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ABSTRACT

In this paper we address the problem of image interpolation
using Gaussian Mixture Models (GMM) as a prior. Previous
methods of image restoration with GMM have not consid-
ered spatial (geometric) distance between patches in cluster-
ing, failing to fully exploit the coherency of nearby patches.
The GMM framework in our method for image interpolation
is based on the assumption that the accumulation of similar
patches in a neighborhood are derived from a multivariate
Gaussian probability distribution with a specific covariance
and mean. An Expectation Maximization-like (EM-like) al-
gorithm is used in order to determine patches in a cluster and
restore them. The results show that our image interpolation
method outperforms previous state-of-the-art methods with
an acceptable bound.

Index Terms— Image restoration, interpolation, Gaus-
sian mixture models, neighborhood clustering, continuation

1. INTRODUCTION

Generally, in the image restoration tasks the degraded image
y (in vectorized form) can be mathematically modeled by

y = Hx + v (1)

where x is the clean image in the vectorized form, H is a non-
invertible linear operator and v is the vector of independent
Gaussian noise with known variance σ2. However, in this
paper, we address the image interpolation case in which the
observation is noise free, i.e. v is zero, and the degrading op-
erator is a subsampling matrix, i.e. H is diagonal matrix with
one or zero diagonal entries corresponding to the existing or
missing pixels, respectively. We consider both randomly and
uniformly observed pixels which the latter case is equivalent
to image zooming. Our method, similar to the successful im-
age restoration methods in [1] , [2] and [3], is a patch-based
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method in which the image is divided into local
√
n ×
√
n

sized overlapping patches. Each patch, denoted by yi ∈ Rn
in vectorized form, can be modeled by yi = Hixi where
Hi is degrading matrix corresponding to the underlying clean
patch xi.

Some image interpolation methods are based on the as-
sumption of sparsity in the representations [1, 4]. However,
the relatively strict conditions for obtaining the exact sparse
representations [5], especially in the cases like interpolation
where the degrading operator H is not the identity matrix
(i.e. the problem is not denoising), is a drawback. The main
reason is the deformation of the dictionary structure by the
matrix H, and consequently increasing the mutual coherence
of dictionary which makes meeting these conditions harder
[3, 6]. To overcome this drawback, methods that are based
on Gaussian Mixture Models (GMM) such as Piecewise Lin-
ear Estimation (PLE) [3] and Expected Patch Log Likelihood
(EPLL) [7] have been proposed. As shown in these methods,
the GMM prior for image patches leads to linear estimations
in solving (1) which avoids the strict sparse coding recovery
conditions. However, the method of clustering used in the
GMM methods does not consider the geometric distance be-
tween patches. In some successful image denoising methods
like nonlocal-means [8] and bilateral filtering [9], geometrical
distance is considered by averaging pixels with the weights
inversely proportional to distance between pixels or patches,
to exploit coherency of nearby pixels or patches.

In this paper, we introduce the idea of applying GMM to
nearby patches in order to interpolate images with partially
observed pixels. We propose a model that uses a same mul-
tivariate Gaussian probability distribution for similar image
patches in a neighborhood. In other words, we assume that k-
Nearest-Neighbor (kNN) patches with respect to an exemplar
patch are derived from a multivariate Gaussian probability
distribution with a specific covariance matrix and mean vec-
tor. An Expectation Maximization-like (EM-like) approach
[10] is used to obtain accurate clustering of patches and esti-
mating underlying covariances and means in the mixture dis-
tributions. In the averaging of the overlapped patches to con-
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struct the whole image, we consider assigning the averaging
weights proportional to similarity to Gaussian distributions,
i.e. patches that are more likely to be generated from the esti-
mated Gaussian distribution of their allocated clusters, benefit
from higher weights. Similar to the recently proposed meth-
ods in [1] and [11] for image interpolation, a continuation
approach, which reduces the regularization parameter along
iterations of minimizing the cost function to avoid local min-
ima, is used. The results show that our method outperforms
the state of the art image interpolation methods in recovering
randomly and uniformly sampled images.

In the following sections, first, the previous methods
which use GMM for image restoration are briefly described.
Then, section 3 is devoted to the description of our proposed
method for image interpolation. In section 4, we compare our
method with the state of the art methods of image interpola-
tion.

2. GLOBAL IMAGE RESTORATION METHODS
USING GMM

PLE and EPLL methods, which use GMM for patches in
the image, are very similar with minor differences in the ini-
tialization and computing the aggregation weights. We call
the two mentioned methods global GMM methods in some
parts of this paper, since no spatial (geometric) distance be-
tween patches are considered and patches from very different
parts of image could be clustered into one group. Gener-
ally, these methods assume that every patch in the image is
derived from a multivariate Gaussian probability distribu-
tion N (Σm, µm) which is parameterized by the covariance
matrix Σm and the mean vector µm. They also assume
that there are M finite numbers of Gaussian distributions
i.e. {N (Σm, µm)}1<m<M in the image. So each patch xi
is independently drawn from one of these finite number of
Gaussians with the probability of

P (xi) =
1

(2π)
n
2 |Σm|

1
2

e−
1
2 (xi−µm)TΣ−1

m (xi−µm) (2)

Maximizing the above probability distribution for all patches
with the assumption of finite Gaussian distributions in the
whole image are obtained by the following steps in the global
GMM methods with some initial Gaussian distributions:
• The Gaussian probability that most likely generates each

patch is determined from {N (Σm, µm)}1<m<M . This
can be seen as clustering of patches and the similarity is
measured by (2).
• The estimation of the covariance matrix and the mean vec-

tor, (Σm, µm), for each 1 < m < M , are updated based
on the patches and the corresponding clusters.
• The restoration of each patch is obtained based on its allo-

cated Gaussian distribution.
In the first step of the above Global GMM algorithm, each

patch is assigned to the finite number of Gaussians in the

whole image and the geometric distance between patches is
not considered. This global clustering prevents from fully ex-
ploiting the coherency of nearby patches in the image. Us-
ing coherency of nearby patches has been considered in im-
age restoration algorithms, especially in the denoising case.
Nonlocal means [8] and bilateral filtering [9], which rely on
averaging pixels, consider the coherency of nearby patches
through setting averaging weights inversely proportional to
geometrical distance between pixels or patches. Also, some
recent image denoising methods such as Block Matching 3D
(BM3D) [2] constrain grouping of similar patches in a win-
dow with finite-size and then collaboratively denoise them.

A question that can be posed here is how to efficiently de-
velop an image interpolation method benefiting from the con-
straint discussed above to improve the restoration task using
GMM. One may propose to constrain GMM into a finite-sized
window in different parts of image, and for each window, use
a global GMM method. At the first glance, this suggestion
seems convincing, but it suffers from a problem of appearing
block artifact. Constraining denoising in blocks of windows,
for example 32 × 32 sized window, leads to block artifacts
in boundaries of windows in the restored image. Even if the
overlapping is considered, these artifacts appear, unless they
are consider in every 1 or 2 pixel jump sizes which is not
applicable due to high redundancy and high computational
complexity.

3. OUR PROPOSED METHOD

In order to apply a plausible spatial constraint on the image,
our proposed method defines a new GMM framework for the
image interpolation which states that in the image, similar
patches in a neighborhood are derived from a same multivari-
ate Gaussian probability distribution with a specific mean and
covariance.

Our method, similar to BM3D denoising [2] and BM3D-
based interpolation [1] methods, collects exemplar patches
chosen uniformly with an appropriate jump size in the row
and the column of the whole image and groups similar patches
in the neighborhood of each exemplar patch. The neighbor-
hood for an exemplar patch is defined as N × N sized win-
dow around that patch. The rth region related to the rth ex-
emplar patch is defined as kNN patches with respect to that
patch. An important issue here is finding Nearest Neigh-
bor patches with respect to the exemplar patches in the im-
age, while the observed patches are severely degraded. In
our method, in order to determine kNN patches while hav-
ing degraded observations, similar to [12], we use an EM-like
approach in which kNN patches are treated as missing vari-
ables. In the E-like step kNN patches are determined, and in
the M-like step the image is restored by assumption of mul-
tivariate Gaussian distributions for the image patches. Let
{xr}r=1,R denotes the collection of exemplar patches and let
{µr}r=1,R and {Σr}r=1,R denote the corresponding mean
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vectors and covariance matrices, respectively. After initial-
ization of x̂ = y, our method iteratively implements the fol-
lowing steps:

E-like step: As we assumed assigning kNN patches to the
exemplar patch xr as hidden variables of EM-like algorithm,
in this step for all exemplar patches we collect k patches in
the neighborhood of the exemplar patch that have the mini-
mal dissimilarity d to the exemplar patch. The dissimilarity is
simply measured by l2-norm metric i.e. d = ‖x̂i − x̂r‖22 for
all x̂i’s in the neighborhood of x̂r. Note that x̂i’s and x̂r are
estimated patches obtained from the previous M-like step or
the initialization.

M-like step: This step is mainly comprised of the pro-
cess of restoring the image using the clusters obtained from
the previous E-like step. To achieve this, the parameters of
Gaussian distributions for each group of patches should be
estimated first. In order to obtain each cluster covariance ma-
trix and mean vector, (µ̂r, Σ̂r), like PLE, Maximum Like-
lihood (ML) estimate is employed which leads to the sam-
ple covariance matrix and the sample mean vector i.e. µ̂r =
1
k

∑
i∈Sr x̂i, Σ̂r = 1

k

∑
i∈Sr (x̂i − µ̂r)(x̂i − µ̂r)

T where Sr
is the set of kNN patches with respect to the rth exemplar
patch. Having estimated the parameters of Gaussian distri-
butions, in order to obtain the restored patch x̂i in the rth

region from the corresponding noisy observed patch yi, sim-
ilar to Global GMM methods, log a-posteriori probability of
the form log p(x|yi, Σ̂r, µ̂r) is maximized i.e.

x̂i = argmax
x

log p(x|yi, µ̂r, Σ̂r)

= argmax
x

log p(yi|x, µ̂r, Σ̂r)p(x|Σ̂r, µ̂r)

= argmin
x
‖yi −Hix‖22 + σ2(x− µ̂r)T Σ̂−1r (x− µ̂r) (3)

where the second equality is obtained by the Bayes rule and
the third equality is derived from the assumptions of xi ∼
N (µ̂r, Σ̂r) and vi ∼ N (0, σ2I). Note that in the noiseless
interpolation case, the Gaussian noise variance in (3) can be
considered as a small value [3] (for example this value is set
to 3 in PLE to correspond to typical noise level existing in the
images). The problem in (3) can also be seen as the regular-
ized form of the patch restoration problem in which σ2 is the
regularization parameter. So for simplicity of the notations,
we replace σ2 by λ in the subsequent formulas. The convex
optimization problem in (3) is solved by setting its derivative
to zero which leads to the Wiener filter of the form

x̂i = (HT
i Hi + λΣ−1r )

−1
(HT

i yi + λΣ−1r µr). (4)

The restored patches, obtained by the above formula, should
be returned to their original positions to construct the whole
image. Using the proper weights in averaging the patches im-
proves the performance of the restoration method [2]. For
example in BM3D, these weighs are set proportional to the
number of non-zeros in the representations of the patches.

Due to using multivariate GMM in our method, we propose to
obtain averaging weights by the degree of similarity to Gaus-
sian structures. By this, we mean that the patches which have
higher probability of occurrence in the estimated Gaussian
distributions from which they are derived, average with higher
weights. So, in order to determine these weights, we use the
help of Probability Density Function (PDF) of patch given
Gaussian parameters, mentioned in (2), in which (µr,Σr) is
fixed and is equal to the estimated parameters (µ̂r, Σ̂r) at
each iteration. Using exactly (2) for obtaining weights may
not lead to optimum interpolation performance and can be
scaled properly to have a better performance. So in order to
have a proper scale of (2) for averaging weights, we use

w(i,r) =
1√
|Σ̂r|

e−
γ
2 (x̂i−µ̂r)

T Σ̂−1
r (x̂i−µ̂r) (5)

where w(i,r) relatively measures the mentioned probability.
We empirically found the formula is efficient in the image in-
terpolation. In comparison to (2), in the above formula we
omit the constants and add γ which is an appropriate scal-
ing constant. Applying a constant like γ in the power of
exponential to achieve a proper scale has been shown to be
effective in image restoration tasks, for example in comput-
ing averaging weights for pixels in the bilateral filter [9], or
in some spatial domain image restoration kernels computed
based on similarity of pixels [13]. However, we use this pa-
rameter in the power of exponential to distinguish between
averaging weights assigned to patches.

The overall problem of clustering and finding Gaussian
distributions for patches is non-convex, and the solution may
be trapped into local minima [3]. The continuation method,
which starts from a high regularization parameter and grad-
ually decreases this parameter along iteration, has been suc-
cessfully used in the image interpolation methods in [14] and
[15], to avoid local minima. In many methods, using this ap-
proach is done heuristically by a linear or exponential decay.
Starting from a high value of the regularization parameter, in
our method the exponential decay is used, the same as the one
successfully used for image interpolation in [15], i.e. at the
nth iteration this parameter is obtained by λn = (1− ε)λn−1
where ε is a small constant.

Straightforward implementation of our algorithm de-
scribed in this section, needs high memory usage for storing
numerous covariance matrices. However, our method similar
to BM3D benefits from the capability of online implemen-
tation by allocating two buffers for the weighted restored
patches and the aggregation weights. The patches that are
similar to an exemplar patch in a finite-sized window are
grouped together, the mean and the covariance are estimated
directly from the grouped patches, and after the restoration,
the restored patches with the obtained weights are accumu-
lated in the buffers. This procedure repeats for all exemplar
patches respectively at each iteration. The restored image is
obtained by element wise division of two buffers.
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Table 1. Image interpolation results PSNR (dB) values for
competing methods with different percentages of randomly
observed pixels in some benchmark images.

% of ob-
served
pixels

BP
[16]

KR
[17]

PLE
[3]

This
work

Barbara
80% 40.76 37.81 43.85 43.92
50% 33.17 27.98 37.03 37.48
30% 27.52 24.00 32.73 33.68

Lena
80% 41.27 41.68 43.38 43.60
50% 36.94 36.77 37.78 37.98
30% 33.31 33.55 34.37 34.53

House
80% 43.03 42.57 44.77 45.21
50% 38.02 36.82 38.97 39.43
30% 33.14 33.62 34.88 35.16

Boats
80% 39.50 37.91 40.49 40.70
50% 33.78 32.70 34.36 34.58
30% 30.00 29.28 30.77 30.81

4. EXPERIMENTAL RESULTS

We evaluate the performance of our method with other state of
the art methods including global GMM methods and methods
based on sparsity in the image representations. Although, as
mentioned, PLE and EPLL are very similar, PLE method gen-
erally performs better than EPLL, and we choose PLE among
global GMM methods in this section for comparison. To the
best of our knowledge, PLE outperforms other methods pro-
posed so far for image interpolation in the open literature. In
our implementation, k = 25 patches were gathered in a neigh-
borhood of 32× 32 sized window. For obtaining the regular-
ization parameter along iterations, the initialization value and
ε are set to 100 and 0.1, respectively. The exemplar patches
were chosen every 5 pixels along both row and column di-
rections of the image. The value of γ is 0.01 in (5) for com-
puting aggregation weights. We empirically found that these
parameters lead to acceptable performance in the image in-
terpolation. The results are reported for 10 iterations of our
algorithm, whose MATLAB implementation takes about 140
seconds to restore a 256×256 sized image on a 2.8 GHz Intel
Core i7 CPU.

In Table 1, PSNR results of our proposed method are com-
pared to the recent state-of-the-art methods of image inter-
polation, such as Beta Process (BP) [16], Kernel Regression
(KR) [17] and PLE [3], for different percentages of randomly
observed pixels. It can be seen that our method outperforms
all state of the art methods including PLE in all percentages.

Figure 1 shows examples of image interpolation of some
image fragments for 30% of observed pixels. This feagments
are illusterated to focus on comparing the interpolation of

both smooth and textured fragments of images. It can be seen
that our method outperforms other method in both textured
and smooth regions in terms of PSNR.

Original Image Masked image KR [17]
PSNR=34.97

BM3D-
based [1]
PSNR=35.67

This Work
PSNR=36.61

Original Image Masked image KR [17]
PSNR=30.66

BM3D-
based [1]
PSNR=32.17

This Work
PSNR=33.43

Fig. 1. Examples of image fragments interpolation from 30%
of available data with different methods.

(a) (b) (c) (d)

Fig. 2. Ability to recover true textures in uniformly sam-
pled images in our method in comparison with other methods
(zooming factor = 2):(a) Original image; (b) NEDI [4]; (c)
BM3d-based [1]; (d) This work.

A special case of image interpolation is zooming which
can be perceived as the interpolation of uniformly sampled
images. However zooming is a more challenging task than in-
terpolation from randomly observed pixels. Due to the regular
sampling, many algorithms proposed for the interpolation fail
to recover true underlying textures in images. As discussed
in [1], more random sampling achieves dramatically better
results. We found that our algorithm is highly robust to the
recovery error caused by the uniform sampling. In Fig. 2, ex-
amples of image interpolation with some recent methods for
a textured image fragment are illustrated. It can be seen that
our method is noticeably successful to find true textures.

5. CONCLUSION

In this paper we proposed a method for image interpolation
based on GMM in which the clustered patches are constrained
into finite-sized windows. We also obtained the aggregation
weights proportional to the probability of the restored patch
given the estimated Gaussian parameters. The results show
that our method outperforms the previous state of the art
methods of the image interpolation in terms of PSNR.
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