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ABSTRACT

Resampling techniques are commonly required in digital

image processing systems. Many times the classical inter-

polation functions are used, i.e., nearest-neighbour interpo-

lation and bilinear interpolation, which are prone to the in-

troduction of undesirable artifacts due to aliasing such as

moire patterns. This paper presents a novel approach which

minimizes the loss of information, in a least-squares sense,

while resampling between orthogonal and hexagonal lat-

tices. Making use of an extension of 2D splines to hexag-

onal lattices, the proper reconstruction function is derived.

Experimental results for a printing application demonstrate

the feasibility of the proposed method and are compared

against the classical techniques.

1. INTRODUCTION

Digital images are sampled on a regular lattice. The con-

version of this representation from one lattice to another is

called image resampling. This operation is indispensable

for many applications such as printing. We propose a new

method to resample between orthogonal and hexagonal lat-

tices.

The standard procedure for linear resampling consists

of two conceptual steps: first, an image in the continuous

domain is reconstructed; second, this function is resampled

on the target lattice [1, 2, 3, 4]. Shannon’s sampling the-

orem assumes that images are band-limited, and proposes

to choose the interpolation filter to the ideal low-pass fil-

ter. However, real-world signals are not band-limited and

both the image and the interpolation function have a finite

support. Due to the slow decay of the ideal interpolation

functions (which are sinc-like), it is also quite difficult to

approximate them on a finite support. Additionally, ideal in-

terpolators tend to generate the Gibb’s phenomenon, which

becomes visually apparent in images as ringing along the

edges.

Instead of holding on to the band-limited hypothesis,

many authors, such as Unser [5, 6, 7, 8], set up a family
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of basis functions based on splines. These splines have

a limited size of support, which expands as the order in-

creases. Ultimately, a spline representation of infinite order

approaches the ideal filter. For example, first-order spline

interpolation is better known as “nearest neighbour” inter-

polation; second-order spline interpolation as bilinear inter-

polation. Higher orders, such as bicubic spline interpolation

yield even smoother results.

The standard approach does not minimize the informa-

tion loss. Annoying artifacts due to aliasing (such as moire

patterns) might arise. Unser et al. [5, 9] derived an al-

gorithm based on the principle of convolution-based least-

squares spline approximation. In particular, the samples on

the target lattice are chosen such that the mean squared error

between the spline representation on the source lattice and

a similar one on the target lattice is minimized. This theory

was developed for a 1D spline representation, and extended

to 2D orthogonal lattices by means of tensor-product splines

(i.e., the 2D spline is the product of two 1D splines).

This paper discusses the case of resampling between or-

thogonal and hexagonal lattices, therefore requiring a spline

definition suitable for hexagonal lattices. We propose a

simple recipe to construct hexagonal splines and make use

of these splines to derive the least-squares reconstruction

function. To demonstrate the feasibility of the proposed ap-

proach, we implemented our method for the practical case

of gravure printing, a printing technique which is very sus-

ceptible to aliasing artifacts when using classical resam-

pling procedures.

2. TWO-DIMENSIONAL SPLINES

We will denote a 2D function in the continuous domain as

g(x), where x ∈ �2 . The L2-norm of g(x) is derived from

the inner product: ||g|| = 〈g, g〉1/2
. Analogously, we de-

note a discrete 2D array as c(k), where k ∈ �2. We denote

the l2-norm of c(k) as ||c||l2 =
(∑

k∈�2 c(k)c∗(k)
)1/2

.

A 2D lattice can be characterized by a matrix R =
[r1|r2] constituted of two linearly independent vectors r1

and r2 [10]. It is convenient to define an array of impulses
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on the lattice sites:

δR(x) =
∑

k∈�2

δ(x − Rk), (1)

where δ(x) represents a Dirac function.

Related to a lattice is a Voronoi cell, which is defined as

the set of all points that are closer to the origin 0 than to any

other site of the lattice. The Voronoi cell is represented by

its indicator function χR(x):

χR(x) =







1, x ∈ Voronoi cell,
1/m, x on edge Voronoi cell,
0, x /∈ Voronoi cell,

(2)

where m equals the number of lattice sites to which x

is equidistant. Note that this function, when periodically

copied onto all the lattice sites, covers the complete plane:

δR ⋆ χR(x) = 1, where the ⋆-operator denotes the 2D con-

tinuous convolution. It is said that the Voronoi cell tiles the

plane.

Consider a function g(x), which is sampled on each lat-

tice site of a lattice R. Using a shift-invariant 2D generating

function φ(x), we define the approximation space S(φ) as

follows [11]

S(φ) =

{

s(x)
∣
∣
∣ s(x) =

∑

k∈�2

c(k)φ(x − Rk)

}

, (3)

where the coefficients c(k) need to be chosen such that

s(Rk) = g(Rk). As such, any function s(x) ∈ S(φ) is

characterized by a sequence of coefficients c(k). Notice

that these coefficients are not necessarily samples s(Rk) at

the lattice points. Several conditions are required to obtain a

sensible continuous/discrete model [11], among which most

importantly to form a Riesz basis.

Splines suitable for a regular orthogonal lattice, de-

scribed by the unity matrix, can easily be obtained by us-

ing the tensor-product of two one-dimensional B-splines

βn(x) = βn(x1)β
n(x2). The superscript n refers to the

n-th degree of piecewise polynomials or to the n + 1-th or-

der of approximation [12].

Consider now a regular hexagonal lattice, described by

R̃ =

[ √
3/2 0

−1/2 1

]

. (4)

We define the surface area of the Voronoi cell as Ω =∣
∣
∣det(R̃)

∣
∣
∣ =

√
3/2. Matrices and functions related to the

hexagonal lattice are denoted by the -̃notation.

To construct a spline basis on the hexagonal lattice, we

are especially interested in preserving the convolution prop-

erty because it plays an important role in the derivation of

the least-squares approximation later on. Therefore, we first
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Fig. 1. Splines derived on a hexagonal lattice. (a) First

order, (b) Second order.

define the first-order hexagonal spline as the indicator func-

tion of the Voronoi cell: β̃0(x) = χ
R̃

(x). Note that this

spline is normalized to the surface area of the basic cell:
∫

β̃0dx = Ω. By convolving this function with itself re-

peatedly, we construct hexagonal splines of higher orders:

β̃n(x) =
β̃0 ⋆ β̃n−1(x)

Ω
, n ≥ 1. (5)

Figure 1 shows the hexagonal splines of first and second

order. The successive convolutions imply that the splines

become smoother as the order increases. Interesting prop-

erties of the hexagonal splines (analytical form, Riesz ba-

sis, convexity, partition of unity, computation of the spline

transform) can be found in [13].

3. LEAST-SQUARES RESAMPLING

Consider now two periodic lattices, i.e., an orthogonal

source lattice R and a hexagonal target lattice R̃. The

two-dimensional splines of the previous section allow us to

easily reconstruct an image in the continuous domain, us-

ing a reconstruction of the approximation spaces S(β n) and
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S(β̃n). We are aiming at a convolution-based scheme

g̃n(Rk) = s(Rk); s(x) =
∑

k

Φn(x−Rk)g(Rk), (6)

where the reconstruction function Φn(x) realizes the least-

squares approximation between both spline reconstructions.

The minimum L2-norm approximation of a function

g(x) can be found by projection on S( β̃n). As such, the

error g(x) − g̃n(x) is orthogonal to S(β̃n). Since the orig-

inal function g(x) is only known at the lattice sites Rk, we

replace g(x) by its approximation in S(βn), using a spline

model for the source lattice. This enables us to write

〈gn(x) − g̃n(x), β̃n(x − R̃k)〉 = 0, (7)

where gn(x) and g̃n(x) are the spline representations re-

spectively on the orthogonal and hexagonal lattice. We can

rewrite the expression as

〈gn(x), β̃n(x − R̃k)〉
= 〈

∑

k

c̃(k)β̃n(x − R̃k), β̃n(x − R̃k)〉

=
∑

k

c̃(k)〈β̃n(x − R̃k), β̃n(x − R̃k)〉, (8)

where c̃(k) are the spline coefficients on the hexagonal lat-

tice. We now use the founding property of the hexagonal

splines β̃n ⋆ β̃n(x)/Ω = β̃2n+1(x):

gn ⋆ β̃n(x) = Ω

(
∑

k

δ(x − R̃k)c̃(k)

)

⋆ β̃2n+1(x). (9)

The solution of Eq. (8) can be written as

c̃(k) =
gn ⋆ β̃n ⋆ (b̃2n+1)−1

Ω
(Rk), (10)

where bn(x) = βn(x)δR(x) is the “sampled spline”. This

enables us to write the least-squares interpolation function

for resampling from the lattice R to R̃ as

Φn(x) = (bn)−1 ⋆ βn

︸ ︷︷ ︸

1

⋆ β̃n ⋆ (b̃2n+1)−1

︸ ︷︷ ︸

2

⋆ b̃n
︸︷︷︸

3

(x)/Ω,

(11)

where the underbraced expressions indicate:

1. the direct spline transform to compute the spline co-

efficients on the source lattice;

2. the least-squares approximation filter;

3. the final convolution to reconstruct the function in

S(β̃n) using the new spline coefficients.

The computation of Eq. (11) requires the solution of two di-

rect spline transforms (the inverse filters). One solution is to

invert the matrix corresponding to the set of linear equations

induced by the forward filters [7]. Another approach could

be to implement the inversion scheme by means of recursive

filters similar to the approach proposed by Unser [14, 6].

However, the factorization of the filter corresponding to the

hexagonal splines is not trivial. Therefore, we propose to

numerically approximate the reconstruction function on a

limited support by means of a well-known iterative proce-

dure [15].

In the case of n = 0, the reconstruction function of

Eq. (11) becomes Φ0(x) = β0 ⋆ β̃0(x)/Ω. No inverse

filters are needed and the support is limited. This case is

sometimes referred to as “surface projection”: neighbour-

ing samples of the source lattice are weighted by the relative

overlap of source’s and target’s cell.

For the second-order least-squares approximation, the

reconstruction function is given by

Φ1(x) = β1 ⋆ (b̃3)−1 ⋆ β̃1(x)/Ω. (12)

The presence of the inverse filter (b̃3)−1 implicates that the

theoretical support of Φ1(x) is the whole plane [13]. How-

ever, the fast decay shows that an approximation on a lim-

ited support is appropriate.

Note that this approach can easily be applied to resam-

pling from hexagonal to orthogonal lattices. In that case,

the inverse filters can be computed by recursive filters given

in [14].

4. RESULTS

We implemented the proposed resampling method for a

gravure printing application. The images are resampled to

a hexagonal lattice before halftoning. Figure 2 shows the

results of a test image after resampling using classical inter-

polation functions in (a)-(b), and after least-squares resam-

pling in (c)-(d). The corresponding reconstruction functions

are depicted in (e)-(f). Kindly note that the moire patterns

are better suppressed by the least-squares approach and the

second order least-squares produces sharper results.

5. CONCLUSION

In this paper, we presented a new method to resample be-

tween orthogonal and hexagonal lattices. After proposing

a simple recipe to derive a two-dimensional spline basis

for hexagonal lattices, we applied the principle of a least-

squares approximation to derive a suitable reconstruction

function. Many applications involving hexagonal lattices

can make use of this approach.
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Fig. 2. Results after resampling the test image “shirt” to the gravure lattice. (a) Interpolative resampling (first order), (b) Inter-

polative resampling (second order), (c) Least-squares resampling (first order), (d) (Least-squares resampling (second order).

(e) Reconstruction function for “surface projection” Φ 0(x). (f) Reconstruction function Φ1(x).
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