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ABSTRACT 

 
Image resolution enhancement using wavelets is a relatively 
new subject and many new algorithms have been proposed 
recently. These algorithms assume that the low resolution 
image is the approximation subband of a higher resolution 
image and attempts to estimate the unknown detail 
coefficients to reconstruct a high resolution image. A subset 
of these recent approaches utilized probabilistic models to 
estimate these unknown coefficients. Particularly, Hidden 
Markov Tree (HMT) based methods using Gaussian mixture 
models have been shown to produce promising results. 
However, one drawback of these methods is that, as the 
Gaussian is symmetrical around zero, signs of the  
coefficients generated using this distribution function are 
inherently random, adversely affecting the resulting image 
quality. In this paper, we demonstrate that, sign information 
is an important element affecting the results and propose a 
method to estimate signs of these coefficients more 
accurately. 
 
Index Terms— image resolution, wavelet transforms, image 
processing, image enhancement
 

1. INTRODUCTION 
 
A common feature of the wavelet domain image resolution 
enhancement algorithms is the assumption that the low-
resolution (LR) image to be enhanced is the low-pass 
filtered subband of a high-resolution (HR) image which has 
been subjected to a decimated wavelet transform. A trivial 
approach is to reconstruct an approximation to the HR 
image by filling the unknown, so-called ‘detail’ subbands 
(normally containing high-pass spatial frequency 
information) with zeros followed by the application of the 
inverse wavelet transform (IWT). More sophisticated 
methods have attempted to estimate the unknown detail 
wavelet coefficients in an effort to improve the sharpness of 
the reconstructed images.  
In [1] and [2] estimation was carried out by examining the 
evolution of wavelet transform extrema among the same 
type of sub-bands.  Edges identified by an edge detection 
algorithm in lower frequency subbands were used to 
formulate a template for estimating edges in higher-

frequency sub-bands. Only the coefficients with significant 
magnitudes were estimated as the evolution of the wavelet 
coefficients among the scales was found to be difficult to 
model for other coefficients. Significant magnitude 
coefficients correspond to salient image discontinuities and 
consequently only the portrayal of those can be targeted 
with this approach while moderate activity detail escapes 
treatment. Algorithm performance is also affected by the 
fact that the signs of the estimated coefficients are replicated 
directly from ‘parent’ coefficients (in a quad-tree 
hierarchical decomposition sense) without any attempt 
being made to estimate the actual signs. This is 
contradictory to the commonly accepted fact that there is 
very low correlation between the signs of parent coefficients 
and their descendants. In a coding context for example, the 
signs of descendants were generally assumed to be random 
[3], [4]. As a result, the signs of the coefficients estimated 
using extrema evolution techniques cannot be relied upon. 
In [5] a technique was proposed which takes into account 
the Hidden Markov Tree (HMT) approach of [6]. The latter 
was successfully applied to a different class of problems 
including image de-noising. An extended version of this 
approach is presented in [7]. These methods model the 
unknown wavelet coefficients as belonging to mixed 
Gaussian distributions (states) which are symmetrical 
around the zero mean. HMT models are used to find out the 
most probable state for the coefficient to be estimated (i.e. 
to which distribution it belongs to). The posterior state is 
found using state-transition information from lower-
resolution scales and the coefficient estimates are generated 
using this distribution. Being symmetrical around zero, the 
probability of estimation of a coefficient with a negative 
sign is equal to that with a positive sign. Consequently sign 
changes between the scales are not taken into account and, 
in effect, randomly generated signs are assigned to the 
estimated coefficients. The HMT based method has been 
further developed so that it does not require any training 
data set [8]. and modeling with higher number of Gaussian 
distribution functions have been investigated [9]. The 
authors also suggested using a maximum a posteriori (MAP) 
approach to refine the resulting images. 
In this paper we show that improved results could be 
achieved by HMT based methods with more accurate 
coefficient sign estimation. 
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In Section 2, we present the Hidden Markov Tree based 
approaches to image resolution enhancement and 
demonstrate their shortcomings. We propose a coefficient 
sign estimation scheme in Section 3 and then demonstrate 
the experimental results in Section 4. Concluding remarks 
are presented in Section 5. 
 

2. IMAGE RESOLUTION ENHANCEMENT USING 
HIDDEN MARKOV TREE 

 
Hidden Markov Tree (HMT) based methods make use of 
both the persistency and non-Gaussianity properties of 
wavelet coefficients. These methods model the unknown 
coefficients as belonging to mixed Gaussian distributions 
(states). The motivation being that the coefficient 
distributions which are heavy-tailed and have high density 
around zero could be modeled by a mixture of Gaussian 
distributions. Although in [7] higher number of states are 
used, generally a two state model where one Gaussian is 
used to model the coefficients around zero and one for the 
higher-magnitude coefficients, which constitutes the 
singularities is generally adopted. This two state model is 
illustrated in Figure 1. Each coefficient is assumed to fall 
into one of these distributions and the HMT model is trained 
using Expectation Maximization (EM) which finds the state 
transition parameters which are most likely to result in the 
coefficients in the observation set by iteration until a 
specified convergence error is achieved. In training, the 
coefficients in the same type of sub-band are tied together 
so that a single parameter is calculated for that type of sub-
band to prevent over-fitting to the training image.  
The HMT models are used to find out the most probable 
state for the coefficient to be estimated (i.e. to which 
distribution it belongs to). The posterior state is found using 
state-transition information from lower-resolution scales 
and then the coefficient estimates are randomly generated 
using this distribution. Letting p(S s -1

l =m) denote the 

probability of the state of coefficient l at scale s-1 being m, 
p(S s

l =m) which is the probability of the state of the 
coefficient l at scale s, that is to be estimated, can be written 
as (for two state model m= 1 or 2); -1 -1
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For each coefficient to be estimated, these state probabilities 
are calculated and the coefficient is assumed to have a state 
of highest probability. Figure 2 shows an illustration of the 
state transitions. The seminal work for this type of approach 
is the work by Crouse et al. [6] who applied the technique to 
signal denoising. Subsequently, this technique was adopted 
for image enlargement in [5].  
An extended version of this approach is presented in [7]. 
The HMT based method has also been further developed so 
that it does not require any training data set [8]. In this 
method, state transition parameters are obtained from the 
low-resolution image in hand. This is achieved by using the 
coarser sub-bands of the image which are obtained by 
further applications of wavelet transform. Despite the need 
to calculate the state transition parameters for each image to 
be enlarged, the algorithm generates improved results as the 
parameters fit better to the particular image. 
In the HMT methodology, once the states of the coefficients 
are estimated, coefficient magnitudes are assigned randomly 
using the Gaussian distribution which is associated with the 
state. As Gaussian distributions are symmetrical around 
zero, coefficients generated using these distributions have 
an equal chance of having assigned a negative or a positive 
sign. This does not pose a problem when the algorithm is 
used for denoising purposes such as in [6], as in these 
applications the coefficient signs in the finest scale already 
exist and does not need to be estimated. However, this is not 
ideal in resolution enhancement problems where correct 
sign estimation has an important effect on resulting image 
quality. This is demonstrated in Figure 3 where it is shown 
that incorrect sign information results in higher error than 
opting for not estimating the coefficients and using zero 
values instead.  
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Figure 1: Two state Gaussian Model 
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Figure 2: Coefficient magnitude state transitions.
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3. ESTIMATION OF SIGN INFORMATION 
 
In this work, we make use of the fact that the coefficient 
sign and magnitude information are statistically 
independent, hence, we propose to estimate coefficient 
magnitude and sign separately. As the magnitude 
parameters are unknown, they are modeled using HMT 
which allows determining the hidden parameters from the 
observation as explained in the previous section. Once the 
state of the unknown coefficient is found, the magnitude is 
generated using a random number generator with this 
distribution function. For the coefficient sign estimation, we 
make use of the observation presented in [10] which states 
that there is higher correlation among the corresponding 
coefficients between high-pass wavelet filtered LR image 
and the unknown high-frequency subbands to be estimated. 
Let L(z) and H(z) represent respectively the low-pass (LP) 
and high-pass (HP) filters constituting an analysis/synthesis 
filter pair for the discrete wavelet transform in the z-domain 
and let Y be the unknown high-resolution image we seek to 
reconstruct. We use a notation in which the direction of 

filtering (i.e. row/column) is shown explicitly as a subscript 
while ( 2) denotes decimation by a factor of 2 in both 
directions. Using this notation we can write that:  

LL0(z)= ( 2)Lcol(z)Lrow(z)Y(z) (3) 
HL0(z)= ( 2)Lcol(z)Hrow(z)Y(z) (4) 

where LL0 and HL0 are respectively low-pass approximation 
subband and vertical detail subband of wavelet coefficients. 
We assume that LL0 is the available LR image X whose 
resolution we seek to enhance and consequently try to 
estimate the elements of detail coefficients contained in 
detail subbands such as those in HL0.  
In the literature, the estimation is generally done using the 
next level detail subbands. Our approach is based on the 
assumption that a high-pass filtered undecimated version of 
the available LR image (LL0):   

 HL0'(z)= Hrow(z)LL0(z) (5) 
is sufficiently correlated with HL0 to provide a basis for the 
estimation of the latter. HL0' is obtained by row-wise high-
pass filtering of LL0, while the next level HL subband (HL1) 
would be obtained by column-wise low-pass filtering and 
decimation in both directions following this. As the purpose 
of the estimation is to reconstruct the high-frequency 
details, we don’t apply low-pass filtering and decimation to 
prevent loss of data and keep as much high-frequency 
information as possible. This is also intuitive as the salient 
image features in HL0 are effectively in the same spatial 
locations as LL0 and the HR image. The coefficient signs at 
the same spatial location in HL0' are then used together with 
the HMT magnitude estimates. A similar treatment is 
possible for the LH0 subband. In this case, high-pass 
filtering is applied in the vertical direction to LL0 to obtain 
LH0' which is then used as the estimation base for the 
coefficient signs. 
Table 1 provides a comparison in terms of coefficient sign 
agreement achieved by the estimation process using 
Daubechies 9/7 filters. This is expressed as a percentage of 
correctly estimated signs relative to the total number of 
coefficients. Results are additionally classified according to 
coefficient magnitude. Only the coefficients exceeding a 
pre-specified magnitude threshold  are contributing to the 
results. This threshold is adjusted to achieve the percentage 
of contributing coefficients shown in the second column. It 
should be noted that the method proposed in [2] only 
estimates coefficients at extrema points while the other 
coefficients are assigned zero values. As a consequence, 
when all coefficients are taken into account, the sign 
agreement percentage drops significantly. To be able to 
carry out a fair comparison with the other methods, two 
different percentage values are shown for the Regularity 
Preserving Image Interpolation [2]; the first is relative to the 
total number of coefficients while the second (in brackets) is 
relative to the subset of  estimated coefficients. The results 
confirm the observation that there is little correlation among 
signs of co-sited coefficients across scales as commonly 
expected in the literature [3,4]. However, the correlation is 

(a) 

(b) 

Figure 3: Original Lena image (top left) and an extract from this image (top 
right). (a) Extract from reconstructed image using zero for unknown 
coefficient values and amplified error. (b) Extract from reconstructed image 
using original wavelet coefficient magnitudes while coefficients signs are 
copied from their parents and amplified error images. 
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higher as the coefficient magnitude increases. As expected, 
the HMM based estimation [5], due to the inherent 
randomness of estimated signs, achieves just below 50% 
agreement, increasing slightly with coefficient magnitude.  
 

4. EXPERIMENTAL RESULTS 
 
For the experiments we have used the well known images of 
Lena, Elaine, Baboon and Peppers. The fact that the HH 
subband has a very small variance makes it difficult to 
estimate the coefficient states accurately. Also considering 
its relatively small impact on the resulting image quality, 
estimation of this subband is ignored and the HR images are 
reconstructed using the estimated LH and HL subbands 
followed by inverse wavelet transform. 
Table 2 and 3 shows the Peak-Signal-to-Noise Ratio 
(PSNR). As well as wavelet based methods, the results have 
been compared against, bilinear and bicubic interpolation 
and New Edge Directed Interpolation (NEDI) [11]. Wavelet 
domain methods include WZP, where the unknown 
coefficients in high frequency subbands are filled with 
zeros, Regularity-Preserving Image Interpolation [2] and 
HMT method [5]. The visual quality improvement over 
HMT method is mostly perceptible in the neighborhood of 
the edges where correct sign information has the most 
visible effect. The results show that the proposed method 
improves on the HMT based methods and compares 
favorably with established methods in the literature.  
 

5. CONCLUSIONS 

In this paper, an image resolution enhancement algorithm 
operating in the wavelet domain was presented. The 
proposed algorithm aims to alleviate the main drawback of 
HMT based wavelet coefficient estimation methods 
resulting in inaccurate coefficient sign estimation. The 
results show that the results of this subset of algorithms 
could be improved by separating the magnitude and sign 
estimation and incorporating a more accurate sign 
estimation scheme. 
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Image/ 
Method %>  RP [2] HMT[5] Proposed 

Lena 100 3.86 (52.80) 46.55 59.10 
 20 5.01 (56.34) 50.97 69.05 
 10 5.10 (59.23) 51.41 73.56 
 2 5.30 (66.67) 50.80 84.51 

Elaine 100 3.83 (51.10) 49.05 58.77 
 20 5.25 (58.76) 49.79 68.24 
 10 6.74 (64.15) 50.85 71.56 
 2 15.13 (83.64) 51.69 77.86 

Baboon 100 3.47 (48.34) 49.64 60.39 
 20 3.56 (50.47) 49.34 69.63 
 10 3.77 (55.88) 49.34 72.48 
 2 1.65 (38.46) 47.23 77.37 

Peppers 100 3.52 (49.17) 45.91 58.18 
 20 5.35 (60.00) 49.29 67.10 
 10 6.71 (69.39) 50.56 71.17 
 2 11.59 (81.40) 54.34 84.34 

Table 1: Correct coefficient sign percentages for various techniques. The 
calculations are done for the coefficients whose magnitude exceeds the 
threshold . The threshold  is found by constraining the percentage of 

coefficients exceeding the  to the values in the second column. 
 

Image/Method Lena Elaine Baboon Peppers 
Bilinear 30.13 30.60 22.85 30.01 
Bicubic 31.34 31.17 22.98 30.28 
NEDI[11] 34.10 32.89 23.87 33.54 
WZP (Db.9/7)  34.45 33.26 24.22 33.94 
Carey et al.[2] 34.48 33.29 24.24 34.03 
HMT [5] 34.52 33.31 24.24 34.04 
Proposed 34.68 33.40 24.24 34.18 
Table 2: PSNR(dB) results for enlargement from 256x256 to 512x512. 

 
Image/Method Lena Elaine Baboon Peppers 
Bilinear 24.06 25.38 20.43 24.37 
Bicubic 26.76 28.93 21.02 26.86 
NEDI[11] 28.81 29.97 21.18 28.52 
WZP (Db. 9/7) 28.84 30.44 21.47 29.57 
Carey et al.[2] 28.81 30.42 21.47 29.57 
HMT [5] 28.86 30.46 21.47 29.58 
Proposed 28.96 30.58 21.47 29.74 
Table 3: PSNR(dB) results for enlargement from 128x128 to 512x512.
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