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Abstract—In recent years Bayes Least Squares - Gaussian scale
mixtures (BLS-GSM) has emerged as one of the most powerful
methods for image restoration. Its strength relies on providing
a simple and yet very effective local statistical description of
oriented pyramid coefficient neighborhoods via a GSM vector.
This can be viewed as a fine adaptation of the model to the signal
variance at each scale, orientation and spatial location. Here we
present an enhancement of the model by introducing a coarser
adaptation level, where a larger neighborhood is used to estimate
the local signal covariance within every subband. We formulate
our model as a Bayes least squares estimator using space-variant
Gaussian scale mixtures. The model can be also applied to image
deconvolution, by first performing a global blur compensation,
and then doing local adaptive denoising. We demonstrate through
simulations that the proposed method, besides being model-based
and non-iterative, it is also robust and efficient. Its performance,
measured visually and in L2-norm terms, is significantly higher
than the original BLS-GSM method, both for denoising and
deconvolution.

Index Terms—Image restoration, image denoising, overcom-
plete oriented pyramids, Gaussian scale mixtures, Bayesian
estimation

I. INTRODUCTION

IMAGE restoration is typically formulated as the estimation

of an image given a linearly filtered version of the original

corrupted by additive noise. This is a difficult, ill-posed,

inverse problem, even if, as assumed in this work, the degra-

dation parameters are known. A more tractable problem arises

when we only consider additive noise in the degradation model

(denoising problem). During the last few years, the state of the

art in image denoising has experienced a formidable advance.

The possibility of using image denoising techniques within

more generic image restoration frames is thus becoming more

and more attractive. In this paper we present a new denoising-

based approximation to deal with both degradation problems

(just noise, and blur plus noise). For previous instantiations of

this work see [1], [2].

Wiener filtering is one of the simplest model-based restora-

tion methods, and yet it provides optimal results when dealing
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with Gaussian signals and noise. Modelling noise as Gaussian,

as we do in this work, is reasonable for many image processing

situations. However, it is well known that image statistics

are far from Gaussian [3]. One can, instead, assume that

images are locally Gaussian. Spatially adaptive models have

widely used this assumption for image denoising. In 1980,

Lee [4] proposed an adaptive scalar Wiener method in the

pixel domain, based on estimating the local variance at every

spatial location of the image. With the introduction of wavelets

(in the broad sense of the word, i.e., multi-scale, multi-

orientation linear pyramidal representations), local adaptation

in the new domain became much more powerful. Whereas

many authors explored other estimations approaches in the

new domain, which resulted in different types of shrinkage

functions to be applied to the wavelet coefficients (e.g. [5],

[6], [7], [8]), others continued developing the local Wiener

idea. Mihçak et al. [9] included a prior on the local variance,

proposing a maximum a posteriori (MAP) estimation scheme.

A similar Bayesian approach was followed in [10]. Portilla

et al. [11] refined the Bayesian model by including the full

signal and noise covariance in the model, and simplified

the formulation of the problem by using a Gaussian scale

mixture (GSM) [12], [13] frame [14]. These Wiener adaptive

methods followed an empirical Bayes strategy: first, estimate

the local signal variance, and then, apply a Wiener filter

using that estimation. In a further work, Portilla et al. [15],

instead, introduced a single-step Bayes Least Squares (BLS)

estimator, which resulted in a significant performance increase.

Up to now, all Wiener-adaptive methods either consider just

the local variance, disregarding the covariance structure for

each subband [9], [10], or consider the covariance fixed,

up to a scale factor [11], [15]. In both cases they perform

a fine adaptation, in the sense that they estimate the local

variance using small neighborhoods. On the other hand, there

is broad literature on local covariance estimation and its

applications (e.g. [16]). Covariance estimation allows for a

selective characterization of salient local spectral features.

However, as it requires a much larger window than variance

estimation, it loses the ability to represent rapid variance

spatial fluctuations in small areas. As a result, for typical

images, the extra complexity of a covariance-adaptive model,

by itself, does not pay off in performance terms with respect

to simpler variance-adaptive models. Here we describe a new

approximation that provides both kinds of adaptation in the

same model [1]. Hammond and Simoncelli [17] have also

proposed an interesting extra adaptation step for the BLS-

GSM model, in their case constrained to the local dominant

orientation.
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BLS-GSM [15] has provided the state-of-the-art in image

Gaussian denoising for the last few years. During the last year,

however, some new methods have achieved impressive results,

both visually and in L2 norm terms, some of them clearly

surpassing the BLS-GSM performance. Many exploit an im-

portant characteristic of typical image: they present a high

spatial redundancy in the sense that a local feature is likely to

be found in several (possibly disconnected) spatial locations

within an image (e.g., a corner of a window, in a building

façade, a straw bar, or, more simply, part of an edge along the

edge line). An important part of the differences between these

repeated local features may be caused by noise, so this fact

can be exploited for noise removal. The usual approach is to

consider that every neighborhood of pixels can be written as a

linear combination of other neighborhoods. Buades et al. [18]

do this matching for every pixel location, using the contextual

similarities among neighborhoods around the pixels. Kervrann

and Boulanger [19] improve this method by introducing an

adaptive neighborhood as well as a statistical estimation of

the model parameters. Hirakawa and Parks [20] use a total

least squares formulation for square neighborhoods of different

sizes. Dabov et al. [21] use block-matching and filter the

matched blocks in 3D. Once these blocks are 3D-filtered, they

are denoised by a combination of hard-thresholding and local

Wiener filtering. To the best of our knowledge these authors

achieve the current state of the art in performance terms.

However their method is not based on a single model for the

estimation, that is, it applies re-estimations. We refer here to

re-estimation as when the result of an estimation method is

used as the input data for a different method with the same

estimation purpose1. Though possibly effective and convenient

in some practical situations, re-estimation is not a conceptually

clean practice, as it implies the overlapping of two mutually

incoherent models. Another successful path to image denoising

is to adapt to the geometry of the image. Foi et al. [22] have

presented a method based on a shape-adaptive discrete cosine

transform (SA-DCT), which adapts the local support for the

data being processed to the image contents. They use the

same re-estimation method as in [21]. Elad et al. [23] achieve

impressive results as well by creating an image-adaptive sparse

representation. They used the K-SVD algorithm to obtain a

dictionary that describes the image content very effectively. A

big part of the high performance of this latter method is due

to using a non-linearly adaptive image representation, which

requires a heavy computational load.

In contrast to the methods referred above, the one we

propose here can use any linear multi-resolution represen-

tation (though best results are obtained with multi-oriented

translation invariant pyramids) and it does not make use

of re-estimation. The underlying model is very simple, and

the resulting method is non-iterative, efficient and robust,

inheriting and extending on the good properties of the original

BLS-GSM, such as its ability to deal with any spectral noise

density.

When approaching the deconvolution problem, we can see

1When both estimation methods are the same, we talk about iterative
estimation, which is a conceptually clean practice (e.g., the E-M approach).

Fig. 1: Two step scheme.

that most methods are iterative and global, e.g. [24], [25], [26],

[27]. Among the global methods, some authors (e.g. [28], [29],

[30], [31], [32], [33]) have approached the deblurring problem

by decomposing it in two steps (see Fig. 1), a) a linear global

compensation of the blur in the frequency domain, and b)

a non-linear local denoising method. We emphasize that this

procedure is not a form of re-estimation, because the problem

addressed in the first step is different from the one addressed

in the second step. The advantage of this decomposition is that

it converts the deconvolution problem into an easier denoising

problem, opening the door to recent powerful non-iterative

methods whenever they are able to represent and remove noise

with arbitrary spectral density (PSD). Note that, by default,

classical denoising assumes white noise. In contrast, here,

even if the original noise is white, it gets colored by the blur

compensation filtering in the first step.

Few authors instead, e.g. [34], [35], have approached the

deconvolution problem using local models, both for the image

and for the degradation, with the advantage of simplifying the

formulation of the problem. Portilla and Simoncelli [35] used

a local GSM model within an efficient non-iterative method

which provided good performance in most cases. However, the

local blur compensation used in this method has some intrinsic

limitations (see Section III-B). Also, its performance depends

critically on an accurate estimation of the power spectrum of

the original image.

In this work we propose a non-iterative two-step deblurring

method based on the previously described spatially adaptive

denoising. It provides a sub-optimal, but very robust and

efficient, choice for the pre-filtering kernel. This approach

preserves the advantages of using a local model for image

denoising (simple and non-iterative) whereas it overcomes the

problems associated to locally compensate for the effects of

convolution. It also increases both the performance and the

robustness of its predecessors BLS-GSM restoration methods.

The outline of this paper is as follows: Section II describes

our image statistical modelling, including a description of the

image representations used. Section III explains how to use our

model to do both denoising and deblurring. Implementation

details are reported in Section IV. Section V presents and

discusses a broad set of simulations and their corresponding

results. Last section concludes the paper.

II. IMAGE MODELLING

A. Image representation

Image representation is a key issue for image processing,

and its choice depends on the particular application. For
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image restoration it has been widely demonstrated (see, e.g.

[36], [37], [15]) that translation invariant, over-complete

representations provide far better results than non-redundant

representations, such as critically-sampled wavelets. Among

them, those based on a multi-scale analysis of the image

(usually in a pyramid format), with orientation-selectivity

typically provide the best results. Examples are the steerable

pyramid [38], the curvelets [39] or the complex wavelet [40],

among others. However, it has also been observed that each

representation scheme fits best for processing certain image

features, but none seems superior in absolute terms (see,

e.g. [41]). Some authors have proposed to combine them

by averaging their results [42], [1], although more powerful

techniques are based on a non-linear basis selection using a

sparseness criterion [41]. A different approach is to use image

content adaptive basis functions such as wedgelets [43],

bandlets [44] or K-SVD overcomplete dictionaries [23],

among others. In this work, we have used two representations

exhibiting complementary features: the Full Steerable Pyramid

(FSP) [15] and a translation invariant version of the Haar

wavelet [1] that we have termed Translation Invariant Haar

Pyramid, TIHP.

1) The Full Steerable Pyramid: The FSP [15] is an

extension of Simoncelli and Freeman’s original steerable

pyramid [38] that splits the original high-pass residual into

the same number of orientations as the rest of the pyramid

levels. Some good properties of the FSP are that a) their

filters can be made highly selective in frequency and b) it

is flexible in its number of orientations. Its drawbacks are

coupled with these advantages: a) due to their high spectral

selectivity, its filters have a large spatial support and b)

due to the possibly very high number of subbands, it has

a relatively high computational cost (best denoising results

with BLS-GSM are reported for 8 orientations [15], which

results in a redundancy factor close to 19). According to these

features, FSP is more suitable for processing texture-rich

images.

2) Translation Invariant Haar Pyramid: The TIHP is an

overcomplete version of the Haar wavelet [45]. It is translation

invariant and it provides almost perfect reconstruction. For

a detailed description see Appendix A. In contrast to FSP,

TIHP’s kernels are very small, providing excellent spatial

localization. Its moderate redundancy factor (7) and reduced

computational cost, make it fast and easy to operate with.

TIHP’s main weaknesses are its poor oblique orientations

selectivity and the low spectral localization of its kernels.

These features made this representation suitable for images

with little texture, most of the energy being concentrated

along edges and lines (especially if oriented horizontally or

vertically).

B. Image statistics and Gaussian scale mixtures

Image statistics were first described in terms of its spectral

properties. Empirical studies showed that typical behavior

followed a fν−2 law, being ν a small correction factor [46],

Fig. 2. Autocovariance variability within Barbara TIHP ver-
tical band. We assume a 3 × 3 neighborhood and compute
each autocovariance patch using samples from the associated
bounded region.

[47]. Thus, usual approximations, fifty years ago, were to

consider images as samples from highly correlated Gaussian

random fields. However, in 1989 Mallat [3] showed with

empirical data that band-pass responses to typical images are

far from Gaussian: its marginal probability density functions

have a pronounced peak at zero, and heavy tails. This caused

the sparse behavior of the wavelet coefficients: only a small

proportion of them concentrates a high proportion of the total

energy, and this occurs not only for the whole representa-

tion, but also for every subband. The histograms reflect high

amplitude responses caused by most relevant localized image

features (such as edges, lines, corners, etc.), whereas spatially

dominant responses are typically small in amplitude, mainly

corresponding to low-contrast texture within homogeneous

patches in the scene. Therefore, the dominant source for non-

Gaussianity of image statistics is the inhomogeneity of the

image contents, which causes abrupt changes and localized

high amplitude responses at the objects’ boundaries. In this

way, it was definitely assessed the inadequacy of using global

Gaussian distributions to model typical images. In 1997,

Simoncelli [48] showed another critical observation about

image statistics: there is a strong coupling among neighbor

wavelet coefficients in amplitude. This revealed explicitly a

fundamental non-Gaussian joint statistical behavior that was

coherent with the marginal densities studied so far. This feature

has been exploited for image compression [49], [50], texture

modelling and synthesis [51], and image restoration (all the

predecessors of this work), among other applications. Two

years later, Wainwright and Simoncelli found that Gaussian

scale mixtures, GSM [12], was the proper mathematical tool

to capture both the sparseness and the amplitude coupling

of wavelet coefficients [14]. GSM’s have typically been used

as a local description for neighbor coefficients in a pyramid

(e.g. [15]), but they can also be used in a more powerful (but

also more complex) global statistical description of the image

in the transformed domain [52].

The GSM model in the wavelet domain [14] is able to

represent the observed strong local variance fluctuations in

neighborhoods of coefficients at the different spatial locations,

scales and orientations. This spatial inhomogeneity of the
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local variance explains, on its own, the two basic non-linear

statistical patterns mentioned above, namely, sparseness of the

responses and amplitude coupling among neighbors. The orig-

inal GSM model assumed a fixed normalized covariance for

all the neighborhoods at a given subband. However, it is clear

that typical images have different spatial correlation patterns at

different locations in a subband, even if the filtering associated

with each subband greatly reduces the spatial variability of

the local covariance in the image domain. We illustrate this in

Fig. 2, where, using a TIHP vertical subband of Barbara, we

have compared the local auto-covariance samples estimated

for the whole subband (assuming a 3 × 3 neighborhood)

with that computed from two different regions, both having

high-contrast features. In this case the corresponding auto-

covariance samples reveal significant differences in local ori-

entation. Note that the auto-covariance of the whole subband

reflects the average behavior, reducing the potential of a more

spatially selective signal/noise discrimination. Thus, to further

increase the realism and performance of our model, it is

justified to use a Gaussian scale mixture with a spatially

adaptive covariance for the local signal, that is, a space-variant

GSM.

Let’s consider an image decomposed into oriented subbands

at multiple scales. We denote as xj
c(n, m) the coefficient

corresponding to the subband j, centered at spatial location

(n, m). We denote as xj(n, m) a neighborhood of coefficients

clustered around this reference coefficient (see neighborhood

structure in section IV). We model these neighborhoods as

Gaussian scale mixtures (GSMs). A random vector x is a

GSM [12] if it can be expressed as the product of two

independent random variables:

x =
√

zu,

where z is a positive scalar and u is a zero-mean Gaussian vec-

tor. We model the desired space variant behavior by defining

C
j,(n,m)
u as the (space variant) covariance of uj(n, m). The

density of x is determined uniquely by pz(z) and C
j,(n,m)
u as

follows:

pj,(n,m)(x) =

∫

pj,(n,m)(x|z) pz(z) dz

=

∫ exp
(

−xT (zC
j,(n,m)
u )−1x/2

)

(2π)N/2|zCj,(n,m)
u |1/2

pz(z) dz,

where N is the dimensionality of x and u (the size of the

neighborhood). Note that xj(n, m) is conditionally Gaussian

for a given z. There are different possibilities for the mixing

density pz(z), which are described in [15]. As in the latter

work we have assumed it constant in log z for all the subbands

in the working range, which corresponds to a non-informative

Jeffrey’s prior.

III. IMAGE RESTORATION

A. Denoising using space-variant GSMs

We aim to solve the classical denoising problem, where

an image is corrupted by additive zero-mean independent

Gaussian noise of known (but arbitrary) spectral density. As

many other methods, we perform the denoising in the pyramid

domain and obtain the image estimation by reconstructing the

image from the estimated coefficients. The observation model

is, in this case:

y = x + w,

where y, x and w are vectors (in a lexicographic order)

of observation, original and noisy wavelet coefficients,

respectively.

1) Two-level adaptive denoising: Note that the model

in [15] used a fixed signal covariance at each subband,

providing only (fine) adaptation to the local variance (through

the GSM hidden multiplier). Here we include another level of

adaptation (coarse) by also letting the signal covariance to be

a function of the spatial position at each subband. Following

the GSM model presented in section II-B, we can express a

neighborhood of N noisy coefficients as2:

y =
√

zu + w,

where w is the zero mean Gaussian noise vector with covari-

ance matrix Cw. Note that Cw (unlike the signal covariance

Cu) is assumed constant for all neighborhoods within a

subband (but different for each subband). By GSM definition

z and u are independent, and by assumption w is independent

too. Hence the density of the observed neighborhood vector

conditioned on z is Gaussian (zero-mean), with covariance

Cy|z = zCu + Cw:

p(y|z) =
exp (−yT (zCu + Cw)−1y/2)

((2π)N |zCu + Cw|)1/2
. (1)

2) Parameter estimation: Given equation 1, signal and

noise covariances are needed. The neighborhood noise co-

variance, Cw, is computed at each subband by applying the

pyramidal representation to a deterministic function with the

same sample autocorrelation as the noise (for instance, a scaled

delta function for white noise). The elements of Cw are

computed by averaging the products of pairs of coefficients

over all the neighborhoods of the subband. Note that, unlike

noise, this deterministic function yields a result that is free

from random fluctuations.

The neighborhood observation covariance, Cy, can be com-

puted from Cy|z by taking the expectation over z:

Cy = E{Cy|z} = E{z}Cu + Cw.

We can set, without loss of generality, E{z} = 1 obtaining

Cy = Cu + Cw. To estimate the spatially variant signal

covariance Cu we assume that it changes smoothly over the

image, and, thus, that it may be sampled by estimating it into

a set of non-overlapping regions 3. We divide each subband

into B×B blocks, which are assumed uniform in covariance.

2For notational simplicity from here on we drop the superscript j and the
indices (n, m). Note that the following equations are the same as in [15], but
now Cu represents a local covariance, as it depends on the spatial position.

3We have empirically tested that the negligible performance improvement
achieved by overlapping the blocks does not pay off the large increase of
computation.
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For each of this blocks we estimate Cu by subtracting Cw

from the sample covariance of its coefficients, Cy.

3) Coefficient estimation: For each neighborhood y of

observed coefficients, we estimate xc, the reference coefficient,

at the center of the neighborhood. The Bayes least squares

(BLS) estimate can be expressed in this case [15] as

E{xc|y} =

∫ ∞

0

p(z|y) [E{x|y, z}]xc
dz.

Thus, the solution is written as the average of the Bayes

least squares estimate of xc when conditioned on z, weighted

by the posterior density of z, p(z|y). The advantage of the

GSM model is that the coefficient neighborhood vector x is

Gaussian when conditioned on z. This fact, coupled with the

assumption of additive Gaussian noise means that the expected

value inside the integral of (2) is simply a Wiener estimate:

E{x|y, z} = zCu(zCu + Cw)−1y.

We can simplify the dependence of this expression on z
by diagonalizing the matrix zCu + Cw (see [15]). Note that,

unlike in [15] now this diagonalization depends on the spatial

location (as Cu is a function of (n, m)), and, thus, it needs

to be computed once per each considered spatial location of

each subband.

B. Deblurring-by-Denoising using space-variant GSMs

We face the problem of image restoration, where prior to

noise addition, the signal has been degraded by (typically) a

low-pass filter. The observation is modelled as follows:

y(n, m) = h(n, m) ∗ x(n, m) + w0(n, m). (2)

where h is a convolution kernel (assumed known) applied to

the original image x, usually called Point Spread Function,

PSF. w0 is Gaussian noise of known (but arbitrary) power

spectral density. The same BLS-GSM local approach used

in [15] for image denoising was used in [35] for image

restoration. However, in this case, the fact of having a local

description of image and degradation caused problems when

trying to compensate for certain convolution kernels. Let’s

analyze this problem. Given a small neighborhood for the

local model we can only aspire to compensate for smoothly

varying filters in the frequency domain having no zeros

(so their regularized inverse filters will also be smooth in

frequency, and, as a consequence, small in the image domain).

A fixed absolute neighborhood size, thus, would very severely

limit the deconvolution power of the method. A better option

is to use a fixed neighborhood size for all the scales in a

multi-resolution representation. In such a way we are able

to represent larger effective neighborhoods as we go up in

the pyramid. We explain this with a 1D example in Fig 3.

Above we show the Fourier representation, in magnitude,

of a spatially limited signal, which corresponds to the same

neighborhood size, measured in number of coefficients, at

different scales. As we go up in the scale, the frequency

support becomes smaller, and, thus, more rapidly varying

responses are obtained. So, thanks to multi-resolution,

Fig. 3. Illustration of the restrictions on the shape in the
frequency domain of the filters that we can represent using
a local approach (fixed small neighborhood) with multi-
resolution. The same spatial limited signal is shown at three
different scales. This scheme allows us to represent (and to
compensate for) slowly varying filter responses at high fre-
quencies, with no zeros, and more rapidly varying frequency
responses at low frequencies. At the bottom two typical 1D
low-pass filters are shown for comparison, together with a
regularized version of their inverse filters. We can see that
the Gaussian kernel can be well compensated for using this
kind of local multi-resolution approach, whereas the uniform
kernel can not.

we can use (and compensate for, whenever there are no

zeros) smooth filters at high frequencies, less smooth at

medium frequencies, and rapidly varying at low frequencies.

Such constraint is compatible with many low-pass kernels

(e.g., Laplacian, Gaussian, etc., see bottom left of Fig. 3).

However, there are some practically important kernels, such

as those integrating uniformly in their spatial supports, whose

behavior in frequency is not flat at all at high frequencies,

but presenting strong oscillations around zero. Trying to

compensate for those zeros requires abrupt responses for

the regularized inverse filtering, which implies necessarily a

large spatial support (see bottom right of Fig. 3). Therefore,

uniform blurring cannot be properly treated by using this kind

of local multi-resolution schemes. Another drawback of the

referred method [35] is that, to work properly, it requires a

reasonably accurate estimation of the cross-covariance among

the original and the filtered image. This implies, in turn, the

need of estimating the power spectrum of the original image

(Px) from the degraded observation, which is a difficult
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problem. Using a general model for Px translates in this case

into a significant performance fall.

1) Deblurring-by-Denoising: In order to keep the advan-

tages of using a local model, while overcoming its drawbacks,

we use here the two-step scheme depicted in Fig. 1. This

deconvolution strategy was proposed more than ten years

ago [28], and it has been followed by many authors [29],

[30], [31], [32], [33]. The two steps are: a) Blur compensation

through global linear filtering, and, b) local denoising of the

blur-compensated observation.

We can express the observation model of Eq. 2 in the

frequency domain as

Y0(u, v) = H(u, v)X(u, v) + W0(u, v),

where4 H is the Fourier transform of the blur kernel h. Let G
be the filter applied in step 1 (here in after, prefilter). In order

to compute the optimal prefilter in MSE sense, Gopt, we must

couple both steps:

Gopt = arg min
G

{E{‖X − f(GY0)‖2}}, (3)

where f represents here the denoising operator (step 2), so

f(GY0) represents the output of the whole process. The

expectation inside Eq. 3 can be expressed as:

E{‖X − f(GY0)‖2}
= E{‖(X − GHX) + (GHX − f(GY0))‖2}
≃ E{‖(X − GHX)‖2} + E{‖(GHX − f(GY0))‖2},

where the r.h.s. of the latter approximation represents the

sum of the quadratic errors coming from the deblurring

and the denoising steps. This assumes that both errors are

approximately decorrelated, which is true, at least under usual

conditions5. Thus, to compute the optimal prefilter G we need

an explicit error model for the denoising step. To obtain such

an error model for a non-linear adaptive denoising method

is a major challenge, and, to the best of our knowledge, no

one has proposed such a model to this date. In the absence

of a globally optimal solution, next we follow a marginally

optimal procedure which is, nevertheless, efficient and robust.

Step 1: Global blur compensation

This step provides a blur compensated image by applying a

global filtering to the observed image. Instead of estimating

an optimal filter we reduce the degrees of freedom from Ix ×
Iy (image and filter size) to only one, corresponding to the

regularization parameter, α. We use, as in other works [29],

[30], [33] a generalized Wiener filter:

G =
H∗

|H|2 + α ·
(

Pw0

Px

) ,

where Pw0
and Px are the power spectral densities of

noise and signal respectively. This regularized inversion

compensates for the filter phase response. The balance

between noise and blur suppression is controlled by the

4For notational simplicity from here on we drop the frequency indices (u,v).
5We have empirically tested this decorrelation through simulations

Fig. 4. Optimality ratio of the regularization parameter α.
See text for details.

regularization parameter α. Low values yield in noisy

estimations (α = 0 is just an inverse filter 6) whereas high

values tend to suppress too much signal. The higher is α,

the higher is the overall linear distortion, but the lower it is,

the noisier is the estimation. α = 1 yields the Wiener filter,

which is a far too high value when using typical images and

non-linear denoising methods in the second step, as we show

in subsection III-B2.

Step 2: Local denoising

After step-1, the observation yields:

Y1 = GY0 = GHX + GW0 = HrX + W1.

Because G has been optimized in the first step, no further

attempt to correct the remaining linear distortion Hr = GH
is made, and what is left is to denoise the prefiltered image.

2) Prefiltering parameter estimation: Based on the typical

images power spectrum [46], [47], we have used a simple

model for Px, namely P̂x = k/f2, where f represents absolute

frequency and k an arbitrary constant. In order to force the

model to be consistent with the estimated original variance

(σ̂2
x = σ2

y0
− σ2

w0
), the following expression must hold:

σ̂2
x =

∫

f>0

|H(f)|2P̂xf df =

∫

f>0

|H(f)|2 k

f
df,

hence k is set to:

k = σ̂2
x/

∫

f>0

|H(f)|2/f df.

Despite its simplicity, this model is effective and, in contrast

to other methods (such as [35]), the associated Px estimation

error does not seem to have a critical impact on the overall

performance.

Unlike other authors [28], [30] that used a model to

choose the regularization parameter α, we have computed

it empirically, training with a set of standard test images

(House, Cameraman, Barbara, Boat, and Lena), using Gaus-

sian convolution kernels and white Gaussian noise of 0.4 to 3.2

6We point out that it is critical for the well behavior of the filter G and for
the final performance of the method to ensure that Pw0

is strictly positive on
the whole frequency plane. This is a practical concern when Pw0

is estimated
from real images.
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and 1 to 16 standard deviations, respectively (in a geometric

scale). For each combination of degradation parameters we

have computed the optimal α through golden search. We

also computed a quality decrease tolerance interval around

the optimal value, according to a maximum performance

decrease of 0.05 dB. Finally we chose the common α value

providing the highest proportion of experiments within the

quality tolerance intervals. Fig. 4 shows the optimality ratio

for each alpha value, showing a peak for α = 0.3, for which

value around 84% of the experiments provide quasi-optimal

results. We have also tested the method with very different

PSFs [2] (such as a uniform kernel), and the maximum of the

histogram was still very close to 0.3, although the percentage

dropped slightly (73% for the uniform kernel). We have also

tested that the results are fairly independent on the particular

images chosen for the training, by comparing these results

with those obtained by excluding each time the image to be

processed in the training set.

IV. IMPLEMENTATION

A. Boundary and block handling

As demonstrated in [15], careful boundary handling is

crucial for achieving a high denoising performance. In this

case it is even more critical than for [15], because of the

image partition into blocks. To illustrate this, let’s consider

a L × L GSM neighborhood in a Ns scales pyramid. In the

upper part of Fig. 5 we can see the corner of a subband at the

the highest scale in the pyramid (L = 3 and Ns = 4 in this

example). All GSM neighborhood with reference coefficients

at the boundaries of the subband are incomplete, lacking those

coefficients marked by the dashed lines. To solve this, the

observation is extended, by mirror reflection with no repetition,

2(Ns−1)(L−1)/2 pixels at each side, which yields the required

extra coefficients for the subbands at the top of the pyramid

(see dashed square in Fig. 5). When dealing with block-

based methods, the boundary artifacts are potentially stronger,

because of the larger proportion of boundary coefficients

compared to the whole image. Same as before, each block

must be extended (L−1)/2 coefficients at each side. The inner

blocks are enlarged with true signal, whereas boundary blocks

use the mirror extension made for the whole subband. This

produces a small overlapping between extended blocks. We

have tested that increasing this overlapping does not translate

into any significant improvement.

Another practical issue is the block arrangement within

subbands. In order to have complete blocks in all subbands

we should ensure that all the subbands have dimensions that

are integer multiples of the block size, i.e., Ix,y/(2sB) is

an integer vector for s = 0...Ns − 1, being Ix,y the image

dimension vector. As original image dimensions will not

comply, in general, with this requirement (see dark shaded

area in Fig. 5), they will generally require to be extended (by

mirror reflection) to also fit this constraint (see light shaded

areas in Fig. 5). In practice we apply a relaxed version of

this criterion, processing the whole subbands when they are

smaller than the chosen block size, so effectively reducing the

range of s for imposing this constraint.

Fig. 5: Multiresolution block fitting.

B. Denoising experiments

We have used the translation-invariant Haar pyramid (TIHP)

and the full steerable pyramid (FSP) as image representations.

We chose the number of scales to 4 and 5 for 256 × 256
and 512 × 512 images respectively. Note that the number of

orientations is fixed for the TIHP (3), whereas we used 8
orientations for the FSP (as in [15]). We used a 3 × 3 GSM

neighborhood around each coefficient (same as in [15]). In

case of FSP we also include a coefficient at the same location

and orientation at the next coarser scale (a parent). Different

block sizes B were tested for estimating the signal covariance

(B = 16, 32, 64, 128, F , where F means the whole image).

Both the GSM neighborhood and the block size, are the same

in all pyramid levels, except for the subbands at the top of

the pyramid, which have no parent, and those subbands with

a size smaller than the block.

C. Deblurring experiments

We have implemented the global prefiltering (step 1) in the

Fourier domain, using α = 0.3. For the denoising (step 2)

we have selected manually TIHP or FSP based on the relative

amount of texture in the image: FSP was chosen for texture-

rich and TIHP for poorly textured images. The number of

orientations were kept the same as for denoising whereas the

chosen number of scales was 4 for all images sizes. The GSM

neighborhood was also 3×3, but with no parent now in either

representations. The block size was fixed to 32 × 32.

D. Computational cost

As a guide, Table I shows the computation time (in seconds)

of our unoptimized denoising and deblurring Matlabr 7.0
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Representation FSP (8 Orientations) TIHP (3 Orientations)

Image size ⇒ 256 × 256 512 × 512 256 × 256 512 × 512

Algorithm 16 × 16
Denoising 108.51 1090.07 46.18 451.29

Deblurring 107.00 1091.39 45.39 447.77

Algorithm 32 × 32
Denoising 39.85 312.55 16.40 132.25

Deblurring 39.13 312.48 16.40 133.20

Algorithm 64 × 64
Denoising 22.65 119.36 8.76 52.19

Deblurring 22.49 122.26 9.22 54.27

Algorithm Original BLS-GSM

Denoising 16.14 62.92 7.22 32.44

Deblurring 17.26 61.11 7.50 29.66

TABLE I. Averaged computation time in seconds (10 trials)
comparing different images sizes, block sizes and represen-
tations for both methods. Four scales are used.

code, on Windows XP over a 3.0 GHz Intel Pentium IV

CPU with 1Gb RAM, for different representations, blocks and

images sizes. For comparison, we also include the computation

time of the original BLS-GSM at the bottom part of the

table. We extract three basic patterns: a) The cost scales

approximately inversely with B, roughly a factor of 3 when

we halve the block; b) The cost of the first step in the

deblurring algorithm is negligible when compared to the cost

of the second step; and c) The computation time is significantly

higher, but still comparable to that of original BLS-GSM. The

main difference (in cost terms) between the original BLS-

GSM and the proposed method is the increase of calls to

functions. The proposed method usually makes one call per

block, whereas the original BLS-GSM makes only one per

subband. Note also that the number of calls are multiplied by

a factor of 4 when we halve the block size. This has a big

impact due to using unoptimized interpret code in our current

implementation. Finally, the cost scales roughly with a factor

8 when we double the image size.

V. RESULTS AND DISCUSSION

We have used five standard test images to evaluate our algo-

rithms: Barbara, Lena, House, Cameraman and Peppers. We

have chosen Barbara and House for all visual comparisons,

as two examples with very different amount of texture.

A. Denoising

We selected four standard images: Barbara, Lena (both

512 × 512), House and Peppers (both 256 × 256). We have

degraded them by adding additive white Gaussian noise of

different standard deviations (σ = 5, 10, 15, 20, 25, 50).

1) Model Features: In Table II we present the results of

our proposed algorithm, in terms of peak signal-to-noise ratio

(PSNR), 10 log10(2552/σ2
e) in dB, where σ2

e is the mean

square error. We include results for the representations used,

TIHP and FSP, and compare our method (column labelled

Two-Level Adaptive, 2LA) with the standard version of

BLS-GSM [15] (labelled One-Level Adaptive, 1LA). We also

include the block size, B, for which the method provided the

best results. In Fig. 6 we show some visual results (cropped

and zoomed, for artifacts visibility) on Barbara and House

FSP TIHP Block

σw/ PSNR 1LA 2LA 1LA 2LA Size

Lena

5/ 34.15 38.49 38.55 38.19 38.34 32

10/ 28.13 35.60 35.66 35.23 35.38 64

15/ 24.61 33.90 33.96 33.50 33.65 64

20/ 22.11 32.67 32.71 32.25 32.40 64

25/ 20.17 31.69 31.72 31.26 31.40 64

50/ 14.15 28.61 28.61 28.21 28.21 F

Barbara

5/ 34.15 37.78 38.19 37.19 37.84 16

10/ 28.13 34.02 34.60 33.13 34.13 16

15/ 24.61 31.83 32.49 30.76 31.85 16

20/ 22.11 30.27 30.94 29.08 30.19 16

25/ 20.17 29.07 29.76 27.81 28.81 32

50/ 14.15 25.42 26.04 24.33 25.03 32

House

5/ 34.15 38.65 38.88 38.23 38.55 16

10/ 28.13 35.29 35.44 35.32 35.56 16

15/ 24.61 33.54 33.64 33.73 33.94 32

20/ 22.11 32.30 32.34 32.54 32.71 32

25/ 20.17 31.32 31.30 31.59 31.71 32

50/ 14.15 28.22 28.18 28.36 28.38 128

Peppers

5/ 34.15 37.30 37.43 37.57 37.72 16

10/ 28.13 33.74 33.81 34.06 34.24 16

15/ 24.61 31.7 31.72 32.02 32.18 16

20/ 22.11 30.27 30.24 30.57 30.67 16

25/ 20.17 29.17 29.10 29.45 29.50 16

50/ 14.15 25.94 25.94 26.11 26.11 F

TABLE II. Denoising performance expressed as Peak
Signal-to-Noise Ratio in dB. First column shows the noise
standard deviation and the corresponding PSNR. Next four
columns correspond to FSP and TIHP representations in
the one-level adaptive (1LA) and two-level adaptive (2LA)
version (highlighted the best of those 4 results). Last column
shows the block size used for the 2LA method, where F
means the full image.

images. We include results for TIHP and FSP (second and

third rows) and a comparison with standard BLS-GSM (by

columns). We now present a discussion along the followings

directions:

Comparison to standard BLS-GSM

The enhancement of the model proposed in section II-B,

provides us a general improvement of the results over

standard BLS-GSM method, both visually and in MSE sense.

Comparing the columns 1LA-2LA of Table II we can see a

significant performance increase. The new results are better

(with no exception) for both representation TIHP and FSP. As

we can see, the improvement is more important for images

having local spectral peaks (like Barbara), whereas for other

images (e.g. Lena) the improvement is more modest. This

behavior is related with the amount of covariance variability

among different regions in the image (see Fig. 2 for details).

We can compare visually the differences between our method

and the standard BLS-GSM, for Barbara and House images,

in the columns of Fig. 6. Note how artifacts on the roof line

of House disappear with the new method (second column).

For Barbara we can see a very strong improvement, the new

results having much less artifacts, and much more texture is
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Fig. 6. Visual comparison results on House and Barbara images cropped to 80 × 80 pixels (starting in pixel [1,78] and [1,221]
respectively, [column, row]). We used 32× 32 and 16× 16 block sizes for House and Barbara, respectively. From left to right and
top to bottom (House / Barbara PSNR in dB): Original; Noisy (σw = 20), (22.11/22.11); BLS-GSM [15] with FSP (32.30/30.27);
Our method with FSP (32.34/30.94); BLS-GSM [15] with TIHP (32.54/29.08); Our method with TIHP (32.71/30.19).

recovered.

Representation comparison: FSP vs. TIHP

As we can see in Table II, the results confirm what we

pointed out in section II-A: Different representations fit better

different images, depending on their contents. House and

Peppers, two poorly textured images, are best denoised using

the TIHP, whereas for Lena and Barbara the best results are

achieved with FSP. We can also see the significant difference

in visual terms, by inspecting House and Barbara images in

the second (FSP) and third (TIHP) rows of Fig. 6. In the case

of House, the visual difference is significant (less artifacts in

general), but not dramatic. But in the case of Barbara the

difference is striking: FSP provides a much better result than

the one obtained with TIHP. If one of them should be chosen

basing only on results (ignoring computational cost), under a

minimax risk criterion, FSP would be the choice.

Another issue is the different relative gains between

the new method when using TIHP vs. FSP, with respect

to the standard BLS-GSM. By comparing in Table II the

performance difference between our method and the original

BLS-GSM for each image and noise level (by rows), we see

that the improvement is bigger when we use the TIHP. The

main reason is that whereas FSP kernels are highly selective

in frequency, TIHP kernels are not, and hence there is more

spatial variability of the covariance inside each subband

in the later representation. This increases the difference

between local covariances and the global one (see details in

Section II-B). We have also tested the benefit of averaging

FSP and TIHP results (in the same way as other authors [42]),

obtaining an average increase of 0.15 dB over the best one.

Block size considerations

The optimal block size depends on the image contents in the

first place, but also on the noise level. The lower the signal-

to-noise ratio is, the larger becomes the optimal size. This

makes sense, as local signal covariance estimation stops being

reliable for small block sizes in the presence of high noise,

so covariance spatial adaptation no longer pays off. In Fig. 7

we show, for Barbara and House, a plot of PSNR (with range

adjusted between 0 and 1) when using B = 16, 32 and 128
vs. the noise standard deviation. Here one corresponds to the
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Fig. 7. PSNR vs. noise standard deviation for House and
Barbara images (adjusted between 0 and 1). Dashed black
line 16 × 16 block, solid line for 32 × 32 block and dot-
dashed gray one for 128× 128 one. Note that the ”optimal”
block size increases with the noise level.

best result obtained with the set of block sizes tested, and

zero to the worst result. We can state, as expected, that the

best result for low noise levels are achieved with the smallest

size block (B = 16), whereas B = 128 provides better

performance for high noise variance. Overall, it seems that a

finer adaptation (B = 16) provides better results than coarser

covariance adaptations. However, differences are, in general,

small, and, from a computational cost view, the smaller is the

block the higher becomes CPU time. As we can see in Fig. 7,

the curve associated to a block size of 32 is a good trade-off

in practice, providing best results for moderate noise levels

and not dramatically decreasing when in the extremes.

2) Comparison to state-of-the-art methods: In Fig. 8 we

show a visual comparison of our method and, what to the

best of our knowledge, are the three ones with highest PSNR

performance available in the literature [22], [21], [23]. For

House our method behaves the worst in PSNR terms, mainly

because the other methods recover the wall texture and ours

not. Its visual appearance is, nevertheless, convincing. For

instance, the roof line is sharper and less contaminated by

artifacts in our result than in [22]. For Barbara our method

behaves similarly to the other three, both visually and in MSE

terms. Fig. 9 shows, also for Barbara and House, a graphical

comparison, in terms of input - output PSNR, among our

method and the top five reporting the best results [21], [22],

[19], [20], [23]. Our method is represented by a solid line,

whereas the standard BLS-GSM is included as a reference

using a dash line. As we can see, our method behaves competi-

tively to current state-of-the-art [21], especially considering its

Fig. 9. PSNR output vs. PSNR input, in dB. We use
TIHP for House and FSP for Barbara. Our results, for
σw = {5, 10, 15, 20, 25, 50}, are in Table II. We compare
to three state-of-the-art methods: Diamonds for [21]; Crosses
for [22]; Circles for [23]; Down triangles for [15] and Squares
for our new method. The latter two results are represented
with dashed and solid lines respectively.

NOISE
σ 1 2 4 8 16

B 0.4 2.86 1.86 2.81 5.03 7.63
L 0.8 6.65 4.84 3.73 3.92 5.85
U 1.6 3.87 3.18 2.72 3.01 4.73
R 3.2 3.21 2.85 2.56 2.66 3.87

TABLE III. Averaged results as Increment of Signal-to-
Noise Ratio (ISNR), in dB, of the training data set (see
sec. III-B2 for details).

moderate computational cost. We also refer the reader to [53]

for a recent perceptual comparison of state-of-the-art denoising

methods which ranked a preliminary version of this method

among the top three.

B. Deblurring

In Table III we show averaged Increment in Signal-to-Noise

Ratio (ISNR) results of applying our deblurring method to

the training data set (see Section III-B2 for details). As we

can see, the results exhibit a significant improvement for the

whole range of tested blur and noise degradations. In Table IV

we show the results for six deconvolutions experiments with

House, Cameraman (using THP) and Barbara (using FSP)

comparing our method with the previous BLS-GSM restora-

tion [35], and with those which, to the best of our knowledge,

represent the current state-of-the-art [33], [24]. In the first

two columns we have replicated the experiments from [32].

The kernel used (PSF1) is hi,j = (1 + i2 + j2)−1, for

i, j = −7...7. The next column reproduces the experiment

in [28], [30], which uses a 9 × 9 uniform kernel (PSF2).

The fourth column uses a 5 × 5 separable kernel (PSF3)

with coefficients [1, 4, 6, 4, 1]/16 as in [54]. The last two

columns use Gaussian kernels with 1.6 and 0.4 standard

deviation (PSF4 and PSF5 respectively). The noise standard

deviations are shown in the second row of the table. The

results show that [33] provides the best results in a 44.4%
of the experiments, [24]+[25] in a 16.7% and the proposed
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Fig. 8. Visual comparison results on House and Barbara images cropped to 80 × 80 pixels (starting in pixel [1,78] and [1,221]
respectively, [column, row]). Initial PSNR 28.13 dB in both cases (σw = 10). From left to right and top to bottom (House / Barbara
PSNR): Results for [22] (35.98/33.48); Results for [21] (36.71/34.98); Results for [23] (35.94/34.42); Our results using a 16 × 16
block with TIHP/FSP representation (35.56/34.60).

Blur PSF 1 PSF 2 PSF 3 PSF 4 PSF 5

σw ⇒
√

2
√

8
√

0.308 7 2 8

HOUSE

PSNR 25.62 25.47 24.11 28.10 27.83 30.01

[24] 8.47 6.63 10.71 4.22 4.49 4.76

[35] 8.46 6.93 -0.44 4.37 4.34 5.98

[33] 9.05 7.64 10.71 5.10 4.03 6.13

Ours 8.64 7.03 9.04 4.30 4.11 6.02

CAMERAMAN

PSNR 22.23 22.16 20.77 24.63 23.36 29.83

[24] 7.46 5.24 8.16 2.84 3.18 3.65

[25] 6.93 4.88 7.59 2.94 -/- -/-

[26] 7.40 5.15 8.10 2.85 -/- -/-

[35] 6.84 5.29 -1.61 2.56 2.83 3.81

[33] 8.25 6.34 8.57 2.56 3.05 5.15

Ours 7.45 5.55 7.33 2.73 3.25 4.19

BARBARA

PSNR 23.33 23.26 22.49 24.21 23.77 29.77

[24] 3.76 1.99 3.98 0.9 0.92 2.55

[35] 5.70 3.28 -0.27 1.44 0.95 4.91

[33] 5.73 3.01 4.88 1.58 0.91 4.04

Ours 6.85 3.80 5.07 1.94 1.36 5.27

TABLE IV. Performance comparison with other state of the
art methods in terms of Increment of Signal-to-Noise ratio
(ISNR), in dB. First row shows the blurring kernel used
(see text for details), and the second denotes noise standard
deviation. Best results are highlighted.

method in a 38.9% of the experiments. Comparing with the

BLS-GSM restoration original method [35], the new method

provides a very significant improvement for all experiments,

especially for the uniform degradation (PSF2), where the local

BLS-GSM approach completely fails (due to reasons explained

in section III-B). Compared to [33], note that, in general, our

method achieves better results with Barbara, and worse with

Fig. 11. Result of the method applied to a real degradation.

House and Cameraman. Being [33] a two-step method with a

similar first global deconvolution step, the different behavior

mainly comes from the denosing step [22] (based on the SA-

DCT transform). This method is specially fitted to preserve

sharp edges and contours (present in House and Cameraman),

whereas it is not as powerful as ours to characterize local

spectra. This translates into a poorer performance when deal-

ing with highly texturized images (as Barbara).

In Fig. 10 we show a visual comparison among our method,

the state-of-the-art methods [24], [33] and BLS-GSM standard

restoration [35]. For Barbara, the degradation used is PSF1

with σ =
√

2. In this case our method provides the best result,

both visually and in PSNR terms. Particularly, the diagonal

lines of the table cloth are better recovered by our method than

by our competitors. For the House image we have used PSF2

(uniform kernel) with σ =
√

0.308. Here we can see how the

previous BLS-GSM restoration method [35] completely fails,

whereas the new version provides results competitive to the

state-of-the-art [24], [33].

Finally, we also tried our deblurring algorithm with real

degradations. We restored a micro-display image captured
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Fig. 10. Visual comparison results on House and Barbara images cropped to 80 × 80 pixels (starting in pixel [1,78] and [1,221]
respectively, [column, row]). We include PSNR values, in dB (in agreement with ISNR values of Table IV). From left to right and
top to bottom (House / Barbara): Original; Degraded imaged (24.11 / 23.33) using PSF2 & σw =

√
0.308 for House and PSF1

& σw =
√

2 for Barbara ; Results for [33] (34.76/29.05); Results for [24] (34.76/27.09); Results of standard BLS-GSM [35] with
FSP (23.68/29.02); Our new method (House with TIHP, Barbara with FSP) (33.11/30.17).

under controlled laboratory conditions. We used a tilted lens

to produce severe blur and the noise was reduced before

processing by averaging 30 captures. In Figure 11 we show

the degraded image and the result of our method using an

estimation of the degradation parameters. As we can see the

method behaves very well, substantially improving the visible

detail in the image.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented two methods, for image

denoising and deblurring. The denoising algorithm, based on

space variant Gaussian scale mixtures, is applicable to any

overcomplete wavelet representation. Although the proposed

model is just a conceptually simple extension of the one

presented in [15], it provides a significant improvement in

performance terms, still with a moderate computational cost.

We have shown that the reason of the improvement is that, by

modelling the local covariance spatial variability, it provides a

more realistic model and a higher noise filtering selectivity.

The improvement depends on both the image content and

the representation used. We have tested two complementary

representations concluding that one of them is more suitable

for textured images (FSP), whereas the other is better for

processing images for which texture is not so relevant (TIHP).

Our deblurring method is based on a 2-step decoupling

scheme: linear global blur compensation and non-linear local

non-white noise removal. This strategy provides flexibility to

use any denoising method able to deal with non-white Gaus-

sian noise, as the one presented here. The resulting algorithm

overcomes the severe limitations imposed by local approaches

to image deconvolution while keeping their advantages. In

addition, and in contrast to some state-of-the-art methods,

it provides a robust and simple solution to the problem of

modelling and estimating the power spectral of the original

image, avoiding the necessity of estimating it from a first

estimation of the original image (re-estimation).

As shown, the proposed empirical link between the two

steps of the method (parameter setup) is suboptimal. It would

have been much more elegant to obtain the absolute optimal

prefilter by using an error model of the denoising method.
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Unfortunately, that is a difficult goal, given the non-linear char-

acter of high performance denoising methods. Nevertheless,

the proposed empirical approach for choosing the prefiltering

parameters is simple and robust: we have tested that the same

prefiltering parameters can be used for different degradations

without provoking a serious performance fall. This strategy is

also very flexible, because the parameters can be easily tuned

to any kind of degradation by training with kernels of the

desired shape. All these features, coupled with the moderated

(and image-content independent) computational cost, make

this method suitable to restore images in real situations [55].

Summarizing, the solutions presented here are model-based,

with few ad-hoc components that do not compromise a general

conceptual coherence. Despite their simplicity, they provide

state-of-the-art performance, both in denoising (slightly worse

results than the best published ones) and deblurring (similar

to the best ones on average).

A conceptually simple extension of the application of the

methods presented here is to associate each spatial location

with a different blurring kernel and/or with a different noise

power spectral density. That would allow us to restore images

with spatially variant degradations. This is interesting when

dealing with low-quality optics, which can not be accurately

modelled as convolutions, because they are not translation

invariant. Although this implies some technical challenges

(mainly related to block’s boundary handling) we believe that

it is a feasible goal, with a potential impact for the imaging

industry.

We believe that BLS-GSM based models still have a strong

potential for image processing. This work can be seen as a

first exploration stage, with promising results, towards a more

ambitious goal, namely the generalization of the GSM model

to include more than one covariance matrix simultaneously

for each subband. This new model, a ”mixture of Gaussian

scale mixtures”, should be able to adapt to different textures

in different spatial positions with no spatial constraints.
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APPENDIX A

TRANSLATION INVARIANT HAAR PYRAMID

We present an overcomplete version of the Haar orthogonal

wavelet [45], which is translation invariant, due to the lack

of aliasing, and which provides almost perfect reconstruction.

Basically it is obtained by decimating its à trous [56] subbands

from the third scale on, counting upwards. For simplicity, we

start with the 1D case, and after that, the 2D extension is

described.

In the top part of Table V are the descriptions (in spatial

and frequency domains) of the 1D representation building

functions. Note how the samples at the origin are underlined.

ONE DIMENSIONAL ANALYSIS FILTERS

Building functions

Spatial Domain Fourier Domain

φ1 = [1, 1]/2 Φ1(ω) = (1 + e−j2πω)/2
ψ1 = [1,−1]/2 Ψ1(ω) = (1 − e−j2πω)/2
φ2 = [1, 0, 1]/2 Φ2(ω) = cos(2πω)
ψ2 = [1, 0,−1]/2 Ψ2(ω) = j sin(2πω)

ONE DIMENSIONAL RESPONSES

First scale Second scale

H1(ω) = Ψ1(ω) H2(ω) = Φ1(ω)Ψ2(ω)
L1(ω) = Φ1(ω) L2(ω) = Φ1(ω)Φ2(ω)

nth scale

Hn(ω) = Ln−1(ω)j sin(2n−1πw), (ω ≤ 21−n)
Ln(ω) = Ln−1(ω) cos(2n−1πw), (ω ≤ 21−n)

TIHP ANALYSIS FILTERS

Av(u, v) = Φ1(u)Ψ1(v) Bv(u, v) = Φ2(u)Ψ2(v)
Ah(u, v) = Ψ1(u)Φ1(v) Bh(u, v) = Ψ2(u)Φ2(v)
Ad(u, v) = Ψ1(u)Ψ1(v) Bd(u, v) = Ψ2(u)Ψ2(v)
Al(u, v) = Φ1(u)Φ1(v) Bl(u, v) = Φ2(u)Φ2(v)

TABLE V. Top: One dimensional building functions, in
spatial and frequency domain. The underlined coefficient
represents the one at the origin. Middle: Description of the
1D representation responses. Bottom: TIHP analysis filters
in terms of external products of the 1D building functions.
The synthesis filters are their complex conjugates.

The middle part of Table V shows the descriptions of the

scale responses in terms of the building functions. In Fig. 12

it is shown the responses (module) of a 4 scale case. The

first two scales (two upper panels) coincide with those of

the à trous representation (full resolution, no decimation).

Further scales are decimated each time by a factor of 2,

after applying an ideal low-pass filters to avoid intra-subband

aliasing, as shown in the bottom half of Fig. 12. Dashed

lines depict the corresponding à trous response. The vertical

dashed lines indicate the cut-off frequency of the ideal low

pass filter. Frequencies on the right side are removed, thus

perfect reconstruction is no longer possible. This is not as

damaging as it may seem, because image content is usually

concentrated at low frequencies (e.g., we obtain reconstruction

with PSNR of 59.59 dB for Lena and 44.60 dB for a 512×512
white uniform noise in [0 255], both with 5 scales). Also,

note that the cut-off frequencies coincide with a zero filter

response in all cases, and also with a zero derivative for the

high-pass filters. Thus, discontinuities are avoided and so they

are most of the artifacts caused by them (ringing, poor spatial

localization, etc.).

The extension to 2D is done following the system diagram

depicted in Fig. 13. The filters (A(u, v) and B(u, v) boxes)

are built by properly doing external products of the 1D
filters, as shown at the bottom of Table V. The pyramid is

implemented by recursively splitting the image into a set of

oriented subbands (vertical, horizontal and double diagonal)

and a low pass band, which is subsampled by a factor of two

along both axes. The reconstruction is achieved hierarchically

by convolving each subband with its complex-conjugated filter,

and adding the outputs.
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