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ABSTRACT

We propose an image restoration technique exploiting regularized inversion and the recent block-matching and 3D
filtering (BM3D) denoising filter. The BM3D employs a non-local modeling of images by collecting similar image
patches in 3D arrays. The so-called collaborative filtering applied on such a 3D array is realized by transform-
domain shrinkage. In this work, we propose an extension of the BM3D filter for colored noise, which we use in
a two-step deblurring algorithm to improve the regularization after inversion in discrete Fourier domain. The
first step of the algorithm is a regularized inversion using BM3D with collaborative hard-thresholding and the
seconds step is a regularized Wiener inversion using BM3D with collaborative Wiener filtering. The experimental
results show that the proposed technique is competitive with and in most cases outperforms the current best
image restoration methods in terms of improvement in signal-to-noise ratio.
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1. INTRODUCTION

Image blurring is a common degradation in imaging. In many cases, the blurring can be assumed space-invariant
and thus modeled as a convolution of the true image with a fixed point-spread function (PSF). Such a model is
given by

( ) = ( ~ ) ( ) + ( ) , (1)

where is the true (non-degraded) image, is a blur PSF, is i.i.d. Gaussian noise with zero mean and variance
2, and is a 2D coordinate in the image domain . The inversion of the blurring is in general an
ill-posed problem; thus, even noise with very small magnitude, such as truncation noise due to limited-precision
arithmetic, can cause extreme degradations after naive inversion. Regularization is a well known and extensively
studied approach to alleviate this problem. It imposes some regularity conditions (e.g., smoothness) on the
obtained image estimate and/or on its derivatives. Numerous approaches that employ regularization have been
proposed; an introduction can be found for example in the books.1, 2 In particular, an image restoration scheme
that comprises of regularized inversion followed by denoising has been a basis of the current best-performing
restoration methods.3, 4 Such denoising after the inversion can be considered as part of the regularization since
it attenuates the noise in the obtained solution (i.e. the solution is smoothed).

Various denoising methods can be employed to suppress the noise after the inversion. Filtering in multiresolu-
tion transform domain (e.g., overcomplete wavelet and pyramid transforms) was shown4—6 to be e ective for this
purpose. In particular, the SV-GSM,4 which employs Gaussian scale mixtures in overcomplete directional and
multiresolution pyramids, is among the current best image deblurring methods. Another denoising technique
used after regularized inversion3, 7, 8 is the LPA-ICI9 which exploits a non-parametric local polynomial fit in
anisotropic estimation neighborhoods. The best results of the methods based on LPA-ICI were achieved by the
shape-adaptive discrete cosine transform (SA-DCT) deblurring3 where the denoising is realized by shrinkage of
the SA-DCT applied on local neighborhoods whose arbitrary shapes are defined by the LPA-ICI.
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Figure 1. Flowchart of the proposed deconvolution algorithm. A fragment of House illustrates the images after each
operation.

In this work we follow the above restoration scheme (regularized inversion followed by denoising) exploiting
an extension of the block-matching and 3D filtering10 (BM3D). This filter is based on the assumption that there
exist mutually similar patches within a natural image – the same assumption used in other non-local image filters
such as.11, 12 The BM3D processes a noisy image in a sliding-window (block) manner, where block-matching is
performed to find blocks similar to the currently processed one. The blocks are then stacked together to form
a 3D array and the noise is attenuated by shrinkage in a 3D-transform domain. This results in a 3D array of
filtered blocks. A denoised image is produced by aggregating the filtered blocks to their original locations using
weighted averaging. This filter was shown10 to be highly e ective for attenuation of additive i.i.d. Gaussian
(white) noise. The contribution of this work includes

• extension of the BM3D filter for additive colored noise, and

• image deblurring method that exploits the extended BM3D filter for improving the regularization after
regularized inversion in Fourier transform domain.

The paper is organized as follows. The developed image restoration method and the extension of the BM3D
filter are presented in Sections 2. Simulation results and a brief discussion are given in Section 3 and relevant
conclusions are made in Section 4.

2. IMAGE RESTORATION WITH REGULARIZATION BY BM3D FILTERING

The observation model given in Equation (1) can be expressed in discrete Fourier transform (DFT) domain as

= + ˜, (2)

where , , and ˜ are the DFT spectra of , , and , respectively. Capital letters denote DFT of a signal; e.g.
= F { }, = F { }; the only exception in that notation is for ˜ = F { }. Due to the normalization of the



forward DFT, the variance of ˜ is | | 2, where | | is the cardinality of the set (i.e., | | is the number of
pixels in the input image).

Given the input blurred and noisy image , the blur PSF , and the noise variance 2, we apply the following
two-step image deblurring algorithm, which is illustrated in Figure 1.

Proposed two-step image deblurring algorithm

Step 1. Regularized Inversion (RI) using BM3D with collaborative hard-thresholding.

1.1. The regularized inverse RI is computed in DFT domain as
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where RI is a regularization parameter determined empirically. Note that the obtained inverse
RI
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1.2. Attenuate the colored noise in RI given by Eq. (3) using BM3D with collaborative hard-
thresholding (see Section 2.1); the denoised image is denoted ˆRI.

Step 2. Regularized Wiener inversion (RWI) using BM3D with collaborative Wiener filtering.

2.1. Using ˆRI as a reference estimate, compute the regularized Wiener inverse RWI as
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where, analogously to Eq. (3), RWI is a regularization parameter and
RWI is the sum of a biased

estimate of and colored noise.

2.2. Attenuate the colored noise in RWI using BM3D with collaborative Wiener filtering (see Section
2.2) which also uses ˆRI as a pilot estimate. The result ˆRWI of this denoising is the final restored
image.

The BM3D filtering of the colored noise (Steps 1.2 and 2.2) plays the role of a further regularization of the
sought solution. It allows the use of relatively small regularization parameters in the Fourier-domain inverses,
hence reducing the bias in the estimates RI and RWI, which are instead essentially noisy. The BM3D denoising
filter10 is originally developed for additive white Gaussian noise. Thus, to enable the attenuation of colored
noise, we propose some modifications to the original filter.

Before we present the extensions that enable attenuation of colored noise, we recall how the BM3D filter
works; for details of the original method one can refer to.10 The BM3D processes an input image in a sliding-
window manner, where the window (block) has a fixed size 1 × 1. For each processed block a 3D array is

Postprint note: in Eq. (3), as in the rest of the paper, the straight vertical brackets are used for two different purposes:

1. to denote the modulus (i.e., magnitude) of a transform spectrum, as in |V|,
2. to denote the cardinality of a set, as in |X|.



(a) BM3D with collaborative hard-thresholding

(b) BM3D with collaborative Wiener filtering

Figure 2. Flowcharts of the BM3D filter extentions for colored-noise removal.

formed by stacking together blocks (from various image locations) which are similar to the current one. This
process is called “grouping” and is realized by block-matching. Consequently, a separable 3D transform T3D is
applied on the 3D array in such a manner that first a 2D transform, T2D , is applied on each block in the group
and then a 1D transform, T1D , is applied in the third dimension. The noise is attenuated by shrinkage (e.g.
hard-thresholding or empirical Wiener filtering) of the T3D -transform spectrum. Subsequently, the transform
T3D is inverted and each of the filtered blocks in the group is returned to its original location. After processing
the whole image, since the filtered blocks can (and usually do) mutually overlap, they are aggregated by weighted
averaging to form a final denoised image.

If the transforms T2D and T1D are orthonormal, the grouped blocks are non-overlapping, and the noise in
the input image is i.i.d. Gaussian, then the noise in the T3D -transform domain is also i.i.d. Gaussian with the
same constant variance. However, if the noise is colored as in the case of Eq. (3), then the variances 2

2D ( )
for = 1 2

1 , of the T2D -transform coe cients are in general non constant. In the following subsections,
we extend the BM3D filter to attenuate such colored noise. We note that the developed extensions are not
necessarily restricted to the considered image restoration scheme but are applicable to filtering of colored noise
in general.

Let us introduce the notation used in what follows. With RI we denote a 2D block of fixed size 1 × 1

extracted from RI, where is the coordinate of the top-left corner of the block. Let us note that this
block notation is di erent from the one (capital letter with subscript) used in10 since the capital letter in this
paper is reserved for the DFT of an image. A group of collected 2D blocks is denoted by a bold-face letter with
a subscript indicating the set of its grouped blocks’ coordinates: e.g., zRI is a 3D array composed of the blocks
RI, .

2.1. BM3D with collaborative hard-thresholding (Step 1.2)

This filtering is applied on the noisy RI given by Eq. (3). The variances of the coe cients of a T2D -transform
(applied to an arbitrary image block) are computed as

2
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where
( )
T2D

is the -th basis element of T2D . The flowchart of the BM3D with collaborative hard-thresholding
extended for color-noise attenuation is given in Figure 2(a).

The variances 2
2D are used in the block-matching to reduce the influence of noisier transform coe cients

when determining the block-distance. To accomplish this, the block-distance is computed as the 2-norm of
the di erence between the two T2D -transformed blocks scaled by the corresponding standard deviations of the
T2D -transform coe cients. Thus, the distance is given by
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where RI is the current reference block, RI is an arbitrary block in the search neighborhood, and the operations
between the three 1 × 1 arrays T2D

©
RI
ª
, T2D

©
RI
ª
, and 2D are elementwise. After the best-matching

blocks are found (their coordinates are saved as the elements of the set ) and grouped together in a 3D
array, collaborative hard-thresholding is applied. It consists of applying the 3D transform T3D on the 3D group,
hard-thresholding its spectrum, and then inverting the T3D . To attenuate the colored noise, the hard-threshold is
made dependent on the variance of each T3D -transform coe cient. Due to the separability of T3D , this variance
depends only on the corresponding 2D coordinate within the T3D -spectrum; thus, along the third dimension of a
group the variance and hence the threshold are the same. The hard-thresholding is performed by an elementwise

multiplication of the T3D -spectrum T3D
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where is a spatial-coordinate index and is an index of the coe cients in the third dimension, 3D is a fixed
threshold coe cient and | | denotes the cardinality of the set .

After all reference blocks are processed, the filtered blocks are aggregated by a weighted averaging, producing
the denoised image ˆRI . The weight for all filtered blocks in an arbitrary 3D group is the inverse of the sum
of the variances of the non-zero transform coe cients after hard-thresholding; for a 3D group using as
reference, the weight is

ht =
1X

=1 2

1

=1 | |

h ( ) 2
2D ( )

.

2.2. BM3D with collaborative Wiener filtering (Step 2.2)

The BM3D with collaborative empirical Wiener filtering uses ˆRI as a reference estimate of the true image .
Since the grouping by block-matching is performed on this estimate and not on the noisy image, there is no need
to modify the distance calculation as in Eq. (6). The only modification from Step 2 of the original BM3D filter
concerns the di erent variances of the T3D -transform coe cients in the empirical Wiener filtering. This filtering

is performed by an elementwise multiplication of the T3D -spectrum T3D
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o
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where, similarly to Eq. (5), the variances 2
2D of the T2D -transform coe cients are computed as
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For an arbitrary , the aggregation weight for its corresponding filtered 3D group is

wie =
1X
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1
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.

The flowchart of the BM3D with collaborative Wiener filtering extended for color-noise attenuation is given in
Figure 2(b).

3. RESULTS AND DISCUSSION

We present simulation results of the proposed algorithm, whose Matlab implementation is available online.13

All parameters, obtained after a rough empirical optimization, are fixed in all experiments (invariant of the
noise variance 2, blur PSF , and image ) and can be inspected from the provided implementation. In our
experiments, we used the same blur PSFs and noise combinations as in.4 In particular, these PSFs are:

• PSF 1: ( 1 2) = 1
¡
1 + 2

1 +
2
2

¢
1 2 = 7 7,

• PSF 2: is a 9× 9 uniform kernel (boxcar),

• PSF 3: = [1 4 6 4 1] [1 4 6 4 1] 256,

• PSF 4: is a Gaussian PSF with standard deviation 1.6,

• PSF 5: is a Gaussian PSF with standard deviation 0.4.

All PSFs are normalized so that
P

= 1.
Table 1 presents a comparison of the improvement in signal-to-noise ratio (ISNR) for a few methods3, 4, 6, 14—16

among which are the current best.3, 4 The results of ForWaRD6 were obtained with the Matlab codes17 made
available by its authors, for which we used automatically estimated regularization parameters. The results
of the SA-DCT deblurring3 were produced with the Matlab implementation,18 where however we used fixed
regularization parameters in all experiment in order to have fair comparison (rather than using regularization
parameters dependent on the PSF and noise). The results of the GSM method19 and the SV-GSM4 are taken
from.4 In most of the experiments, the proposed method outperforms the other techniques in terms of ISNR. We
note that the results of the four standard experiments used in the literature (e.g.,3, 6, 7, 20) on image restoration
are included in Table 1 as follows.

• Experiment 1: PSF2, 2 = 0 308, and Cameraman image.

• Experiment 2: PSF1, 2 = 2, and Cameraman image.

• Experiment 3: PSF1, 2 = 8, and Cameraman image.

• Experiment 4: PSF3, 2 = 49, and Lena image.

The visual quality of some of the restored images can be evaluated from Figures 4, 5, and 6. One can see
that fine details are well preserved and there are few artifacts in the deblurred images. In particular, ringing can
be seen in some images such as the ones shown in Figure 3, where a comparison with the SA-DCT deblurring3

is made. The ringing is stronger (and ISNR is lower) in the estimate obtained by the proposed technique. We
explain this as follows; let us recall that each of the noisy images RI and RWI (input to the extended BM3D
filter) is sum of a bias and additive colored noise; the exact models of RI and RWI are given by Eq. (3) and
(4), respectively. The ringing is part of the bias and thus it is not modeled as additive colored noise. Hence, if
the ringing magnitude is relatively high, the BM3D fails to attenuate it and it is preserved in the final estimate,
as in Figure 3.

By comparing the results corresponding to ˆRI and ˆRWI in Table 2, one can see the improvement in ISNR
after applying the second step (RWI using BM3D with collaborative Wiener filtering) of our two-step restoration
scheme. This improvement is significant and can be explained as follows. First, the regularized Wiener inverse is
more e ective than the regularized inverse because it uses the estimated power spectrum for the inversion given



Blur: PSF2, 2 = 0 308 SA-DCT deblurring3 Proposed method
(PSNR 20.76 dB) (ISNR 8.55 dB) (ISNR 8.34 dB)

Fragments of the SA-DCT result Fragments of the result by the proposed method

Figure 3. Comparison of the proposed method with the SA-DCT deconvolution method for Cameraman and PSF 2 blur
kernel.

in Eq. (4). Second, the block-matching in the BM3D filtering is more accurate because it is performed within
the available estimate ˆRI rather than within the input noisy image RWI. Third, the empirical Wiener filtering
used by the BM3D in that step is more e ective than the simple hard-thresholding used in the first step. In
fact, the first step can be considered as an adaptation step that significantly improves the actual restoration
performed by the second step.

In Table 2, we also provide (in the row corresponding to ˆRWI
naive) the results of the naive approach of using the

original BM3D filter10 rather than the one extended for colored noise. This filter was applied on RI and RWI

by assuming additive i.i.d. Gaussian noise, whose variance was computed as 2
WGN =

2
1

P 2

1

=1
2
2D ( ), where

2
2D (·) is defined in Eq. (5) and (7) for

RI and RWI, respectively. This variance calculation was empirically
found to be better (in terms of ISNR) than estimating a noise variance from the noisy images RI and RWI.
The benefit of using the BM3D for colored noise reaches 1 dB; in particular, the benefit is substantial for those
experiments where the noise in RI and RWI is highly colored.

4. CONCLUSIONS

The developed image deblurring method outperforms the current best techniques in most of the experiments.
This performance is in line with the BM3D denoising filter10 which is among the current best denoising filters.
The proposed colored-noise extension of the BM3D is not restricted to the developed deblurring method and it
can in general be applied to filter colored noise.

Future developments might target attenuation of ringing artifacts by exploiting the SA-DCT transform21

which, as shown in Figure 3, is e ective in suppressing them.



Blur PSF 1 PSF 2 PSF 3 PSF 4 PSF 5
2 2 8 0 308 49 4 64

Cameraman

Input PSNR 22.23 22.16 20.76 24.62 23.36 29.82

ForWaRD6 6.76 5.08 7.34 2.40 3.14 3.92
GSM19 6.84 5.29 -1.61 2.56 2.83 3.81
EM16 6.93 4.88 7.59 - - -
Segm.-based Reg.15 7.23 - 8.04 - - -
GEM14 7.47 5.17 8.10 - - -
BOA20 7.46 5.24 8.16 - - -
Anis. LPA-ICI7 7.82 5.98 8.29 - - -
SV-GSM4 7.45 5.55 7.33 2.73 3.25 4.19
SA-DCT3 8.11 6.33 8.55 3.37 3.72 4.71
Proposed 8.19 6.40 8.34 3.34 3.73 4.70

Lena

Input PSNR 27.25 27.04 25.84 28.81 29.16 30.03

Segm.-based Reg.15 - - - 1.34 - -
GEM14 - - - 2.73 - -
BOA20 - - - 2.84 - -
ForWaRD6 6.05 4.90 6.97 2.93 3.50 5.42
EM16 - - - 2.94 - -
Anis. LPA-ICI7 - - - 3.90 - -
SA-DCT3 7.55 6.10 7.79 4.49 4.08 5.84
Proposed 7.95 6.53 7.97 4.81 4.37 6.40

House

Input PSNR 25.61 25.46 24.11 28.06 27.81 29.98
ForWaRD6 7.35 6.03 9.56 3.19 3.85 5.52
GSM19 8.46 6.93 -0.44 4.37 4.34 5.98
SV-GSM4 8.64 7.03 9.04 4.30 4.11 6.02
SA-DCT3 9.02 7.74 10.50 4.99 4.65 5.96
Proposed 9.32 8.14 10.85 5.13 4.56 7.21

Barbara

Input PSNR 23.34 23.25 22.49 24.22 23.77 29.78
ForWaRD6 3.69 1.87 4.02 0.94 0.98 3.15
GSM19 5.70 3.28 -0.27 1.44 0.95 4.91
SV-GSM4 6.85 3.80 5.07 1.94 1.36 5.27
SA-DCT3 5.45 2.54 4.79 1.31 1.02 3.83
Proposed 7.80 3.94 5.86 1.90 1.28 5.80

Table 1. Comparison of the output ISNR [dB] of a few deconvolution methods (only the rows corresponding to “Input
PSNR” contain PSNR [dB] of the input blurry images).



Blur: PSF1, 2 = 2 Output ISNR 9.32 dB

Blur: PSF1, 2 = 8 Output ISNR 8.14 dB

Blur: PSF2, 2 = 0 308 Output ISNR 10.85 dB

Figure 4. Deblurring results of the proposed method for House.



Blur: PSF3, 2 = 49 Output ISNR 4.81 dB

Blur: PSF4, 2 = 4 Output ISNR 4.37 dB

Blur: PSF5, 2 = 64 Output ISNR 6.40 dB

Figure 5. Deblurring results of the proposed method for Lena.



Blur: PSF1, 2 = 8 Output ISNR 3.94 dB

Blur: PSF2, 2 = 0 308 Output ISNR 5.86 dB

Blur: PSF3, 2 = 49 Output ISNR 1.90 dB

Figure 6. Deblurring results of the proposed method for Barbara.



Blur PSF 1 PSF 2 PSF 3 PSF 4 PSF 5
2 2 8 0 308 49 4 64

ˆRI 7.13 5.16 7.52 2.31 3.23 2.46
ˆRWI 8.19 6.40 8.34 3.34 3.73 4.70

ˆRWI
naive 7.17 6.25 8.14 2.57 2.71 4.63

Table 2. ISNR comparison for: the basic estimate ˆRI ; the final estimate ˆRW I ; the final estimate ˆRW I
naive obtained using

the original BM3D filter instead of the one extended for colored noise. The test image was Cameraman.
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