects, since the size of the answer sets obtained and thus the amounts of data to

be processed, decrease too. Similarly, query responses are faster when more attributes are

used as primary. The response times corresponding to (a) primary attributes r and c, and (b)

primary attributes r, c and o are demonstrated. If instead of two, three primary attributes

are used, the response time is not significantly reduced and becomes minimum for queries

specifying more than 3 objects.

As the number of primary attributes increases, directory sizes also increase and stored

data (i.e., image subsets) are distributed over larger address spaces. Therefore, the amounts

of data which are retrieved and processed decrease. However, the amounts of data which

are retrieved are rather small and cannot influence response times significantly, especially

70

in the case of large directories corresponding to files storing subsets consisting of more

than 4 objects. For example, for primary attributes r and c and for queries specifying 4

objects, the size of the hypothesized answer set is approximately 0�1% on the average. Only

0�1
 51�439100 � 52 image subsets are retrieved. If the amount of space per stored subset

is 15 bytes, then approximately 770 bytes are retrieved. Such amounts of data can be read

in one disc access. Increasing the size of the directory, will result decreasing the amount of

retrieved data. However, one disc access is still necessary and the speedup is minimum.

Performance of Indirect Access Queries

An image query specifying m � Kmax objects, is decomposed into � �
�

m

Kmax

�
query

subsets. Each query subset performs as a direct access query on the HKmax file and produces

an answer set Si, 0 � i � �, consisting of names or indices corresponding to images which

are similar to it. The size of each Si is, on the average, equal to the average size of the

final answer set obtained to direct access queries specifyingKmax objects. The hypothesized

answer set S is computed as S � S0�S1 � � ��S��1. The size ofS is, on the average, less than

the size of each Si but, greater than the average size of the final answer set corresponding to

direct access queries specifyingm objects (i.e., S may contain images which do not match the

original query). Let Fimages�m�, m � �2�Kmax�, be the size of the answer set of direct access

queries specifying m objects. S is such that Fimages�m� � sizeof�S� � Fimages�Kmax�.

The size of S forKmax � 2 andKmax � 3 is shown in Figure 5.4. The size of Fimages�m�

for m � �2� 6� (Kmax � 6), is also shown and corresponds to the curve of Figure 5.2 with

all attributes matched. The size of S decreases with Kmax: the evidence that an image in S

matches the original query is stronger for higher values of Kmax. Furthermore, the size of S

approaches to Fimages�m� as the number of query objects and the number of properties used

in image comparisons increases. For example, the size of S becomes approximately equal

to Fimages�m� for Kmax � 4 and m � 4. So far, we have been using 5 properties, namely

the r, c, o, s and w, which have been proven effective in quickly narrowing down the search

71

0

1

2

3

4

5

6

2 3 4 5 6

pe
rc

en
ta

ge
 o

f
im

ag
es

 r
et

ri
ev

ed
 (

%
)

number of query objects (m)

Kmax = 2
Kmax = 3
Kmax = 6

Figure 5.4: Average size of hypothesized answer set corresponding to indirect access queries,

as a percentage of images retrieved, plotted against the number of query objects.

space in the case of indirect access queries.

All images contained in S are then retrieved and matched against the original query (i.e.,

all image subsets of size m obtained from images in S are produced, their representations

are computed and matched against a similar computed representation of the original query).

By comparison with direct access queries, indirect access queries incur an overhead which

is due to: (a) the retrieval and processing of intermediate query results and (b) the retrieval

of the images contained in S, the processing and the matching of these images against the

original query. Asm increases, the number � of intermediate queries specifyingKmax objects

increases too, thus resulting in an additional overhead. Therefore, indirect access queries

respond slower than direct access queries specifying the same number of objects.

72

0

5

10

15

20

25

30

2 3 4 5 6

re
tr

ie
va

l r
es

po
ns

e
tim

e
(s

ec
s)

number of query objects (m)

Kmax = 2
Kmax = 3
Kmax = 4
Kmax = 6

Figure 5.5: Average retrieval response times corresponding to indirect access queries, plotted

against the number of query objects.

The retrieval response times corresponding to indirect access queries for (a) Kmax � 2,

(b) Kmax � 3 and (c) Kmax � 4 are shown in Figure 5.5. The response times corresponding

to direct access queries (Kmax � 6) are also shown and correspond to the curve of Figure 5.3

with r and c as primary attributes. The response times for Kmax � 4 (m � 5) approach the

response times of direct access queries. For such queries, S contains only a few images (or

none) and the overhead is minimum. When Kmax � 2, as proposed in [11], the overhead is

maximum.

5.5 Tailoring Parameters to an Application

Two parameters must be specified before an IDB is put to work: the number of primary

73

attributes and the maximum size of stored image subsets Kmax. It has been shown that

the performance of retrievals improves both with the number of primary attributes and with

Kmax. However, the amount of storage space increases with both of these parameters. The

specification of these parameters depends on the application domain, the content of images

involved, and the number of images stored. The IDB of simulated images has been used for

the specification of both the number of primary attributes and Kmax.

5.5.1 Specification of the Number of Primary Attributes

According to Figure 5.3, increasing the size of directories by using more primary attributes,

speeds-up retrievals in cases of queries specifying 2 or 3 objects. In this case, we may choose

3 primary attributes. In cases of queries specifying more than 3 objects, the speedup is

minimum. Such queries address directories which are large enough even when 2 primary

attributes are used. In this case, we may choose 2 primary attributes. For larger IDBs,

the selection of the number of primary attributes can be performed by scaling the retrieval

response times accordingly. However, the speedup may not be proportional to the increase of

the size of the directories. According to Figure 5.3, the time responses to queries specifying

2 objects is approximately 0�25 seconds on the average when 2 primary attributes (i.e., the

r and s) are used and 0�15 seconds when 3 primary attributes (i.e., the r, c and s) are used.

The directories have sizes 18 and 162 respectively. When 3 primary attributes are used, the

directory is 9 times larger, while time responses are only 1�6 times faster.

5.5.2 Specification ofK
max

A threshold must be defined representing the maximum allowable size ofS. This threshold

value must always be greater than the average size of the final answer set corresponding to

direct access queries specifying the same number of objects. Such a threshold may also be

defined for the retrieval response times. In the following, we require that Kmax is such that

74

the performance of indirect access queries becomes approximately equal to the performance

of corresponding direct access queries.

Based on Figure 5.5 we must chooseKmax � 4 orKmax � 5. The performance of indirect

access queries in terms of the retrieval response times, and therefore the specification ofKmax

based on it, depends mainly on the implementation (i.e., how fast an image is retrieved, how

fast its representation is computed, how the intermediate query results are processed etc.).

So far, the processing of indirect access queries, the retrieval and the computation processes

has not been optimized. Based on Figure 5.4 we may choose Kmax � 3. For Kmax � 3 the

size of the hypothesized answer set S becomes approximately equal to the size of the final

answer set corresponding to direct access queries specifying the same number of objects.

Therefore, there is space to reduce Kmax from 5 down to 3 by optimizing the processing of

indirect access queries.

The performance of indirect access queries depends also on the number of objects con-

tained in images and on the number of properties involved in an image representation. In

particular, for images consisting of more than 10 objects on the average, the number of

image subsets which are derived and stored for a given value of Kmax will be larger (see

Section 4.6). In this case, the size of the hypothesized answer set S will be larger too. The

same will happen when images are compared on the basis of a smaller number of properties

(e.g., 1 to 3). In such cases, Kmax may take greater values.

5.6 Indexed Search Versus Search by 2-D Strings

The performance of the proposed methodology is compared to the performance of 2-

D strings (see Appendix A). The comparison has been based on retrieval response times

obtained to queries addressing the IDB of simulated images. A database of 2-D strings

obtained from all images has been created as well. However, using 2-D strings search is

exhaustive: all stored 2-D strings are compared (one by one) to the 2-D string representation

75

0

1

2

3

4

5

6

7

8

2 3 4 5 6

re
tr

ie
va

l r
es

po
ns

e
tim

e
(s

ec
s)

number of query objects (m)

2-D strings
r, c primary

r, c, o primary

Figure 5.6: Average retrieval response times as a function of the number of query objects

corresponding to the first ordering criterion and (a) indexed search, (b) exhaustive search

using 2-D strings and match2D algorithm.

of a query. The 2-D string representation has been extended to take into account the inclusion

relationships between objects (i.e., the 2-D string representation includes stringw), and more

than one object properties (i.e., the 2-D string representation includes strings c, o and s).

The algorithms for 2-D string matching make use of two strings r2�D and s2�D which

represent the ranks of objects along the x and y axes respectively. When the first ordering

criterion is used, r2�D � �0� 1� 2� � � � n� 1� and s2�D � r, where n is the number of objects

in an image. In this case, two or more objects may not share the same position, while images

are not compared on the basis of the relative distance between objects. The relative positions

between all pairs of objects, given by the difference of their corresponding rank values along

76

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 3 4 5 6

re
tr

ie
va

l r
es

po
ns

e
tim

e
(s

ec
s)

number of query objects (m)

2-D strings
r, c primary

r, c, o primary

Figure 5.7: Average retrieval response times as a function of the number of query objects

corresponding to the second ordering criterion and (a) indexed search, (b) exhaustive search

using 2-D strings and match2D2 algorithm.

both the x and the y axes are compared. Searching is performed using type-0 matching and

the algorithm match2D of Figure A.3 of Appendix A. An algorithm for type-1 2-D string

matching can be used as well. Figure 5.6 shows the retrieval response times corresponding

to both indexed search and 2-D strings.

When the second ordering criterion is used, two or more objects may share the same

position, while objects are also compared on the basis of their relative distance. The rep-

resentation of the relative distance between any two objects is inherent within string r (see

Section 3.4.2). The relative positions between all pairs of objects and their relative distances,

given by the difference of their corresponding rank values along both the x and the y axes

77

are compared. Searching is performed using type-2 matching and the algorithm match2D2

of Figure A.5 of Appendix A. The rank strings r2�D and s2�D corresponding to the positions

of objects along the x and the y axes respectively are constructed from r as follows:

r2�D
i �

�
ri
N

�
� s2�D

i � ri mod M� 0 � i � n� �5�2�

The time complexity of bothmatch2D andmatch2D2 algorithms depends on the number

of objects contained in images. However, as the number of objects in queries increases,

queries become more specific and the initial matching lists (i.e., MI andmatch respectively)

contain fewer objects. Therefore, time responses become faster with the number of query

objects. In addition, match2Dmakes use of termination conditions which are satisfied faster

as queries become more specific. The algorithm match2D2 results in faster time responses

than match2D, since match2D2 has lower time complexity than match2D. The time

responses of direct access queries become faster if, instead of two (i.e., the r and c), three

primary attributes (e.g., the r, c and o) are used.

The proposed methodology results in faster retrieval response times than 2-D strings in

the case of direct access queries. In the case of indirect access queries, 2-D strings result in

faster retrieval response times when Kmax � 5 (see Figure 5.5). 2-D strings outperform the

proposed methodology when Kmax � 4. Both techniques work by finding all sequences of

objects matching a given query image and produce identical answer sets. However, compared

to the proposed methodology, 2-D strings have the advantage of requiring much less space

for data storage.

5.7 Indexing of 2-D Strings

We can combine both indexed search and search by 2-D strings. Instead of representations

of image subsets, 2-D strings corresponding to whole images are stored in data pages. In

particular, for each image subset, a tuple �image� 2�D string� is stored, where “image” is

78

a unique identifier corresponding to the image from which the image subset has been derived,

and “2-D string” is its 2-D string representation. Alternatively, to avoid storing the 2-D string

representation of the same image many times, a tuple consisting only of the image identifier

is stored, while its 2-D string is stored separately and indexed using its identifier as a unique

key.

The search strategy must then be modified as follows: the index of a given query image is

computed and all corresponding 2-D strings are retrieved. The retrieved 2-D strings are then

compared (one by one) to the 2-D string representation of the query and all image subsets

(i.e., matching subsequences) which are similar to it are produced. The size of the search, as

a percentage of images retrieved, is shown in Figure 5.2 and corresponds to the curve with

r and c matched. For example, for queries specifying 2 objects and primary attributes r and

c, approximately 35% of the total number of images are retrieved and compared against the

query.

Direct access queries will become slower, since instead of simply comparing values of

secondary indices corresponding to query and hypothesized image subsets respectively, their

2-D string representations are compared using either match2D or match2D2 algorithm.

Direct access queries will be faster than those of Figure 5.7, but slower than those of Figure 5.3.

Indirect access queries will be faster than those of Figure 5.5, since the representations of the

hypothesized images are found in the retrieved data pages and need not be computed from

raw data (i.e., from the segment forms corresponding to hypothesized images).

A stored tuple may also include information which is better suited for the representation of

the content of images of a particular application domain. For example, in applications where

images contain overlapping objects with complex shapes, a stored tuple may include the 2-D

C string representation [33] corresponding to the image from which the image subset at hand

has been derived. However, retrievals will be slowed-down, since image comparisons based

on 2-D C strings involve graph mathing techniques [76].

79

0

5

10

15

20

25

30

35

40

2 3 4 5 6

pe
rc

en
ta

ge
 o

f
im

ag
es

 r
et

ri
ev

ed
 (

%
)

number of query objects (m)

r, c matched
r, c, o matched

r, c, o, s matched
r, c, o, s, w matched

Figure 5.8: Medical IDB: average size of answer set, as a percentage of images retrieved,

plotted against the number of query objects.

5.8 Retrievals on a Medical IDB

The proposed methodology has also been used for the retrieval of images in an IDB

consisting of 226 computed tomographic (CT) and magnetic resonance (MR) images. These

are images of various parts of the body (e.g., head, abdomen etc.), each consisting of one or

more objects surrounded by an outer contour (e.g., skull). All images contain 2 to 8 objects.

The images have been obtained at various scales. To obtain scale independent representations

the first ordering criterion has been applied. The size values of objects are normalized with

respect to the size of the biggest object in the image. The quantization parameter q was set

to 3 for all object properties.

80

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

2 3 4 5 6

re
tr

ie
va

l r
es

po
ns

e
tim

e
(s

ec
s)

number of query objects (m)

r, c primary
r, c, o primary

Figure 5.9: Medical IDB: average retrieval response times plotted against the number of

query objects.

Measurements of both the size of the answer sets and of the retrieval response times

have been obtained and shown in Figures 5.8 and 5.9 respectively. To achieve average

performance measures, for each value of m ranging from 2 to 6, 16 of the most common

types of image queries (similar to the ones described in Section 5.8.1) have been applied

and the average performance to queries specifying an equal number of objects has been

computed. As expected, both the size the answer sets and of the retrieval response times

decrease with the number of query objects. The size of the final answer set corresponding

to queries specifying more than 3 objects is approximately 0%. Due to the small size of the

IDB, retrievals are very fast. The overhead encountered in cases of indirect access queries

results in retrievals which are, on the average, much slower than those shown in Figure 5.9.

81

However, based on Figure 5.8, we may choose Kmax � 4, since the size of the answer set

corresponding to 4 objects is zero.

For Kmax � 4, there are 10�760 image subsets stored. Assuming b1 � 15 bytes, the

storage space per image is 714 bytes on the average. The primary attributes correspond to

the relative positions and the roundness properties of objects (see Section 4.4). The time

response to queries specifying less than 4 objects can become faster, when more than 2

primary attributes are used. However, the amounts of data which are retrieved and processed

in response to queries specifying more than 4 objects are very small and retrievals cannot be

made more efficient.

5.8.1 Examples of Retrievals

In the following, four characteristic examples of retrievals are presented and discused.

In Figure 5.10, query object 0 matches object 3 of the retrieved image and query object

1 matches object 2. Query and retrieved objects match each other with respect to their

global characteristics (i.e., relative size, roundness and orientation) and have similar relative

positions. However, they have rather different shapes, since objects have not been compared

on the basis of local properties of their shape. Object 5 of the retrieved image matches query

object 1 with respect to the properties of size and roundness but not with respect to orientation

(object 5 has orientation 1, while query object 1 has orientation 0). Therefore, the answer

does not include object 5.

In Figure 5.11 the image subsets matching the query are (3 2 6) and (3 5 6). Query object

0 matches both objects 2 and 5. Query object 1 is bigger than query object 2. However,

query object 1 matches object 3 of the retrieved image which is smaller than object 6 which

matches query object 2. All these objects have size 0 with respect to the size to their outer

object. To make similarity of sizes more accurate, quantization parameter q must take a value

greater than 3.

82

1

0

Query Image:

p = 0 1

r = 1 0

c = 2 1

s = 2 0

o = 0 0

w = 0 0

4
1

5

3

0

2

Retrieved Image:

Matching Subset: 3 2

Figure 5.10: Retrieval example 1.

The query of Figure 5.12 looks similar to the query of the previous example. However,

object 1 is below object 0 (i.e., the center of mass of object 1 is below the center of mass of

object 0), while in the previous example, object 1 was above object 0. The answer set is now

completely different. In this case, we are faced with a problem of stability of representation

(see Section 3.7). We can avoid this problem by applying the same query twice, once with

rank string (0 1 2) and once with rank string (1 0 2). When the second rank string is used, the

query has exactly the same representation with the query of Figure 5.11. Then, the image

83

1

2

0

Query Image:

p = 1 0 2

r = 1 0 2

c = 1 2 2

s = 0 2 0

o = 1 0 2

w = 1 1 1

3
4 6

0

5

2

1

Retrieved Image:

Matching Subset: 3 2 6

Matching Subset: 3 5 6

Figure 5.11: Retrieval example 2.

subset (6 0 2) will be included in the answer set. If the second ordering criterion were used,

both query objects 0 and 1 would have assigned equal ranks. However, the second ordering

criterion can be used only in cases where images are not scaled with respect to each other.

The query of Figure 5.13 returns an empty answer set. The two images shown below the

query image do not satisfy query criteria. However, there are cases in which we would like

the left image to be included in the answer set, since both image subsets (7 2 5 0) and (7 2 5

1) match the query, except for object 7 which does not have the same orientation with

84

1 0

2

Query Image:

p = 1 0 2

r = 0 1 2

c = 1 2 2

s = 0 2 0

o = 1 0 2

w = 1 1 1

4

6
2

5

0

3

1 Retrieved Image:

Matching Subset: 6 0 2

Figure 5.12: Retrieval example 3.

query object 3. The left image is included in the answer set if the orientation is not used in

comparisons. However, if the property of orientation is not used, then the right image and its

subset (0 6 3 2) is included in the answer set, although it looks completely different than the

query. To prevent images having different orientations (e.g., the right image) to be included

in the answer set, a preprocessing step is required (before images are entered in the IDB)

which puts all images in a standard orientation.

To deal with situations in which images match the query with respect to less than the total

85

3
2

0

1

Query Image:

p = 3 2 0 1

r = 0 1 2 3

c = 1 2 2 0

s = 0 0 2 0

o = 2 1 2 1

w = 2 2 2 2

2

6

7

1

5

4 3

0

6 5

2

0 1

4
3

Figure 5.13: Retrieval example 4.

number of attributes, retrievals have to be performed in stages. Instead of always using the

same set of attributes in image comparisons, at each stage of query processing, the user is

allowed to choose the number and the kind of properties to be used in retrievals. There may

be more than one answer sets returned in response to a given query (one at each stage of

retrieval), while a query answer set may be enlarged due to inexact matching. To deal with

such situations, an appropriate user interface, which supports this kind of query processing

assisted by an efficient mechanism for browsing must be developed.

86

5.9 Accuracy of Retrievals

The evaluation of the accuracy of retrievals is subject to human interpretation and has to

do with how well the methodology succeeds in retrieving images which a user expects to

be returned in response to a given query. In contrast to response times, where 2-D strings

offer a good basis of comparison, a common basis for comparing the accuracy of retrievals is

difficult to be adopted. Retrievals are accurate, in the sense that all images having exactly the

same representation with the query are retrieved. However, in certain cases, such as those

discussed in the previous section, the methodology may fail to retrieve images which look

similar to the query.

Accuracy, is mainly a mater of image content representation and depends on how well a

representation captures image content. Regarding accuracy, both the proposed methodology

and (extended) 2-D strings are equivalent (i.e., they produce identical answer sets), since they

make use of the same kind of representations. These are discrete (symbolic) representations

of image content. However, in certain cases, these representations may be proven to be

neither stable (see Section 3.7) nor complete (see Section 3.8). Increasing the accuracy of

image content representations in IDB systems has become subject of independent research

activities [113, 33]. Future proposals regarding image content representation, indexing and

retrieval must take such efforts seriously into account.

Chapter 6

Epilog

6.1 Conclusions

I N THIS thesis, a new methodology has been presented which supports the efficient repre-

sentation, indexing and retrieval of images by content. The contributions of this work are of

both a theoretical and a practical nature.

At the theoretical level, this work can be viewed as an extension and generalization of

the work of others. In particular, based on the known representations of 2-D strings [9], an

indexing scheme has been proposed, which in contrast to 2-D strings, avoids an exhaustive

search through the entire IDB. The representation of 2-D strings has been extended to take

into account the inclusion relationships between objects and more than one object properties.

In addition, two ordering criteria have been proposed and the representation of 2-D strings

has been specialized to the cases of scaled and unscaled images respectively.

Indexing and retrievals are based on image subsets derived from all stored images. All

subsets up to a prespecified maximum size Kmax are taken. Image subsets keep much redun-

dant information, since image content can be represented by the subsets of size 2. However,

the methodology owes its efficiency to the way redundant information is manipulated: an

87

88

image subset of a specific size can be regarded as an outcome to a possible image query

specifying the same number of objects. Subsets sharing common properties are indexed and

stored together in groups of subsets of the same size, so that they can be retrieved together

in response to a particular query. Furthermore, the proposed methodology generalizes and

extends the work of [11], which focuses entirely on the problem of indexing and is based on

image subsets of size 2. In [11], problems relating to image content representation, retrieval

methodologies, and system performance are not taken in to account.

At the practical level, the efficiency of the methodology has been assessed. Performance

evaluations have been carried out based on a database of simulated images, as well as images

obtained with computed tomography and magnetic resonance imaging. The average size

of the hypothesized answer set and the average retrieval response times has been used as

performance measures. The results of the evaluations has been presented and discussed. The

IDB of simulated images has been used as a testbed for comparing the performance of the

proposed methodology with the performance of 2-D strings and that of [11]. The results

demonstrate very significant retrieval performance improvements.

The performance improves with the size of the address space, which in turn increases

with the number of query objects and the number of primary attributes. In addition, the

performance depends on the ordering criterion which has been applied and the quantization

value (performance improves with quantization value). In cases of indirect access queries,

the performance improves with the maximum size of subsets stored Kmax. In general, the

performance depends also on the content of images of a particular application domain. Thus

the need for tailoring indexing parameters to each application domain: given an example

set of images which is large enough and characteristic of the application domain under

consideration, the kind and the number of primary attributes, as well as the maximum size of

image subsets Kmax need to be selected. Methods for the selection of the above parameters

has been proposed.

The proposed methodology ensures fast retrieval response times in cases of direct access

89

queries. Queries are fast even in the case of indirect access queries, especially when Kmax

takes relatively large values (e.g., Kmax � 4). The methodology results in faster retrieval

response times than 2-D strings in all cases of direct access queries. The indirect access

queries are faster forKmax � 4. However, indirect access queries can be further speeded-up.

This methodology is applicable in cases of images consisting of non-overlapping objects.

However, even in cases where objects are partially visible, object positions may be specified

by an expert user and indexing can still be based on the proposed representations. To ensure

that all retrieved images satisfy the query criteria, one more step is needed in the search and

retrieval process: all retrieved images must be compared to the query image on the basis of

additional image properties and a more complete description of image content. 2-D C strings

[33] provide a representation which has been shown to be better suited for the representation

of images consisting of overlapping objects with complex shapes.

In certain cases, image representations may be proven to be unstable. Due to unstable

representations, retrievals may be proven to be inaccurate. Problems relating to instabilities

of image representations can be avoided at the expense of storage space. However, any

attempt at increasing the accuracy and specificity of retrieval by storing more complete

descriptions of image content would result in lower response times and more demanding

average requirements. This is a tradeoff which must be carefully considered in the context

of specific applications. Query mechanisms supporting the treatment of variable similarity

criteria, assisted by appropriately designed user interfaces may also be used to increase the

retrieval capabilities of the proposed methodology.

6.2 Directions for Further Research

The proposed methodology can be extended in many ways. For instance, we may consider

the possibility of integrating, within the same indexing mechanism, additional kinds of image

properties, either relational such as “connected to”, “adjacent”, “in between”, “overlap” or

90

properties specific to the shape of objects. An image representation may also be augmented

with properties specific to images found in a particular application domain. Furthermore,

one may consider the possibility of using higher level properties (e.g., properties defined in

terms of others) or classes of images sharing common characteristics, thus creating a higher

level of indexing and retrieval. The proposed methodology can also be extended to include

the indexing of image sequences in three or four dimensions by ordering objects in a space

of three or four dimensions respectively, where the fourth dimension is time.

The retrieval capabilities of an IDB system can be significantly enhanced by extending

the user interface with additional tools and mechanisms for image processing and with a

powerful query language supporting the treatment of variable similarity criteria as well as

the processing of various types of image queries. In particular, the methodology may be

extended to support the processing of fuzzy queries e.g., “partial match” and “range” queries

[99, 13]. In partial match queries, one or more properties of objects contained in a query

image are left unspecified, in which case these properties are allowed to take any value in a

specific domain. In range queries, instead of exact values, ranges of values of one or more

properties corresponding to one or more query objects are specified. The proposed indexing

mechanism must be extended to satisfy the requirements of the above types of images queries.

The time performance of image archiving and retrieval can be significantly improved when

processing and retrievals are performed in parallel. In this case, the IDB may be partitioned

to more than one processors. The kind of parallelism inherent to the image processing and

retrieval tasks needs to be made explicit and an appropriate type of parallel architecture must

be selected. Parallelism is best suited in the case of partial match queries, since such kinds

of queries require more than one accesses to secondary storage and large amounts of data are

expected to be retrieved and processed.

A number of techniques, such as cross-correlation (or point-pattern) matching techniques

[68, 69, 71], techniques based on graph matching [8, 58, 70, 31] etc., are known to exist and

can be used to retrieve images by content (see Section 2.7). The performance of the proposed

91

methodology must also be compared against such techniques. Furthermore, the retrieval of

images based on characteristics of the shape of objects is of particular importance in many

application domains (i.e., robot vision, medical imaging etc.). A large number of techniques

for object recognition are known to exist. The efficiency of existing object recognition

techniques in retrieving images based on object similarity must be assessed in cases of large

databases consisting of many thousands of objects.

6.3 IDB System Characteristics

The functional characteristics of a prototype medical IDB system in which the proposed

methodology will be integrated are discussed in this section. The system is based on the

integration of tools and methodologies which support the interactive processing, classification

and browsing of medical images, as well as methodologies for the efficient automated

indexing, storage and retrieval of such images by content. Earlier implementations of this

system have been previously described in [114, 115, 16, 116].

The IDB system is capable of handling various types of medical image data, includ-

ing the raw images themselves, attributes (e.g., dates, names), text (e.g., diagnosis related

text), information extracted from images by automated or computer assisted image analysis,

modality and image file header information etc. Image data are further distinguished into

physical and logical. Logical image data are organized into classes forming hierarchies.

Different kinds of classes can be identified and used to assist application modeling and to

reduce the search space in specific queries. Specifically, logical image data may be organized

into classes based on anatomy, diagnosis, imaging modality etc. Knowledge in the form

of procedures (e.g., image processing and retrieval procedures corresponding to a specific

class), rules, and parameters may be assigned to each class and may be inherited by the

lower level classes. In designing and developing an IDB system which satisfies the needs

for a hierarchical database organization, takes advantage of the property of inheritance, and

92

is extensible, the object-oriented approach has been adopted. Physical data (images), are

stored on a separate image store (e.g., on an optical disc) and organized in clusters based on

the likelihood of being retrieved together in response to a particular query (e.g., the set of

all images of the same patient may be stored in adjacent locations on the disc). Pointers are

implemented from the logical to the physical database.

Commercial object oriented DBMSs continue to emerge, each providing different func-

tionalities and obeying its own design principles. As a consequence, given the requirements

of an application, the decision of which data model to use is not an easy one and, therefore,

adopting one of the currently available models may not turn out to be proven to be the

best solution in the long term. We have chosen to base the development of our prototype

medical IDB system on a low-level storage subsystem (storage manager) [117, 118]. A

storage subsystem provides mechanisms for the persistent storage and retrieval of objects.

The subsystem to be selected must be extensible with DBMS features such as mechanisms

for defining, creating, modifying and accessing both the data model (database schema) and

the data. In addition, it must be extensible so that it can provide transaction management,

concurrency control, authorization for a multiuser environment etc. A higher level subsys-

tem is built on top of the storage manager and designed to support the desired functionality.

The front-end module of this subsystem consists of an interactive user interface environment

which supports the communication between the user and the various system components. In

particular, this environment supports the following:

Image ProcessingIt includes tools and mechanisms for image filtering, image registration,

and the interactive or automated segmentation of medical images (see Section 3.2).

Image Classification Images may be classified into one or more predefined classes of an

anatomical or a diagnostic hierarchy. An image may be simultaneously an instance of

more than one classes found at any level in a particular hierarchy. The instances of each

class may be stored (logically or physically) separately, so that the IDB is partitioned

into database segments. This reduces the search space leading to faster retrievals, since

93

a query addresses only a specific database segment.

Image Queries Queries may be specified by: (a) identifier, in which case the value of a single

key (e.g., an image file name) is specified, (b) conditional statement involving values

(or ranges of values) of various attributes, (c) an example image (grey level image

or sketch) and (d) a combination of the above. A query language integrating within

its syntax all kinds of image queries is under development. A user may interactively

specify the specific database segment to be searched; otherwise, the whole hierarchy

will be searched. All images satisfying query selection criteria need to be retrieved,

while a user is allowed to make a final selection by browsing. Images and image

related data (e.g., text, attributes) stored in the database may both have to be retrieved

in response to a particular query.

Image Browsing The user interface is equipped with interactive graphical tools and mech-

anisms for both displaying and selecting image classes or class properties, and for ex-

ploring their interrelationships. Such display tools are referred to as “graph browsers”

in [115].Furthermore, the user interface is equipped with an “image browser” whose

purpose is to display reduced resolution images (miniatures) or sketches corresponding

to images stored in the database.

Once the content of images has been extracted reliably, the system resumes responsibility

for the efficient automated archiving and retrieval of images. The effectiveness of the IDB

system will be significantly enhanced by incorporating into its storage and search mechanisms

the methodology which has been presented in detail in this dissertation.

Appendix A

Image Indexing by 2-D Strings

A.1 Introduction

2-D STRINGS [9] is one of a few representation structures originally designed for use

in an IDB environment. The technique provides a simple and compact representation of

spatial image properties in the form of two one-dimensional strings. Before the 2-D string

representation of a given image is derived, the image is segmented and the locations of all

objects (e.g., their center of mass) are projected along the x and y directions. By taking the

objects from left to right and from below to above, two one-dimensional strings are produced

forming the 2-D string representation of the image. A 2-D string represents the “left/right”

and the “below/above” relationships between image objects. The objects themselves are

represented by values corresponding to classes or names.

2-D strings can be used to resolve queries based on image content: the problem of image

retrieval is transformed into one of two-dimensional string matching. However, search is

exhaustive: 2-D string representations corresponding to all stored images are compared

(one by one) with the 2-D string representation of a query. Algorithms of polynomial time

complexity for comparing 2-D strings have been proposed in [9, 74]. In the following, the 2-

94

95

D string representation technique and three algorithms for 2-D string matching are presented.

Both, the original 2-D string representation and the matching algorithms have been extented

to take into account the inclusion relationships between objects as well as any number of

object properties.

A.2 Image Representation by 2-D Strings

Let V be a finite set of symbols corresponding to names or classes of objects (e.g.,

V � fa� b� c�� � �g) and let A � f�� �� :g be a set of symbols denoting spatial relationships

between objects (V � A � �). A 1-D string over V is any string of the form x0� x1� � � � xn

where n � 0 and xi � V� 0 � i � n. A 2-D string �u� v� over V is defined as

�u� v� �
�
x0 y0 x1 y1� � � � yn�2 xn�1� xp�0� z0 xp�1� z1� � � � zn�2 xp�n�1�

�
�A�1�

where

x0 x1 � � � xn�1 is a 1-D string over V

y0 y1 � � � yn�1 is a 1-D string over A

z0 z1 � � � zn�1 is a 1-D string over A

p : f0� 1� � � � n� 1g � f0� 1� � � � n� 1g is a permutation over f0� 1� � � � n� 1g.

For example, the 2-D string representation of the image of Figure A.1 is

�u� v� � �a � c : d � b � c � a � d� a � b � c � c : d � d � a� (normal 2-D string)�

where

x0 x1 x2 x3 x4 x5 x6 � a c d b c a d

y0 y1 y2 y3 y4 y5 y6 � � : � � � �

z0 z1 z2 z3 z4 z5 z6 � � � � : � �

p0 p1 p2 p3 p4 p5 p6 � 0 3 4 1 2 6 5.

96

d

a

c

ba

c d Augmented 2-D string:

�u� v� � �acd � b � ca � d�

03 � 4 � 126 � 5�

Figure A.1: A symbolic image (left) and its corresponding augmented 2-D string (right).

The symbol “:” between objects denotes objects which have the same position in the image.

For example, we write c : d, since the objects c, d share the same grid position in the image

of Figure A.1. The symbol “�” between objects in string u or in string v denotes objects

which have the same projection along the x or the y-axis respectively. Finally, the symbol

“�” denotes the “left/right” relationships in string u and the “below/above” relationships in

string v. For example, the object b in the image of Figure A.1 is on the right of the objects a,

c, d, and on the left of the objects c, a, d. The objects a, b are below all other objects.

The 2-D string representation of a given image may take various forms, namely “normal”,

“absolute”, “augmented” etc. Details about these forms and the transformations between

them can be found in [9]. Here, we concentrate our attention on the augmented form which

can be derived directly from the above discussed normal form by eliminating all “:” and “�”

symbols and by substituting the name of each object in string v by an integer (index) denoting

its position in string u. For simplicity, we consider the objects to be ordered according to the

x-coordinate of their center of gravity. In general, any of the two ordering criteria proposed

in Section 3.4 can be used for ordering image objects. The augmented form is unique in the

sense that only images consisting of the same number of objects having the same names and

97

the same spatial relationships result in the same augmented 2-D string representation. The

augmented 2-D string representation of the image of Figure A.1 is

�u� v� � �a c d � b � c a � d� 0 3 � 4 � 1 2 6 � 5� (augmented 2-D string)�

A.3 Image Matching Using 2-D Strings

Here we present three algorithms for 2-D string matching following [9, 74], along with

some corrections and some modifications to the meaning of symbols. First, we give some

necessary definitions:

1. The “rank” ru of an object in a one-dimensional string u equals to the number of

“�” symbols preceding it in u. In particular, the rank ru of an object in a string u

representing the projections of objects along the x-axis, equals the number of objects

on its left. Similarly, the rank rv of an object in a string v representing the projections

of objects along the y-axis, equals the number of objects which are below it.

2. A one-dimensional string u is “contained” in a string v, if u is a subsequence of a

permutation of v. Furthermore, a string u is a “type-i” (i � 0� 1� 2) 1-D subsequence

of v if (a) u is contained in v and (b) if a1w1b1 is a substring of u, a1 matches a2 in v

and b1 matches b2 in v, then

(type-0): rv�b2�� rv�a2� � ru�b1�� ru�a1� or

ru�b1�� ru�a1� � 0

(type-1): rv�b2�� rv�a2� � ru�b1�� ru�a1� � 0 or

rv�b2�� rv�a2� � ru�b1�� ru�a1� � 0

(type-2): rv�b2�� rv�a2� � ru�b1�� ru�a1�

3. Let �u1� v1�, �u2� v2� be the 2-D string representations of the images f1, f2 respectively.

�u1� v1� is a type-i (i � 0� 1� 2) 2-D subsequence of �u2� v2� if (a) u1 is a type-i 1-D

98

subsequence of u2 and (b) v1 is a type-i 1-D subsequence of v2. If �u1� v1� is a type-i

2-D subsequence of �u2� v2�, then f1 is a type-i match of f2.

A matching algorithm must determine whether the 2-D string representation of an image

(query) is a type-i (i � 0� 1� 2) 2-D subsequence of the 2-D string representation of a second

image. In the case of a successful match there is at least one 2-D subsequence within the

second 2-D string matching the query. An algorithm must determine the existence of a match

and, in the case of a successful match, must find all the matching subsequences. Three such

algorithms have been proposed in [9]. The first is more general than the other two and may

be used either for type-0, type-1 or for type-2 matching, while the remaining two can be used

only for type-1 and type-2 matching respectively.

The augmented 2-D string representation �u� v� of a given image is first expanded into

a form �x� r� s� of three one-dimensional strings, where x contains the names or the classes

of all objects in the same order as they appear in u, while the strings r and s contain the

ranks of all objects along the x and y directions respectively. For example, the expanded

representation of the image of Figure A.1 is

�x� r� s� � �a c d b c a d� 0 0 0 1 2 2 3� 0 2 2 0 1 3 2� (expanded 2-D string)�

Once the expanded representations �x1� r1� s1� and �x2� r2� s2� of the two images under

consideration, have been derived, an initial matching table MI is constructed so that each

object in the query image is associated with the set of objects in the second image which have

the same name or class with it. If m and n is the number objects in the above two images,

the initial matching table MI is constructed as follows:

� i � �0�m� 1�� MI�i� �
�
j � �0� n� 1�

���� x1�i� � x2�j�
�
� �A�2�

In the following, the objects from the two images are taken in pairs and their relative

positions are compared. Let ��� �� be a pair of objects from the first image with indices �

99

function agree��� �� j� k�

ds1 � s1���� s1���; ds2 � s2�j�� s2�k�;

dr1 � r1���� r1���; dr2 � r2�j�� r2�k�;

if j � k or ds1
 ds2 � 0 then return(0);

casetype� 0:

if dr1
 dr2 �� 0 and jdr2j � jdr1j and jds2j � jds1j then return(1);

else return(0);

casetype� 1:

if �dr2 � dr1 � 0 or dr2 � dr1 � 0� and

�jds2j � jds1j � 0 or ds2 � ds1 � 0� then return(1);

else return(0);

casetype� 2:

if dr2 � dr1 and ds1 � ds2 then return(1);

else return(0);

end; case

end. agree

Figure A.2: Function agree determines whether the pair of objects ��� �� is a type-i (i �

0� 1� 2) match of the pair �j� k�.

and � respectively, where �� � � �0�m�1�, and let �j� k� be a pair of objects from the second

image with indices j and k respectively, where j� k � �0� n � 1�. The function agree of

Figure A.2 determines whether the pair ��� �� is a type-i (i � 0� 1� 2) match of the pair �j� k�,

in which case it returns 1; otherwise it returns 0.

The function match2D of Figure A.3 determines whether the 2-D string representation

of an image is a type-i (i � 0� 1� 2) match of a second image, in which case it returns 1;

otherwise it returns 0. The algorithm makes use of a triple indexed array a taking values

100

such that

k � a�j� �� ���	 �k� � � � j� �����1� � � � ��� �� � � �0�m�1�� k� j � �0� n�1�� �A�3�

By writing �k� � � � j� ��� � � � �� we mean that the sequence �k� � � � j� is a type-i (i �

0� 1� 2) 2-D subsequence of ��� � � � �� and both sequences have the same length. By setting

� � m� 2 and � � m� 1 we get

k � a�j�m� 1�m� 2��	 �k� � � � j� �0� � � �m� 1�� �A�4�

which means that the sequence �k� � � � j� matches the sequence of all the m query objects,

and therefore, we have a successful match. The algorithm has time complexity O�n� �

O
�
m2
 lp3

�
, where lp is the maximum length of all MI�i� lists, where i � �0�m � 1�.

If, in case of a successful match and prior to exiting match2D, the function sequences of

Figure A.4 is called, all type-i (i � 0� 1� 2) subsequences matching the query are obtained.

The algorithm makes use of a one-dimensional array bwhich holds one matched subsequence

at a time. The elements in all lists used by match2D must be unique; otherwise, the same

matched subsequence may appear in the output more than once. The time complexity of this

algorithm is approximately O�m
ms�, where ms is the number of matched subsequences.

Therefore, the time complexity of match2D becomes O�n� �O
�
m2
 lp3

�
�O�m
ms�.

When one is interested in finding all type-2 subsequences the algorithm match2D2 of

Figure A.5 is preferred. This algorithm makes use of a table match instead of MI , which is

constructed as follows:

� a � V� match�a� �
�
i � �0� n� 1�

���� x2�i� � a
�
� �A�5�

This table is also used by match2D for the construction of MI . However, now the elements

in all match lists must be not only unique but also sorted. Furthermore, the algorithm uses

an array min of pointers to the above match lists. The time complexity if this algorithm is

approximatelyO�n
mf � where mf is the length of match�x1�0�� list.

101

An algorithm for producing all type-1 matched subsequences has also been proposed.

Henceforth, we call this algorithm match2D1. It is the same as match2D2 except that

before the match array is constructed, the function curb of Figure A.7 is invoked. The

function curb computes for every object in the query image the indices of its “front” and

“back” objects. The front object of a query object is defined as the one on its left which is

both above and closer to it. Similarly, the back object of a query object is defined as the

one on its left which is both below and closer to it. Moreover, match2D1 makes use of

a function query1 which is the same as query2 except that, instead of agree, the function

check of Figure A.6 is used. This function determines whether the pairs ��� ��, �front���� ��

and ��� back���� are type-1 matches of the pairs �j� k�, �b�front����� j� and �j� b�back�����

respectively, where b�front���� and b�back���� are the indices of the objects matching the

front and back objects of the query object with index �.

A.4 Extensions to 2-D Strings

The representation of 2-D strings and the algorithms for 2-D string matching has been

extended to take into account more than one object properties as well as, the inclusion

relationships between them. In particular, instead of a single string of names, a set of k

strings �a0� a1� � � � ak�1� is used to characterize image objects. Each string corresponds to a

distinct property such as size, roundness, orientation etc. For an image containing n objects,

a single value x�i� is then assigned to each object i as follows:

x�i� � a0�i� � a1�i�
A0 � a2�i�
A0
A1 �

� ak�1�i�

k�2Y
j�0

Aj� 0 � i � n� �A�6�

where 0 � aj�i� � Aj and ak�1�i� �� 0 except for x�i� � 0. It is assumed that each property

aj , j � �0� k� 1�, takes values within a range of values �0� Aj� 1�. For example, we may set

Aj � q, �j � �0� k�1�, where q is the quantization parameter (see Section 3.6). The number

102

of different values an object may take is

A �
j�k�1Y
j�0

Aj� �A�7�

The tables MI and match can then be constructed as before. Furthermore, the 2-D string

representation of an image can be extended with the inclusion stringw (see Section 3.5) which

represents the “inside/outside” relationships between objects. In this case, a preprocessing

step is followed, which uses w, to fill with values a double index array io. For an image

containing n objects, io is defined as follows:

� i� j � �0� n� 1�� i �� j� io�i� j� �

����	
���

inside if object i is inside object j;

outside if object i is outside object j;

invinside if object j is inside object i.

�A�8�

The array io is constructed by applying the function iorelations of Figure A.8. First,

for each object i, a list list�i� is created which holds the indices of all objects which contain

it. The algorithm match2D can then be directly extended to take into account the inclusion

relationships between image objects. In particular, in function agree it is required that

io1��� �� � io2�j� k�, where io1 and io2 are the io arrays corresponding to the query and the

candidate image respectively. The preprocessing step has, at most, square time complexity

with respect to the number of objects in an image, which is added to the total time complexity

of match2D. Therefore, the time complexity of match2D becomes O�n2� � O�m2� �

O
�
m2
 lp3

�
�O�m
ms�. In practice, the extended 2-D string matching algorithm is likely

to perform faster than the original, since the initial matching lists match and MI contain

fewer objects, while matching based on agree is more strict.

The algorithm mathc2D guarantees that all pairs of query objects have been compared

against the objects of a matched subsequence on the basis of their inclusion relationships

in addition to the “left/right” and the “below/above” relationships. However, this is not the

case with algorithms match2D1 and match2D2. To extend these algorithms to take into

account the inclusion relationships between objects, all derived matching subsequences must

103

be compared against the query on the basis of the inclusion relationships between the objects

they contain. Specifically, all query objects and their corresponding objects in a matching

subsequence are taken in pairs. If they have the same inclusion relationships the match

is successful and the matched subsequence is included in the answer set. In order for an

image as a whole to be included in the answer set, there must be at least one subsequence

matching the query. This process has time complexityO�m2
ms�, where ms is the number

of subsequences returned. Therefore, the time complexity of match2D1 and match2D2

becomes O�n2� �O�m2� �O�n
mf� �O�m2
ms�.

A.5 Correctness of 2-D String Matching

It has been shown in [74] that the algorithmmatch2D allows “false drops” in certain cases

(i.e., there may exist instances in the answer set which do not actually match the query). The

conditions of occurrence of false drops are discussed in [74] and an algorithm which avoids

false drops has also been proposed. In particular, false drops may occur with type-0 and

type-1 matching, while false drops cannot happen in type-2 matching. Type-2 of matching

is transitive: if the pair ��� �� is type-2 match of the pair �j� k� and the pair ��� �� is type-2

match of the pair �l� j�, then the pair ��� �� is also type-2 match of the pair �l� k�. The

algorithm mathc2D guarantees that all pairs �k � 1� k�, k � �0�m� 2�, of query objects are

examined. The same holds for match2D2 algorithm. Therefore, match2D2 does not allow

false drops. Type-0 and type-1 of matching are not transitive. So far, we have not examined

the possibility of occurrence of false drops of match2D1 algorithm.

104

function match2D�m� p1� x1� r1� s1� n� p2� x2� r2� s2�

for i � 0 to n� 1 do insert i in match�x2�i��;

for i � 0 to m� 1 doMI�i� � match�x1�i��;

for i � 0 to m� 2 do

MC � �;

for all k in MI�i�, for all j �MI�i� 1� do

if agree�i� 1� i� j� k� �� 1 continue;

if k �� a�j� i� 1� 0� then insert k in a�j� i� 1� 0�;

if i � 0 then

AP � a�k� i� 0�;

for l � 1 to i do

a�j� i� 1� l� � �;

for all la in AP do

if agree�i� 1� i� l� j� la� � 1 then

if la �� a�j� i� 1� l� then insert la in a�j� i� 1� l�;

end; for la

AP �
S
t�a�j�i�1�l� a�t� i� l� 0� � a�k� i� l�;

end; for l

end; if i

if a�j� i� 1� l� �� �� � l � �0� i�� then insert j in MC;

end; for k,j

if MC � � then return(0);

MI�i� 1� � MC;

end for i

return(1);

end. match2D

Figure A.3: Function match2D determines whether the 2-D string �x1� r1� s1� is a type-i

(i � 0� 1� 2) subsequence of the 2-D string �x2� r2� s2�.

105

function sequences��

for all i in MI�m� 1� do

b�m� 1� � i;

list�i�m� 2�;

end; for i

end. sequences

function list�i� k�

if k � 0 then

for l � 0 to m� 1 output p2�b�l��;

return;

end; if k

for all l in a�i� k � 1� 0� � a�b�m� 1��m� 1�m� k � 2� do

b�k� � l;

list�l� k� 1�;

end; for l

end. list

Figure A.4: Function sequences produces all type-i (i � 0� 1� 2) matched subsequences

when called before match2D exits.

106

function match2D2�m� p1� x1� r1� s1� n� p2� x2� r2� s2�

for i � 0 to n� 1 do insert i in match�x2�i��;

for all v in V domin�v� � match�v�;

k � 0; a � x1�0�;

for all i in min�a� do

b�0� � i;

min�a� points to the element next toi;

query2�k� i�;

end; for i

end. match2D2

function query2�k� i�

a � x1�k � 1�;

if match�a� � � then return;

for all j in min�a� do

if j � i and agree�k � 1� k� j� i� � 1 then

b�k � 1� � j;

if k � m� 2 then for l � 0 to m� 1 output p2�b�l��;

else

t � min�a�;

min�a� points to the element next toj;

query2�k � 1� j�;

min�a� � t;

end; else if k

end; if j

end; for j

end. query2

Figure A.5: Function match2D2 determines whether the 2-D string �x1� r1� s1� is a type-2

subsequence of the 2-D string �x2� r2� s2� and produces all matched subsequences.

107

function check��� �� j� k�

ds1 � s1���� s1���; ds2 � s2�j�� s2�k�;

dr1 � r1���� r1���; dr2 � r2�j�� r2�k�;

dz1 � s1�front����� s1���; dz2 � s2�b�front������ s2�j�;

dt1 � s1�m�� s1�back����; dt2 � s2�j�� s2�b�back�����;

if j � k or � � � then return(0);

casefront��� �� null and back��� �� null:

if ds1
 ds2 � 0 or dz1
 dz2 � 0 or dt1
 dt2 � 0 then return(0);

if (dr2 � dr1 � 0 or dr2 � dr1 � 0) and (ds2 � ds1 � 0 or ds2 � ds1 � 0) and

(dz2 � dz1 � 0 or dz2 � dz1 � 0) and (dt2 � dt1 � 0 or dt2 � dt1 � 0)

then return(1);

else return(0);

casefront��� � null and back��� �� null:

if ds1
 ds2 � 0 or dt1
 dt2 � 0 then return(0);

if (dr2 � dr1 � 0 or dr2 � dr1 � 0) and (ds2 � ds1 � 0 or ds2 � ds1 � 0) and

(dt2 � dt1 � 0 or dt2 � dt1 � 0) then return(1);

else return(0);

casefront��� �� null and back��� � null:

if ds1
 ds2 � 0 or dz1
 dz2 � 0 then return(0);

if (dr2 � dr1 � 0 or dr2 � dr1 � 0) and (ds2 � ds1 � 0 or ds2 � ds1 � 0) and

(dz2 � dz1 � 0 or dz2 � dz1 � 0) then return(1);

else return(0);

end; case

end. check

Figure A.6: Function check determines whether the pairs of objects ��� ��, �front���� ��

and ��� back���� are type-1 matches of the pairs �j� k�, �b�front����� j� and �j� b�back�����

respectively.

108

function curb��

for i � 0 to m� 1 do

front�i� � back�i� � null;

for i � 0 to m� 1 do

ds ��;

for j � i� 1 to 0 do

dsj � s1�j�� s1�i�;

if dsj � 0 and dsj � ds then

front�i� � j;

ds � dsj ;

end; if dsj

end; for j

ds ��;

for j � i� 1 to 0 do

dsj � s1�i�� s1�j�;

if dsj � 0 and dsj � ds then

back�i� � j;

ds � dsj ;

end; if dsj

end; for j

end; for i

end. curb

Figure A.7: Function curb computes, the indices of the “front” and “back” objects of the

objects in a query image.

109

function iorelations�w�n� io�

for i � 0 to n� 1 do

for j � 0 to n� 1 do

if i �� j then io�i� j� � outside;

end; for j

end; for i

for i � 0 to n� 1 do

if w�i� �� i then insertw�i� in list�i�;

for i � 0 to n� 1 do

j � element of list�i�;

list�i� points next to list�j�;

end for i

for i � 0 to n� 1 do

for all j in list�i� do

io�i� j� � inside;

io�j� i� � invinside;

end; for j

end; for i

end. iorelations

Figure A.8: Function iorelations constructs, using the inclusion stringw, the array io which

holds the inclusion relationships between objects in an image.

Appendix B

User Interface

THE USER interface1 has been designed to facilitate the editing of primal segmentations,

support the flexible formulation and drawing of example queries and the browsing of query

results. In particular, the user interface consists of two separate window tools. The first,

whose front-end is shown in Figure B.1, is a general purpose image editing and drawing tool

which allows the user to specify (by clicking the mouse on the appropriate menu window) a

function among the following:

� Draw a (query) image (option “Draw”).

� Edit an image by deleting, points, line segments or objects (option “Delete”).

� Close an open polygonal contour (option “Close”).

� Connect a pair of contours thus creating a new one (option “Connect”).

� Restore an edited image to a previous form (option “Undo”).

� Load or store an image (option “Load/Store”).

1The user interface has been implemented using X-windows, Athena widgets [119] and the C programming

language.

110

111

Figure B.1: Image editing and query drawing tool.

� Compute and display the representation corresponding to the loaded image (option

“Process”).

� Emit a query or store operation (option “Query/Index”).

� Clear the window (option “Clear”).

� Exit the tool (option “Quit”).

In addition, there is a window menu (“Options”) which allows the user to display or hide

the indices corresponding to all objects (integers near the objects), to display or hide the

112

Figure B.2: Image browsing tool.

centers of mass of all objects (appear as asterisks), and finally, display or hide a rectangular

grid of arbitrary size. Moreover, by pressing the middle mouse bottom, the user can move the

object whose contour is close to the mouse pointer. In Figure B.1 a query image specifying

two objects is shown.

In Figure B.2 the front-end of the browsing tool is illustrated. Except of options common

to the first tool, there are options to load either the next or the previous image among the

images retrieved (options “Next” or “Previous” respectively). The name of the retrieved

image is shown at the bottom (left).

Bibliography

[1] Hideyuki Tamura and Naokazu Yokoya. Image Database Systems: A Survey. Pattern

Recognition, 17(1):29–49, 1984.

[2] Jayaram K. Udupa, Hsiu-Mei Hung, Dewey Odhner, and Roberto Goncalves. Mul-

tidimensional Data Format Specification: A Generalization of the American College

of Radiology - National Electric Manufacturers Association Standards. Journal of

Digital Imaging, 5(1):26–45, February 1992.

[3] Dennis Tsichritzis et.al. A Multimedia Office Filing System. In Proceedings of 9th

International Conference on Very Large Data Bases, 1983.

[4] Won Kim. Object Oriented Databases: Definitions and Research Directions. IEEE

Transactions on Knowledge and Data Engineering, 2(3):327–341, September 1990.

[5] Christos Faloutsos and Yi Rong. Spatial Access Methods Using Fractals: Algorithms

and Performance Evaluation. Technical Report UMIACS-TR-89-31, CS-TR-2214,

University of Maryland, Colledge Park, Maryland, February 1989.

[6] Christos Faloutsos. Access Methods for Text. ACM Computing Surveys, 17(1):49–74,

March 1985.

[7] Martin A. Fischler and Robert A. Elschlager. The Representation and Matching of

Pictorial Structures. IEEE Transactions on Computers, c-22(1):67–92, 1973.

113

114

[8] Linda G. Shapiro and Robert M. Haralick. Structural Discriptions and Inexact Match-

ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(5):504–519,

1981.

[9] Shi-Kuo Chang, Qing-Yun Shi, and Cheng-Wen Yan. Iconic Indexing by 2-D Strings.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(3):413–428, May

1987.

[10] Shi-Kuo Chang. Principles of Pictorial Information Systems Design, chapter 8, pages

172–211. Prentice Hall International Editions, 1989.

[11] Chin-Chen Chang and Suh-Yin Lee. Retrieval of Similar Pictures on Pictorial

Databases. Pattern Recognition, 24(7):675–680, 1991.

[12] Antonin Guttman. R-trees: A Dynamic Index Structure for Spatial Searching. In

Proceedings of ACM SIGMOD, pages 47–57, June 1984.

[13] Christos Faloutsos and Shari Roseman. Fractals for Secondary Key Retrieval. Tech-

nical Report UMIACS-TR-89-47, CS-TR-2242, University of Maryland, Colledge

Park, Maryland, May 1989.

[14] Shi-Kuo Chang and King-Sun Fu, editors. Pictorial Information Systems. Springer-

Verlag, 1980.

[15] Shi-Kuo Chang. Principles of Pictorial Information Systems Design. Prentice Hall

International Editions, 1989.

[16] Petros Kofakis and Stelios C. Orphanoudakis. Image Indexing by Content. In M. Os-

teaux et. al., editor, A Second Generation PACS Concept, chapter 7, pages 250–293.

Springer-Verlag, 1992.

[17] Harry G. Barrow and Jay M. Tenenbaum. Computational Vision. IEEE Proceedings,

69(5):572–595, 1981.

115

[18] Thomas O. Binford. Survey of Model Based Image Analysis Systems. Pattern

Recognition, 17(1):18–64, 1982.

[19] Roland T. Chin and Charles R. Dyer. Model-Based Recognition in Robot Vision.

ACM Computing Surveys, 18(1):67–108, 1986.

[20] Stelios C. Orphanoudakis. Supercomputing in Medical Imaging. IEEE Engineering

in Medicine and Biology, 7(4):16–20, 1988.

[21] Narendra Ahuja and B. J. Schachter. Image Models. ACM Computing Surveys,

13(4):372–397, 1981.

[22] Makoto Nagao. Control Strategies in Pattern Analysis. Pattern Recognition, 17(1):45–

56, 1984.

[23] King-Sun Fu and Azriel Rosenfeld. Pattern Recognition and Computer Vision. IEEE

Computer, 17(10):274–282, 1984.

[24] Azriel Rosenfeld. Image Analysis: Problems, Progress and Prospects. Pattern Recog-

nition, 17(1):3–12, 1984.

[25] John K. Tsotsos. Knowledge and the Visual Process: Content, Form and Use. Pattern

Recognition, 17(1):13–27, 1984.

[26] A. Ravishankar Rao and Ramesh Jain. Knowledge Representation and Control in

Computer Vision Systems. IEEE Expert, 3(1):64–79, 1988.

[27] Dana H. Ballard and Christopher M. Brown. Computer Vision. Prentice Hall, 1982.

[28] Theo Pavlidis. Algorithms for Graphics and Image Processing. Computer Science

Press, 1981.

[29] Panos Constantopoulos, Stelios C. Orphanoudakis, and Euripides G. Petrakis. An Ap-

proach to Multimedia Document Retrieval on the Basis of Pictorial Content. Technical

116

Report 011, Institute of Computer Science, Foundation of Research and Technology -

Hellas, Heraklion, Greece, February 1988.

[30] Shi-Kuo Chang and King-Sun Fu. A Relational Database System for Images. In Shi-

Kuo Chang and King-Sun Fu, editors, Pictorial Information Systems, pages 288–321.

Springer-Verlag, 1980.

[31] M. A. Eshera and King-Sun Fu. An Image Understanding System Using Attributed

Symbolic Representation and Inexact Graph-Matching. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8(5):604–618, 1986.

[32] Stelios C. Orphanoudakis, Euripides G. Petrakis, and Petros Kofakis. A Medical Image

DataBase System for Tomographic Images. In Proceedings of Computer Assisted

Radiology, CAR89, pages 618–622, Berlin, June 1989.

[33] Suh-Yin Lee and Fang-Jung Hsu. 2D C-Ssring: A New Spatial Knowledge Rep-

resentation for Image Database Systems. Pattern Recognition, 23(10):1077–1087,

1990.

[34] C. J. Date. An Introduction to Database Systems, volume 1 of The systems program-

ming series. Addison-Wesley, fifth edition, 1990.

[35] Shi-Kuo Chang and Shao-Hung Liu. Picture Indexing and Abstraction Techniques for

Pictorial Databases. IEEE Transactions on Pattern Analysis and Machine Intelligence,

6(4):475–484, July 1984.

[36] Shi-Kuo Chang. Principles of Pictorial Information Systems Design, chapter 5, pages

82–121. Prentice Hall International Editions, 1989.

[37] Francois Bancilhon. Object Oriented Database Systems. In ACM

SIGART/SIGMOD/SIGACT, Proceedings of the 7th Symposium on Principles of

Database Systems, pages 152–162, Austin, Texas, March 1988.

117

[38] Won Kim. Introduction to Object Oriented Database Systems. MIT Press, 1990.

[39] John V. Joseph, Satish M. Thatte, Craig W. Thompson, and David L. Wells. Object

Oriented Databases: Design and Implementation. Proceedings of the IEEE, 79(1):42–

64, January 1990.

[40] Jack A. Orenstein and Frank A. Manola. PROBE Spatial Data Modeling and Query

Processing in an Image Database Application. IEEE Transactions on Software Engi-

neering, 14(5):611–629, 1988.

[41] Panos Constantopoulos. MUSE: A Multimedia Document System. IEEE Office

Knowledge Engineering, 1(1):28–38, February 1987.

[42] S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, and A. Pathria. Multimedia

Document Presentation, Information Extraction and Document Formation in MINOS:

A Model and a System. ACM Transactions on Office Information Systems, 4(4):345–

383, October 1986.

[43] M. Tanaka and T. Ichikawa. A Visual User Interface for Map Information Re-

trieval Based on Semantic Significance. IEEE Transactions on Software Engineering,

14(5):666–670, 1988.

[44] Koji Wakimoto, Mitsuhide Shima, Satoshi Tanaka, and Akira Maeda. An Intelligent

User Interface to an Image Database Using a Figure Interpretation Method. In Proc-

cedings of 10th International Conference On Pattern Recognition, pages 516–520,

Atlantic City, New Jersey, June 1990.

[45] Shi-Kuo Chang, B. S. Lin, and R. Walser. A Generalized Zooming Technique for

Pictorial Database Systems. In Walser Chang, Lin, editor, Pictorial Information

Systems, pages 257–287. Springer-Verlag, 1980.

[46] Ning-San Chang and King-Sun Fu. Query by Pictorial Example. IEEE Transactions

on Software Engineering, SE-6(6):519–524, November 1980.

118

[47] Nick Roussopoulos, Christos Faloutsos, and Timos Sellis. An Efficient Pictorial

Database System for PSQL. IEEE Transactions on Software Engineering, 14(5):639–

650, 1988.

[48] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The R�-tree: A Dynamic

Index for Multidimensional Objects. In Proceedings of 13th International Confernece

on VLDB, pages 507–518, England, September 1987.

[49] Thomas Joseph and Alfonso F. Gardenas. PIQUERY A High Level Query Language

for Pictorial Database Management. IEEE Transactions on Software Engineering,

14(5):630–638, 1988.

[50] H. T. Clifford and W. Stephenson. An Introduction to Numerical Classification.

Academic Press, 1975.

[51] Alberto Sanfeliou and King-Sun Fu. A Distance Measure Between Attributed Re-

lational Graphs for Pattern Recognition. IEEE Transactions on Systems Man and

Cybernetics, SMC-13(3):353–362, 1983.

[52] Andrew K. C. Wong and Manlai You. Entropy and Distance of Random Graphs with

Application to Structural Pattern Recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 7(5):599–609, September 1985.

[53] Wen-Hsiang Tsai and Shiaw-Shian Yu. Attributed String Matching with Merging for

Shape Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,

7(4):453–462, 1985.

[54] Michael Brady and Jonathan H. Connell. Generating and Generalizing Models of

Visual Objects. Artificial Intelligence, 31:159–183, 1987.

[55] M. A. Eshera and King-Sun Fu. A Graph Distance Measure for Image Analysis. IEEE

Transactions on Systems Man and Cybernetics, SMC-14(3):353–363, 1984.

119

[56] Paul Suetens, Pascal Fua, and Andrew J. Hanson. Computational Strategies for Object

Recognition. ACM Computing Surveys, 24(1):5–61, March 1992.

[57] Larry S. Davis. Shape Matching Using Relaxation Techniques. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 1(1):60–72, 1979.

[58] Robert C. Bolles and Ronald A. Cain. Recognizing and Locating Partially Visible

Objects: The Local-Feature-Focus Method. The International Journal of Robotics

Research, 1(3):57–82, 1982.

[59] Bir Bhanu and Olivier D. Faugeras. Shape Matching of Two-Dimensional Objects.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(2):137–156, 1984.

[60] Zhisheng You and Anil K. Jain. Performance Evaluation of Shape Matching via Chord

Length Distribution. Computer Vision, Graphics and Image Processing, 28:185–198,

1984.

[61] Farzin Mokhtarian and Alan Mackworth. Scale-Based Description of Plannar Curves

and Two-Dimensional Shapes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 8(1):34–43, 1986.

[62] Mark W. Koch and Rangasami L. Kashyap. Using Polygons to Recognize and Locate

Partially Occluded Objects. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 9(4):483–494, 1987.

[63] W. Eric L. Grimson and Tomas Lozano-Perez. Locating Overlapping Parts by Search-

ing the Interpretation Tree. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 9(4):469–482, 1987.

[64] Alan Kalvin, Edith Schonberg, Jacob T. Schwartz, and Micha Sharir. Two-

Dimensional, Model-Based, Boundary Matching Using Footprints. The International

Journal of Robotics Research, 5(4):38–55, 1986.

120

[65] Paul G. Gottschalk, Jerry L. Turney, and Trevor N. Mudge. Efficient Recognition of

Partially Visible Objects Using a Logarithmic Complexity Matching Technique. The

International Journal of Robotics Research, 8(6):110–131, December 1989.

[66] Fridtjof Stein and Gerard Medioni. Efficient Two Dimensional Object Recognition.

In In Proccedings of 10th International Conference On Pattern Recognition, pages

13–17, Atlantic City, New Jersey, June 1990.

[67] George Bebis, George Papadourakis, and Stelios C. Orphanoudakis. Model Based Ob-

ject Recognition Using Multiresolution Segmentation and Artificial Neural Networks.

Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991.

[68] Sanjay Ranade and Azriel Rosenfeld. Point Pattern Matching by Relaxation. Pattern

Recognition, 12:269–275, 1980.

[69] Daryl J. Kahl, Azriel Rosenfeld, and Alan Danker. Some Experiments in Point Pattern

Matching. IEEE Transactions on Systems, Man, and Cybernetics, SMC-12(2):105–

116, February 1980.

[70] Ramakant Nevatia and Keith E. Price. Locating Structures in Aerial Images. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 4(5):476–484, September

1982.

[71] H. S. Baird. Model Based Image Matching Using Location. MIT Press, 1985.

[72] Keith E. Price. Relaxation Matching Tecniques - A Comparison. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 7(5):617–622, September 1985.

[73] Andrew K.C. Wong and Richard Salay. An Algorithm for Constellation Matching. In

Proceedings of 8th International Conference on Pattern Recognition, pages 546–549,

Paris, France, October 1986.

121

[74] John Drakopoulos and Panos Constantopoulos. An Exact Algorithm for 2-D String

Matching. Technical Report 021, Institute of Computer Science, Foundation of Re-

search and Technology - Hellas, Heraklion, Greece, November 1989.

[75] Suh-Yin Lee, Man-Kwan Shan, and Wei-Pang Yang. Similarity Retrieval of Iconic

Image Databases. Pattern Recognition, 22(6):675–682, 1989.

[76] Suh-Yin Lee and Fang-Jung Hsu. Spatial Reasoning and Similarity Retrieval of Images

using 2D C-Sstring Knowledge Representation. Pattern Recognition, 25(3):305–318,

1992.

[77] Robert A. Wagner and Michael J. Fischer. The String-to-String Correction Problem.

Journal of the Association for Computing Machinery, 21(1):168–173, January 1974.

[78] Patrick A. V. Hall and Geoff R. Dowling. Approximate String Matching. ACM

Computing Surveys, 12(4):381–402, December 1980.

[79] Douglas Comer. The Ubiquitous B-Ttree. ACM Computing Surveys, 11(2):121–137,

June 1979.

[80] R. J. Enbody and H. C. Du. Dynamic Hashing Schemes. ACM Ttransactions on

Database Systems, 20(2):84–113, June 1988.

[81] Per-Ake Larson. Dynamic Hash Tables. Communications of the ACM, 31(4):446–457,

April 1988.

[82] Per-Ake Larson. Dynamic Hashing. BIT, 18(2):184–201, 1978.

[83] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible Hashing - A

Fast Access Method for Dynamic Files. ACM Transactions on Database Systems,

4(3):315–344, 1979.

122

[84] Witold Litwin. Linear Hashing: A New Tool for File and Table Addressing. In

Proceedings of 6th International Conference on VLDB, pages 212–223, Montreal,

October 1980.

[85] Per-Ake Larson. Linear Hashing With Partial Expansions. In Proceedings of 6th

International Conference on VLDB, pages 224–232, Montreal, October 1980.

[86] G. N. N. Martin. Spiral Storage: Incrementally Augmentable Hash Addressed Storage.

Technical Report 27, Department of Computer Science, University of Warwick, U.K,

1979.

[87] Per-Ake Larson. Linear Hashing with Seperators - A Dynamic Hashing Scheme

Achieving One-Acess Retrieval. ACM Ttransactions on Database Systems, 13(3):366–

388, September 1988.

[88] David Hsiao and Frank Harary. A Formal System for Information Retrieval from

Files. Communications of the ACM, 13(2):67–73, February 1970.

[89] John T. Robinson. The k-D-B-Tree: A Search Structure for Large Multidimensional

Dynamic Indexes. In Proceedings of ACM SIGMOD, pages 10–18, 1981.

[90] H. V. Jagadish. Linear Clustering of Objects with Multiple Attributes. In Proceedings

of ACM SIGMOD, pages 332–342, Atlantic City, May 1990.

[91] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid File: An Adaptive, Sym-

metric, Multikey File Structure. ACM Ttransactions on Database Systems, 9(1):38–71,

March 1984.

[92] Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,

1990.

[93] Nobert Beckmann, Hans-Peter Kriegel, Ralf Scneider, and Bernhard Seeger. The

R�-tree: An Efficient and Robust Access Method for Points and Rectangles. In

123

Proceedings of the 1990 ACM SIGMOD, pages 322–331, Atlantic City, NJ, May

1990.

[94] Jon Louis Bentley and Jerome H. Friedman. Data Structures for Range Searching.

ACM Computing Surveys, 11(4):397–409, December 1979.

[95] Hanan Samet. Hierarchical Representations of Small Rectangles. ACM Computing

Surveys, 20(4):271–309, December 1988.

[96] Hanan Samet. The Quadtree and Related Data Structures. ACM Computing Surveys,

16(2):187–260, June 1984.

[97] Christos Faloutsos and Winston Rego. A Grid File for Spatial Objects. Technical

Report UMIACS-TR-87-15, CS-TR-1829, University of Maryland, Colledge Park,

Maryland, April 1987.

[98] Jack A. Orestein. Spatial Query Procesing in an Object Oriented Database System. In

ACM Proceedings SIGMOD 86, pages 326–336, Washington, May 1986.

[99] Christos Faloutsos. Gray Codes for Partial Match and Range Queries. IEEE Transac-

tions on Software Engineering, 14(10):1381–1393, October 1988.

[100] John Mylopoulos and Hector J. Levesque. An Overview of Knowledge Representa-

tion. In Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt, editors, On

Conceptual Modeling, pages 3–17. Springer-Verlag, 1984.

[101] John Brolio, Bruce A. Draper, J. Ross Beveridge, and Allan A. Hanson. ISR: A

Database for Symbolic Processing in Computer Vision. IEEE Computer, 22(12):22–

30, 1989.

[102] Panos Constantopoulos, John Drakopoulos, and Yannis Yeorgaroudakis. Retrieval of

Multimedia Documents by Pictorial Content: A Prototype System. In Proceedings

of International Conference on Multimedia Information Systems ’91, ACM SIGIR,

Singapore, January 1991.

124

[103] Ranganchar Kasturi, Rodney Fernandez, Mukesh L. Amlani, and Wu-chun Feng. Map

Data Processing in Geographic Information Systems. IEEE Computer, 22(12):10–20,

1989.

[104] Gianni L. Vernazza, Sebastiano B. Serpico, and Silvana G. Dellepiane. A Knowledge-

Based System for Biomedical Image Processing and Recognition. IEEE Transactions

on Circuits and Systems, CAS-34(11):1399–1416, 1987.

[105] S. Back, H. Neumann, and H. S. Stiehl. On Segmenting Computed Tomograms. In

Computer Assisted Radiology, CAR89, pages 691–696, Berlin, June 1989.

[106] Ioannis Kapouleas. Segmentation and Feature Extraction for Magnetic Resonance

Brain Image Analysis. In Proceedings of 10th International Conference on Pattern

Recognition, pages 583–590, Atlantic City, New Jersey, June 1990.

[107] Edward M. Reingold, Jurg Nievergelt, and Narsingh Deo. Combinatorial Algorithms,

chapter 5, pages 172–189. Prentice Hall, 1977.

[108] Dennis Stanton and Dennis White. Constructive Combinatorics, chapter 1, pages

1–25. Springer-Verlag, 1986.

[109] Edward M. Reingold, Jurg Nievergelt, and Narsingh Deo. Combinatorial Algorithms,

chapter 5, pages 90–91. Prentice Hall, 1977.

[110] Theo Pavlidis. Algorithms for Graphics and Image Processing, chapter 15, pages

316–357. Computer Science Press, 1981.

[111] Edward M. Reingold, Jurg Nievergelt, and Narsingh Deo. Combinatorial Algorithms,

chapter 2, pages 32–35. Prentice Hall, 1977.

[112] Berthold Klaus Paul Horn. Robot Vision, chapter 3, pages 46–64. MIT Press, 1986.

125

[113] Erland Jungert and Shi-Kuo Chang. An Algebra for Symbolic Image Manipulation

and Transformation. In T. L. Kunii, editor, Visual Database Systems. Elsevier Science

Publishers B.V. (North Holland), 1989.

[114] Stelios C. Orphanoudakis, Petros Kofakis, Yannis Kavaklis, and Euripides G.M. Pe-

trakis. Medical Image Databases: Image Indexing by Content. In Proceedings of

North Sea Conference on Biomedical Engineering, Antwerp, November 1990.

[115] Petros Kofakis and Stelios C. Orphanoudakis. Graphical Tools and Retrieval Strategies

for Image Indexing by Content. In Proceedings of Computer Assisted Radiology,

CAR91, pages 519–524, Berlin, July 1991.

[116] Euripides G.M. Petrakis and Stelios C. Orphanoudakis. Tools and Methodologies

for the Indexing, Storage and Retrieval of Medical Images. In A. Todd-Pokropek

and H. Lemke, editors, Computer Assisted Management of Medical Images. Springer-

Verlag, 1992. to be published.

[117] M. Carey, D. DeWitt, and E. Shekita. Storage Management for Objects in Exodus.

In W. Kim and F. Lochovsky, editors, Object-Oriented Concepts, Databases and

Applications. Addison-Wesley, 1989.

[118] Alexandros Billiris. The performance of Three Database Storage Structures for Man-

aging Large Objects. In Proceedings of the 1992 ACM SIGMOD, pages 276–285, San

Diego, California, June 1992.

[119] Joel McCormack, Paul Asente, and Ralph R. Swick. X Toolkit Intrinsics - C Language

Interface, X Window System. Digital Equipment Corporation, External Research

Group, MIT Project Athena, x version 11, release 4 edition, 1988.

