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ABSTRACT

In this work, we propose a Bayesian structured sparse coding
(BSSC) framework containing a nonlocal extension of Gaussian
scale mixture (GSM) model by exploiting structured sparsity. It is
shown that the variances of sparse coefficients (the field of Gaussian
scalars) - if treated as a latent variable - can be jointly estimated
along with the unknown sparse coefficients via the the method of
alternative optimization. When applied to image restoration, BSSC
leads to closed-form solutions involving iterative shrinkage/filtering
and therefore admits computationally efficient implementation. Our
experimental results have shown that BSSC-based image restoration
often delivers reconstructed images with higher subjective/objective
qualities than other competing approaches including IDD-BM3D
and NCSR.

Index Terms— Bayesian sparse coding, Gaussian scale mix-
ture, structured sparsity, alternative minimization, variational image
restoration.

I. INTRODUCTION

Recently, a class of nonlocal image restoration techniques [2],
[3], [4], [5], [6] have attracted increasingly more attention. The
key motivation behind lies in the observation that many important
image structures in natural images including edges and textures
are characterized by the abundance of self-repeating patterns. Such
observation has led to the formulation of so-called structured/group
sparsity [7] (a.k.a. simultaneous sparse coding [4]). Our own
recent works [5], [6] has more clearly verified the potential of
exploiting structured sparsity in image restoration. However, a
fundamental question remains open: how to achieve (local) spatial
adaptation within the framework of nonlocal image restoration?
This question is related to the issue of regularization parameter in
a variational setting or shape parameter in a Bayesian one; but the
issue becomes even more thorny when it is tangled with nonlocal
regularization/sparsity. To the best of our knowledge, how to tune
those parameters in a principled manner remains an open problem.

In this work, we propose a new image representation named
Bayesian structured sparse coding (BSSC) that connects existing
Gaussian scale mixture (GSM) model [1] with structured sparsity.
Our idea is to treat the variance field - i.e., the collection of
Gaussian scalars - as a latent variable and resort to nonlocal similar
patches for a robust estimation. Similar to Field-of-GSM [8] and
Expected Patch Log Likelihood (EPLL) [9], our formulation admits
a clean Bayesian treatment of hidden parameters; but unlike those
previous works, we are able to obtain closed-form solutions to
the proposed BSSC problem under a mild assumption with the

dictionary being unitary. Our solution to BSSC can be viewed as
an exemplar of demonstrating a new variational approach toward
empirical Bayesian inference with parametric models. By contrast
to existing variational Bayesian approaches, the derived BSCC-
based image restoration algorithms admits computationally efficient
implementations. More importantly, BSSC-based image restoration
is capable of both achieving local spatial adaptation and exploiting
nonlocal dependencies within an image. Our experimental results
have shown that BSSC can deliver restored images whose sub-
jective/objective qualities are often higher than other competing
methods. Visual quality improvements are attributed to better
preservation of edge sharpness and suppression of undesirable
artifacts for some images.

II. BAYESIAN STRUCTURED SPARSE CODING:
CONNECTING GAUSSIAN SCALE MIXTURE WITH
STRUCTURED SPARSITY

GSM decomposes coefficient vector o into the product of a
Gaussian vector 3 and a hidden scalar multiplier 0 -i.e., a; = 6;0;.
As articulated in [1], the sparsity related to coefficients o can
now be characterized by the prior density P(6) specified for the
multiplier 8. More specifically, one can formulate the following
maximum a posterior (MAP) estimation problem for the target
signal £ = Da +n (n ~ N(0,02) is a term characterizing
the approximation errors of sparse coding)

(e, 0) = argmaxlogP (x|, 0) P(cx, 0) "
= argmax logP(x|a) + logP(xx|@) + logP(6).
where P(x|c) is the likelihood term observing standard Gaussian
with variance 2. Inspired by our previous work NCSR [14], we
propose to introduce a biased-mean term to the GSM model - that
is, P(c|@) can be written as

1 (o — a)? ”

where p; is the biased mean for o (its estimation will be elaborated
later).

P(ci|0s) =

The adoption of GSM model allows us to generalize the sparsity
from statistical modeling of sparse coefficients o to the specifica-

tion of prior density P(0). It has been suggested in the literature
that noninformative prior P(6;) = % - a.k.a. Jeffrey’s prior - is

often the favorable choice. Therefore, we have also adopted this



option in this work, which translates Eq. (1) into

(,0) = argmln 212 ||l — Da||3

+Zlog€\/7 —|—E 292 —|—Zlog0

where we have used P(0) = >, P(f;) under the assumption with
Jeffrey’s prior and D € R™ ¥ denotes the dictionary (K is the
size of the dictionary). The above equation can be further simplified
into the following Bayesian sparse coding (BSC) problem

(0 — pi)®
62 '

3

(et,0) = argmin || — Da|3 + 4021l0g0 + o Z
«a,0 B
“
Such BSC formulation of GSM model is appealing because it
allows us to further exploit the power of GSM by connecting it
with structured sparsity as we will detail next.

Unlike [1] that treats the multiplier as a hidden variable and
cancel it out through integration (i.e., the derivation of Bayes Least-
Square estimate), we explicitly use the field of Gaussian scalar
multiplier to characterize the variability and dependencies among
local variance. In the matrix form, we have &« = A3 and p = A~y
where A = diag(6;) € R**¥ is a diagonal matrix characterizing
the variance field for a chosen image patch. From a collection
of m similar patches, we have adopted the following strategy for

estimating p
n = Z wio, (5)
j=1

where w; ~ exp(—||x — x;||3/h)) is the weighting coefficient
based on patch similarity. It follows from p = A~y that

y=Y wih ey =) wp, ©)
j=1 j=1

Accordingly, Bayesian sparse coding problem in Eq. (3) can be
rewritten as

(8,0) = ar%lgin ||z — DABI|3 + 402logh + o2 |18 — 5. (7)

which can be solved by alternatively minimizing the objective
functional with respect to 3 and 6.

A key observation behind our approach is that for a collection of
similar patches, their corresponding sparse coefficients a’s should
be characterized by the same prior - i.e., the density function with
the same @ and p. Therefore, if one consider the simultaneous
Bayesian sparse coding of GSM models for the collection of m
similar patches, a structured/group sparsity based extension of Eq.
(7) can be written as

(B,0) = ar%rr;in |IX — DA||% + 4021098 + o ||B —T||7. (8)

where X = [z1,...,@m,] denotes the collection of m similar
patches', A = AB is the group representation of GSM model for
sparse coefficients and their corresponding first-order and second-
order statistics are characterized by T’ = [v1, ..., ¥m] € R**™ and
B = [81,..., Bm] € R¥*™ respectively. When compared against

I'Throughout this paper, we will use subscript/superscript to denote
column/row vectors of a matrix respectively.

previous formulation on structured sparsity (or simultaneous sparse
coding [4]), one can see both dictionary learning and statistical
modeling of sparse coefficients are unified within the framework of
Eq. (8). We call such new formulation Bayesian structured sparse
coding (BSSC) and propose to solve it via alternating minimization
as follows.

A. Solving 0 for a fixed B

For a fixed B, the first subproblem simply becomes

0 = argmin || X — DAB||% + 40210g#. )
0

When the dictionary D is unitary (e.g., PCA or DCT basis)?,
the above optimization can be further simplified by the energy
conservation property of unitary matrices. Note that

IX ~ DABJ[7 = [[D(A ~ AB)||z = [|A — ABJ|[z.  (10)

where we have used X = DA. If one substitutes Eq. (10) into Eq.
(9), it becomes

0 = argmin ||A — AB||% + 40210g#. (11)
o

Although log@ is non-convex, we note that log8 = Zfil logb;
(due to P(@) =[], P(6:)). Therefore one can approximate f(6) =
log@ by its first-order Taylor expansion - that is

FOM) = f(6W)+ < VF(O"),0 -0 > (12

where 0(k) denotes the solution obtained for the k-th iteration.
Since the first-order derivative of logf is %, one can approximate
Eq. (11) by

6 = argmin ||A — AB|[} + 402 ||[W8)|;. (13)
0

where W = diag( ﬁ) (e is a small positive) is the reweighting
matrix that is often used in iterative reweighted /;-minimization
[10]. Therefore, our derivation here can also be viewed as a
Bayesian interpretation of reweighting strategy - it is connected
with the Jeffrey’s prior we have adopted. Indeed, the optimization
problem in the form of Eq. (13) has been widely studied in
the literature and can be efficiently solved by iterative shrinkage
algorithm as we will show next.

Since both A and W are diagonal, we can decompose the
minimization problem in Eq. (13) into K parallel scalar optimiza-
tion problems which admit highly efficient implementation. Let
a’ € RY™™ and B° € R'™™ denote the i-th row of matrix
A € R"*™ and B € R"*™. Eq. (13) can be rewritten as

= argmln Z [[(ex

which can be conveniently decomposed into a sequence of inde-
pendent scalar optimization problems

)9||2+40n20 - (14

0" = argmin||(a’)” —

) 0;
(B3 + 407 —~—,  (15)
i ’ Gfk) —|— €
Now one can see this is standard /2-l; optimization problem whose
closed-form solution is given by

oY = W[ﬁi(aiﬁ -]+, (16)

2In this case, we have n = K which is the same as the size of an image
patch.
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where the threshold 7 = 9;4’“7)-% and [-]+ denotes the soft shrinkage

operator.

B. Solving B for a fixed 6

The second subproblem is in fact easier to solve than the first
one. It takes the following form

B = argmin ||Y — DAB||% + 02||B — || 7. a7

Since both terms are l2, the closed-form solution to Eq. (17) is
essentially a Wiener filtering

B=D"D+s1) (DY +1). (18)

where D = DA. Note that when D is orthogonal, Eq. (18) can be
further simplified into

B=(A"A+o2I) (ATA +T). (19)

where ATA + 021 is a diagonal matrix and therefore its inverse
can be easily computed. The reconstruction of image data matrix
X is then obtained by

X = DAB. (20)

Putting things together, a complete image restoration based on
BSSC can be summarized as follows.

Algorithm 1. BSSC-based Image Restoration
e Initialization:

(a) set the initial estimate as & = y for image denoising
and deblurring; or initialize & by bicubic interpolation for
image super-resolution;

(b) set initial regularization parameters A and &;

e Outer loop: Iterate on k = 1,2, | kmax

(a) Landweber iteration: &**1/2 = #® 1 sHT (y —
Hﬁ:(k));

(b) Image-to-patch transformation: obtain data matrices
{X:}’s for each exemplar (though kNN search);

(c) Inner loop: iterate on | = 1,2, ...L;

(I) estimated biased means g using Eq. (5);
(II) update 6,7 for fixed B; using Eq. (16);
(IIT) update B, for fixed 6; using Eq. (19);
(IV) Reconstruct X;’s from 8; and B, using Eq. (20);

(d) Patch-to-image transformation: obtain reconstructed

&Y from {X;}’s;
e Output: &Y.

We note that the above algorithm can lead to a variety of imple-
mentations depending the choice of degradation matrix H. When
H is the identity matrix, the Landweber iteration in Algorithm 1 de-
generates into an iterative regularization technique useful for image
denoising [?]. When H is a reduced blur matrix, Eq. (??) becomes
the standard formulation of image super-resolution problem. When
compared against our previous work NCSR [14], the key novelty of
the new BSSC algorithm lies in the implementation of inner loop
- the core problem as formulated in Eq. (?? attempts to achieve
simultaneous spatially local adaptation and nonlocal robustness.
If the morale behind the story of NCSR (as well as many other
nonlocal image models developed in the literature including BM3D
and IDD-BM3D) is the advocate the importance of nonlocal self-
similarity around edges and textures; the new message we attempt
to convey through this work is that locality still matters. The
capability of capturing rapidly-changing statistics in natural images

- e.g., through the use of GSM - can make patch-based nonlocal

image models even more powerful.
III. EXPERIMENTAL RESULTS

We have compared BSSC-based image deblurring and three
other competing approaches in the literature: constrained total
variation image deblurring (denoted by FISTA), Iterative Decoupled
Deblurring BM3D (IDD-BM3D) [13] and nonlocally centralized
sparse representation (NCSR) denoising [14]. Table I includes the
PSNR/SSIM comparison results for a collection of 11 images
among four competing methods. It can be observed that BSSC
clearly outperforms all other three for 10 out of 11 images (the
only exception is the house image for which IDD-BM3D slightly
outperforms BSSC by 0.13dB). The gains are mostly impres-
sive for butter fly and barbara images which contain abundant
strong edges or textures. One possible explanation is that BSSC
is capable of striking a better tradeoff between exploiting local
and nonlocal dependencies within those images. Fig. 1 show the
visual comparison of deblurring results for a test image barbara
respectively. Since this image contains abundant textures, visual
quality improvements achieved by BSSC are readily observable.
Such experimental findings clearly suggest that the BSSC model
is a stronger prior for the class of photographic images containing
strong edges/textures.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a new framework named Bayesian
structured sparse coding that connects structured sparsity with
Gaussian scale mixture. image restoration. BSSC can be viewed
as the unification of two previous models: GSM and NCSR - it
attempts to characterize both the biased-mean (like in NCSR) and
spatially-varying variance (like in GSM) of sparse coefficients. It
is shown that the original BSSC problem, thanks to the power of
alternating direction method of multipliers - can be decomposed
into two subproblems both of which admit closed-form solutions.
When applied to image restoration, BSSC leads to computationally
efficient algorithms involving iterative shrinkage/filtering only. Our
solution to BSSC can be viewed as an exemplar of demonstrating a
new variational approach toward empirical Bayesian inference with
parametric models. Extensive experimental results have shown that
BSSC can both preserve the sharpness of edges and suppress unde-
sirable artifacts more effectively than other competing approaches.

In addition to image restoration, BSSC can also be further studied
along the line of dictionary learning. In our current implementation,
we use PCA basis for its facilitating the derivation of analytical
solutions. For non-unitary dictionary, we can solve the BSSC
problem by reducing it to iterative reweighted [i-minimization
problem [10]. It is also possible to incorporate dictionary D into
the optimization problem formulated in Eq. (3); and from this
perspective, we can view BSSD as a Bayesian generalization of
K-SVD algorithm. Joint optimization of dictionary and sparse
coefficients is a more difficult problem and deserves more study.
Finally, it is interesting to explore the relationship of BSSC to
recent advances in Bayesian nonparametric inference [12],[11].
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Table I. PSNR(dB) and SSIM results of the deblurred images.
| || 9x9 uniform blur, o, = v/2

Images Butterfly | Boats C. Man | Starfish | Parrot Lena Barbara | Peppers | Leaves | House | Average
FISTA [15] 28.37 29.04 26.82 27.75 29.11 28.33 25.75 28.43 26.49 31.99 28.21
0.9058 0.8355 | 0.8278 0.8200 | 0.8750 | 0.8274 | 0.7440 0.8134 | 0.9023 | 0.8490 | 0.8400
29.21 31.20 28.56 29.48 31.06 29.70 27.98 29.62 29.38 34.44 30.06
0.9216 0.8820 | 0.8580 0.8640 | 0.9041 | 0.8654 | 0.8225 0.8422 | 0.9418 | 0.8786 | 0.8780
29.68 31.08 28.62 30.28 31.95 29.96 28.10 29.66 29.98 3431 30.36
0.9273 0.8810 | 0.8574 0.8807 | 0.9103 | 0.8676 | 0.8255 0.8402 | 0.9485 | 0.8755 | 0.8814
30.45 31.36 28.83 30.58 32.05 30.11 28.78 29.79 30.83 34.31 30.71
0.9377 0.8918 | 0.8669 0.8862 | 0.9145 | 0.8783 | 0.8465 0.8491 | 0.9582 | 0.8748 | 0.8904

| || Gaussian blur with standard deviation 1.6, o, = /2 |

30.36 29.36 26.80 29.65 31.23 29.47 25.03 29.42 29.33 31.50 29.22
0.9374 | 0.8509 | 0.8241 0.8878 | 0.9066 | 0.8537 | 0.7377 0.8349 | 0.9480 | 0.8254 | 0.8606
30.73 31.68 28.17 31.66 32.89 31.45 27.19 29.99 31.40 34.08 30.92
0.9469 | 0.9036 | 0.8705 | 0.9156 | 0.9319 | 0.9103 | 0.8231 0.8806 | 0.9639 | 0.8820 | 0.9029
30.84 31.49 28.34 32.27 33.39 31.26 2791 30.16 31.57 33.63 31.09
0.9476 | 0.8968 | 0.8591 0.9229 | 0.9354 | 0.9009 | 0.8304 0.8704 | 0.9648 | 0.8696 | 0.8998
Proposed BSSC 31.12 31.78 28.40 32.26 33.30 31.52 28.42 30.18 32.02 34.65 31.37
0.9522 | 0.9054 | 0.8719 | 0.9245 | 0.9377 | 0.9109 | 0.8462 0.8770 | 0.9693 | 0.8834 | 0.9079

IDD-BM3D [13]

NCSR [14]

Proposed BSSC

FISTA [15]

IDD-BM3D [13]

NCSR [14]

Fig. 1. Deblurring performance comparison on the Barbara image. (a) Original image; (b) Noisy and blurred image (Gaussian blur,
on = /2); deblurred images by (c) FISTA [15] (PSNR=25.03, SSIM=0.7377); (d) IDD-BM3D [13] (PSNR=27.19 dB, SSIM=0.8231);
(e) NCSR [14] (PSNR=27.91 dB, SSIM=0.8304); (f) Proposed BSSC (PSNR=28.42, SSIM=0.8462).
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