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Abstract In image processing, sparse coding has been

known to be relevant to both variational and Bayesian

approaches. The regularization parameter in variational

image restoration is intrinsically connected with the shape

parameter of sparse coefficients’ distribution in Bayesian

methods. How to set those parameters in a principled yet

spatially adaptive fashion turns out to be a challenging prob-

lem especially for the class of nonlocal image models. In

this work, we propose a structured sparse coding framework

to address this issue—more specifically, a nonlocal exten-

sion of Gaussian scale mixture (GSM) model is developed

using simultaneous sparse coding (SSC) and its applications

into image restoration are explored. It is shown that the vari-

ances of sparse coefficients (the field of scalar multipliers of

Gaussians)—if treated as a latent variable—can be jointly

estimated along with the unknown sparse coefficients via the

method of alternating optimization. When applied to image

restoration, our experimental results have shown that the pro-

posed SSC–GSM technique can both preserve the sharpness
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of edges and suppress undesirable artifacts. Thanks to its

capability of achieving a better spatial adaptation, SSC–GSM

based image restoration often delivers reconstructed images

with higher subjective/objective qualities than other compet-

ing approaches.

Keywords Simultaneous sparse coding · Gaussian scale

mixture · Structured sparsity · Alternative minimization ·
Variational image restoration

1 Introduction

1.1 Background and Motivation

Sparse representation of signals/images has been widely

studied by signal and image processing communities in the

past decades. Historically, sparsity dated back to the idea of

variable selection studied by statisticians in late 1970s (Hock-

ing 1976) and coring operator invented by RCA researchers

in early 1980s (Carlson et al. 1985). The birth of wavelet

(Daubechies 1988) (a.k.a. filter bank theory (Vetterli 1986) or

multi-resolution analysis (Mallat 1989) in late 1980s rapidly

sparkled the interest in sparse representation, which has

found successful applications into image coding (Shapiro

1993; Said and Pearlman 1996; Taubman and Marcellin

2001) and denoising (Donoho and Johnstone 1994; Mih-

cak and Ramchandran 1999; Chang et al. 2000). Under the

framework of sparse coding, a lot of research have been

centered at two related issues: basis functions (or dictio-

nary) and statistical modeling of sparse coefficients. Exem-

plar studies of the former are the construction of direc-

tional multiresolution representation (e.g., contourlet (Do

and Vetterli 2005)) and over-complete dictionary learning

from training data (e.g., K-SVD (Aharon et al. 2012; Elad
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and Aharon 2012), multiscale dictionary learning (Mairal

et al. 2008), online dictionary learning (Mairal et al. 2009a)

and the non-parametric Bayesian dictionary learning (Zhou

et al. 2009)); the latter includes the use of Gaussian mix-

ture models (Zoran and Weiss 2011; Yu et al. 2012), vari-

ational Bayesian models (Ji et al. 2008; Wipf et al. 2011),

universal models (Ramirez and Sapiro 2012), and central-

ized Laplacian model (Dong et al. 2013b) for sparse coeffi-

cients.

More recently, a class of nonlocal image restoration tech-

niques (Buades et al. 2005; Dabov et al. 2007; Mairal et al.

2009b; Katkovnik et al. 2010; Dong et al. 2011, 2013a, b)

have attracted increasingly more attention. The key moti-

vation behind lies in the observation that many important

image structures in natural images including edges and tex-

tures can be characterized by the abundance of self-repeating

patterns. Such observation has led to the formulation of

simultaneous sparse coding (SSC) (Mairal et al. 2009b).

Our own recent works (Dong et al. 2011, 2013a) have con-

tinued to demonstrate the potential of exploiting SSC in

image restoration. However, a fundamental question remains

open: how to achieve (local) spatial adaptation within the

framework of nonlocal image restoration? This question is

related to the issue of regularization parameters in a vari-

ational setting or shape parameters in a Bayesian one; but

the issue becomes even more thorny when it is tangled with

nonlocal regularization/sparsity. To the best of our knowl-

edge, how to tune those parameters in a principled man-

ner remains an open problem (e.g, please refer to (Ramirez

and Sapiro 2012) and its references for a survey of recent

advances).

In this work, we propose a new image model named SSC–

GSM that connects Gaussian scale mixture (GSM) with SSC.

Our idea is to model each sparse coefficient as a Gaussian

distribution with a positive scaling variable and impose a

sparse distribution prior (i.e., the Jeffrey prior (Box and Tiao

2011) used in this work) over the positive scaling variables.

We show that the maximum a posterior (MAP) estimation

of both sparse coefficients and scaling variables can be effi-

ciently calculated by the method of alternating minimiza-

tion. By characterizing the set of sparse coefficients of sim-

ilar patches with the same prior distribution (i.e., the same

non-zero means and positive scaling variables), we can effec-

tively exploit both local and nonlocal dependencies among

the sparse coefficients, which have been shown important for

image restoration applications (Dabov et al. 2007; Mairal

et al. 2009b; Dong et al. 2011). Our experimental results

have shown that SSC–GSM based image restoration can

deliver images whose subjective and objective qualities are

often higher than other competing methods. Visual quality

improvements are attributed to better preservation of edge

sharpness and suppression of undesirable artifacts in the

restored images.

1.2 Relationship to Other Competing Approaches

The connection between sparse coding and Bayesian infer-

ence has been previously studied in sparse Bayesian learn-

ing (Tipping 2001; Wipf and Rao 2004, 2007) and more

recently in Bayesian compressive sensing (Ji et al. 2008),

latent variable Bayesian models for promoting sparsity (Wipf

et al. 2011). Despite offering a generic theoretical foundation

as well as promising results, the Bayesian inference tech-

niques along this line of research often involve potentially

expensive sampling (e.g., approximated solutions for some

choice of prior are achieved in Wipf et al. (2011)). By con-

trast, our SSC–GSM approach is conceptually much simpler

and admits analytical solutions involving iterative shrink-

age/filtering operators only. The other works closely related

to the proposed SSC–GSM are group sparse coding with a

Laplacian scale mixture (LSM) (Garrigues and Olshausen

2010)and field-of-GSM (Lyu and Simoncelli 2009). In (Gar-

rigues and Olshausen 2010), a LSM model with Gamma

distribution imposed over the scaling variables was used

to model the sparse coefficients. Approximated estimates

of the scale variables were obtained using the Expectation-

Maximization (EM) algorithm. Note that the scale vari-

ables derived in LSM (Garrigues and Olshausen 2010) is

very similar to the weights derived in the reweighted l1-

norm minimization (Candes et al. 2008). In contrast to

those approaches, a GSM model with nonzero means and

a noninformative sparse prior imposed over scaling vari-

ables are used to model the sparse coefficients here. Instead

of using the EM algorithm for an approximated solution,

our SSC–GSM offers an efficient inference of both scal-

ing variables and sparse coefficients via alternating opti-

mization method. In Lyu and Simoncelli (2009), a field of

FSM (FoGSM) model was constructed using the product

of two independent homogeneous Gaussian Markov ran-

dom fields (hGMRFs) to exploit the dependencies among

adjacent blocks. Despite similar motivations to exploit the

dependencies between the scaling variables, the techniques

used in Lyu and Simoncelli (2009) is significantly different

and requires a lot more computations than our SSC–GSM

formulation.

The proposed work is related to non-parametric Bayesian

dictionary learning (Zhou et al. 2012) or solving inverse

problems with piecewise linear estimators (Yu et al. 2012)

but ours is motivated by the connection between non-

local SSC strategy and local parametric GSM model.

When compared with previous works on image denois-

ing (e.g., K-SVD denoising (Elad and Aharon 2012), spa-

tially adaptive singular-value thresholding (Dong et al.

2013a) and Expected Patch Log Likelihood (EPLL) (Zoran

and Weiss 2011)), SSC–GSM targets at a more general

framework of combining adaptive sparse inference with

dictionary learning. SSC–GSM based image deblurring
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has also been experimentally shown superior to existing

patch-based methods (e.g., Iterative Decoupled Deblurring

BM3D (IDD-BM3D) (Danielyan et al. 2012) and Nonlo-

cal centralized sparse representation (NCSR) (Dong et al.

2013b)) and the gain in terms of ISNR is as much as

1.5d B over IDD-BM3D (Danielyan et al. 2012) for some

test images (e.g., butter f ly image - please refer to Fig.

5).

The reminder of this paper is organized as follows. In

Sect. 2, we formulate the sparse coding problem with GSM

model and generalize it into the new SSC–GSM model. In

Sect. 3, we elaborate on the details of how to solve SSC–

GSM by alternative minimization and emphasize the ana-

lytical solutions for both subproblems. In Sect. 4, we study

the application of SSC–GSM into image restoration and dis-

cuss efficient implementation of SSC–GSM based image

restoration algorithms. In Sect. 5, we report our experimen-

tal results in image denoising, image deblurring and image

super-resolution as supporting evidence for the effective-

ness of SSC–GSM model. In Sect. 6, we make some con-

clusions about the relationship of sparse coding to image

restoration as well as perspectives about the future direc-

tions.

2 Simultaneous Sparse Coding via Gaussian Scale

Mixture Modeling

2.1 Sparse Coding with Gaussian Scale Mixture Model

The basic idea behind sparse coding is to represent a signal

x ∈ R
n (n is the size of image patches) as the linear com-

bination of basis vectors (dictionary elements) Dα where

D ∈ R
n×K , n ≤ K is the dictionary and the coefficients

α ∈ R
K satisfies some sparsity constraint. In view of the

challenge with l0-optimization, it has been suggested that

the original nonconvex optimization is replaced by its l1-

counterpart:

α = argmin
α

‖x − Dα‖2
2 + λ‖α‖1, (1)

which is convex and easier to solve. Solving the l1-norm

minimization problem corresponds to the MAP inference of

α with an identically independent distributed (i.i.d) Lapla-

cian prior P(αi ) = 1
2θi

e
− |αi |

θi , wherein θi denotes the stan-

dard derivation of αi . It is easy to verify that the regulariza-

tion parameter should be set as λi = 2σ 2
n /θi when the i.i.d

Laplacian prior is used, where σ 2
n denotes the variance of

approximation errors. In practice, the variances θi ’s of each

αi are unknown and may not be easy to accurately estimated

from the observation x considering that real signal/image are

non-stationary and may be degraded by noise and blur.

In this paper we propose to model sparse coefficients α

with a GSM (Andrews and Mallows 1974) model. The GSM

model decomposes coefficient vector α into the point-wise

product of a Gaussian vector β and a hidden scalar multiplier

θ -i.e., αi = θiβi , where θi is the positive scaling variable

with probability P(θi ). Conditioned on θi , a coefficient αi is

Gaussian with the standard derivation of θi . Assuming that

θi are i.i.d and independent of βi , the GSM prior of α can be

expressed as

P(α) =
∏

i

P(αi ), P(αi ) =
∫ ∞

0

P(αi |θi )P(θi )dθi . (2)

As a family of probabilistic distributions, the GSM model

can contain many kurtotic distributions (e.g., the Laplacian,

Generalized Gaussian, and student’s t-distribution) given an

appropriate P(θi ).

Note that for most of choices of P(θi ) there is no analyti-

cal expression of P(αi ) and thus it is difficult to compute the

MAP estimates of αi . However, such difficulty can be over-

come by joint estimation of (αi , θi ). For a given observation

x = Dα + n, where n ∼ N (0, σ 2
n ) denotes the additive

Gaussian noise, we can formulate the following MAP esti-

mator

(α, θ) = argmax log P(x|α, θ)P(α, θ)

= argmax log P(x|α) + log P(α|θ) + log P(θ), (3)

where P(x|α) is the likelihood term characterized by

Gaussian function with variance σ 2
n . The prior term P(α|θ)

can be expressed as

P(α|θ)=
∏

i

P(αi |θi )=
∏

i

1

θi

√
2π

exp
(

− (αi − μi )
2

2θ2
i

)

.

(4)

Instead of assuming the mean μi = 0, we propose to use

a biased-mean μi for αi here inspired by our previous work

NCSR (Dong et al. 2013b) (its estimation will be elaborated

later).

The adoption of GSM model allows us to generalize the

sparsity from statistical modeling of sparse coefficients α to

the specification of sparse prior P(θ). It has been suggested in

the literature that noninformative prior (Box and Tiao 2011)

P(θi ) ≈ 1
θi

—a.k.a. Jeffrey’s prior—is often the favorable

choice. Therefore, we have also adopted this option in this

work, which translates Eq. (3) into

(α, θ) = argmin
α,θ

1

2σ 2
n

‖x − Dα‖2
2 +

∑

i

log(θi

√
2π)

+
∑

i

(αi − μi )
2

2θ2
i

+
∑

i

log θi , (5)

where we have used P(θ) =
∑

i P(θi ). Noting that Jeffrey’s

prior is unstable as θi → 0; so we replace log θi by log(θi +ǫ)
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Fig. 1 Denoising performance comparison between the variants of the

proposed method. (a) Noisy image (σn = 20); (b) KSVD (Elad and

Aharon 2012) (PSNR = 29.90 dB); (c) the proposed method (without

nonlocal extension) uses the model of Eq. (7) (PSNR = 30.18 dB); (d)

the proposed SSC–GSM method (PSNR = 30.84 dB)

Table 1 Parameters setting for each experiment

Denoising Deblurring Super-resolution

Unifor. blur Gauss. blur Noiseless Noisy

η 0.35 0.11 0.12 0.05 1.25

where ǫ is a small positive number for numerical stability

and rewrite
∑

i log(θi + ǫ) into log(θ + ǫ) for notational

simplicity. The above equation can then be further translated

into the following sparse coding problem

(α, θ) = argmin
α,θ

‖x − Dα‖2
2 + 4σ 2

n log(θ + ǫ)

+σ 2
n

∑

i

(αi − μi )
2

θ2
i

. (6)

Note that the matrix form of original GSM model is α =
Λβ andµ = Λγ whereΛ = diag(θi ) ∈ R

K×K is a diagonal

matrix characterizing the variance field for a chosen image

patch. Accordingly, the sparse coding problem in Eq. (6) can

be translated from (α,µ) domain to (β, γ ) domain as follows

(β, θ) = argmin
β,θ

‖x − DΛβ‖2
2 + 4σ 2

n log(θ + ǫ)

+σ 2
n ‖β − γ ‖2

2. (7)

In other words, the sparse coding formulation of GSM

model boils down to the joint estimation of β and θ . But

unlike (Portilla et al. 2003) that treats the multiplier as a hid-

den variable and cancel it out through integration (i.e., the

derivation of Bayes Least-Square estimate), we explicitly use

the field of Gaussian scalar multiplier to characterize the vari-

ability and dependencies among local variances. Such sparse

coding formulation of GSM model is appealing because it

allows us to further exploit the power of GSM by connecting

it with structured sparsity as we will detail next.

2.2 Exploiting Structured Sparsity for the Estimation

of the Field of Scalar multipliers

A key observation behind our approach is that for a collection

of similar patches, their corresponding sparse coefficients α’s

should be characterized by the same prior i.e., the probabil-

ity density function with the same θ and µ. Therefore, if one

considers the SSC of GSM models for a collection of m sim-

ilar patches, the structured/group sparsity based extension of

Eq. (7) can be written as

(B, θ) = argmin
B,θ

‖X − DΛB‖2
F + 4σ 2

n log(θ + ǫ)

+σ 2
n ‖B − Γ ‖2

F , (8)

where X = [x1, ..., xm] denotes the collection of m sim-

ilar patches1, A = ΛB is the group representation of

GSM model for sparse coefficients and their correspond-

ing first-order and second-order statistics are characterized

by Γ = [γ 1, ..., γ m] ∈ R
K×m and B = [β1, ...,βm] ∈

R
K×m respectively, wherein γ j = γ , j = 1, 2, . . . , m.

Given a collection of m similar patches, we have adopted

the nonlocal means approach (Buades et al. 2005) for

estimating µ

µ =
m

∑

j=1

w jα j , (9)

where w j ∼ exp(−‖x − x j‖2
2/h)) is the weighting coef-

ficient based on patch similarity. It follows from µ = Λγ

that

γ =
m

∑

j=1

w jΛ
−1α j =

m
∑

j=1

w jβ j . (10)

1 Throughout this paper, we will use subscript/superscript to denote

column/row vectors of a matrix respectively.
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Table 2 The PSNR (dB) results by different denoising methods

σw 5 10 15 20 50 100

Lena 38.86 38.68 36.07 35.83 34.43 34.14 33.20 32.88 29.07 28.95 25.37 25.96

38.70 38.85 35.81 35.96 34.09 34.23 32.92 33.08 28.42 29.05 25.66 25.91

Monarch 38.69 38.53 34.74 34.48 32.46 32.15 30.92 30.58 26.28 25.59 22.31 21.82

38.49 38.74 34.57 34.82 32.34 32.52 30.69 30.84 25.68 26.02 22.05 22.52

Barbara 38.38 38.44 35.07 34.95 33.27 32.96 31.97 31.53 27.51 27.13 23.05 23.56

38.36 38.65 34.98 35.27 33.02 33.32 31.72 32.06 27.10 27.60 23.30 24.05

Boat 37.50 37.34 34.10 33.99 32.29 32.17 31.02 30.87 26.89 26.76 23.71 23.94

37.35 37.42 33.90 33.95 32.03 32.11 30.74 30.82 26.60 26.79 23.64 23.90

C. Man 38.54 38.24 34.52 34.14 32.31 31.96 30.86 30.54 26.59 26.36 22.91 23.14

38.17 38.39 34.12 34.28 31.99 32.03 30.48 30.50 26.16 26.29 22.89 23.23

Couple 37.60 37.41 34.13 33.96 32.20 32.06 30.83 30.70 26.48 26.31 23.19 23.34

37.44 37.51 33.94 33.94 31.95 31.98 30.56 30.63 26.21 26.41 23.22 23.36

F. Print 36.67 36.71 32.65 32.57 30.46 30.31 28.97 28.78 24.53 24.21 21.07 21.18

36.81 36.84 32.70 32.63 30.46 30.36 28.99 28.87 24.53 24.50 21.29 21.54

Hill 37.31 37.16 33.84 33.68 32.06 31.89 30.85 30.71 27.13 26.99 24.10 24.30

37.17 37.23 33.69 33.70 31.86 31.89 30.61 30.69 26.86 27.05 24.13 24.24

House 40.13 40.00 37.06 37.05 35.31 35.32 34.03 34.16 29.53 29.90 25.20 25.63

39.91 40.02 36.80 36.79 35.11 35.03 33.97 34.00 29.63 30.36 25.65 26.70

Man 37.99 37.84 34.18 34.03 32.12 31.98 30.73 30.60 26.84 26.72 23.86 24.00

37.78 37.91 33.96 34.06 31.89 31.99 30.52 30.60 26.60 26.76 23.97 24.02

Peppers 38.30 38.15 34.94 34.80 33.01 32.87 31.61 31.47 26.94 26.87 23.05 23.14

38.06 38.22 34.66 34.83 32.70 32.87 31.26 31.41 26.53 26.82 22.64 23.34

Straw 35.81 35.92 31.46 31.39 29.13 28.95 27.52 27.36 22.79 22.67 19.42 19.50

35.87 36.04 31.50 31.56 29.13 29.16 27.50 27.51 22.48 22.84 19.23 19.52

Average 37.98 37.87 34.40 34.24 32.42 32.23 31.04 30.85 26.71 26.54 23.10 23.29

37.84 37.98 34.22 34.32 32.21 32.29 30.83 30.92 26.44 26.71 23.14 23.53

In each cell, the results of the four denoising methods are reported in the following order: top left-BM3D-SAPCA (Katkovnik et al. 2010); top

right-LSSC (Mairal et al. 2009b); bottom left-NCSR (Dong et al. 2013b); bottom right-proposed SSC-GSM. The highest PSNR values among four

are highlighted in bold in each cell

A practical issue of Eq. (10) is that the original patches x j

and x, as well as the sparse codes α j and α are not available,

and thus we cannot directly compute γ using the Eq. (10). To

avoid such difficulty, we can treat γ as another optimization

variable and jointly estimate it with the sparse coefficients

as

(B, θ , γ ) = argmin
B,θ ,γ

‖X − DΛB‖2
F + 4σ 2

n log(θ + ǫ)

+σ 2
n ‖B − Γ ‖2

F , s. t. γ = Bw, (11)

where the weights w = [w1, . . . , wm]T are pre-computed

using the initial estimate of the image. Using the alternative

directional multiplier method (ADMM) (Boyd et al. 2011),

Eq. (11) can be approximately solved. However, the com-

putational complexity for solving the sub-problem of γ is

high. Alternatively, we can overcome such difficulty by iter-

atively estimating γ from the current estimates of the sparse

coefficients without any sacrifice of the performance. Let

β j = β̂ j + e j , wherein e j denotes the estimation error of β j

and is assumed to be Gaussian and zero-mean. Then, Eq. (10)

can be re-expressed as

γ =
m

∑

j=1

w j β̂ j +
m

∑

j=1

e j = γ̂ + nw, (12)

where nw denotes the estimation error of γ . As e j is assumed

to be zero-mean Gaussian, nw would be small. Thus, γ can

be readily obtained from the estimates of representation coef-

ficients β j . In practice, we recursively compute γ using the

previous estimates of β j after each iteration.

We call such new formulation in Eq. (8) Simultaneous

Sparse Coding for Gaussian Scalar Mixture (SSC–GSM)

and propose to develop computationally efficient solution to

this problem in the next section. Note that here the formu-

lation of SSC–GSM in Eq. (8) is for a given dictionary D.

However, the dictionary D can also be optimized for a fixed

pair of (B, θ) such that both dictionary learning and statisti-
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Fig. 2 Denoising performance comparison on the Lena image with

moderate noise corruption. (a) Original image; (b) Noisy image

(σn = 20); denoised images by (c) BM3D-SAPCA (Katkovnik et al.

2010) (PSNR = 33.20 dB, SSIM = 0.8803); (d) LSSC (Mairal et al.

2009b) (PSNR = 32.88 dB, SSIM = 0.8742); (e) NCSR (Dong et al.

2013b) (PSNR = 32.92 dB, SSIM = 0.8760); (f) Proposed SSC–GSM

(PSNR = 33.08, SSIM = 0.8787)

cal modeling of sparse coefficients can be unified within the

framework of Eq. (8). Figure 1 shows the denoising results

by the two proposed methods that use the model of Eqs. (7)

and (8), respectively. Both the two proposed methods use the

same dictionary D and γ . From Fig. 1 we can see that the

proposed method without nonlocal extension outperforms

the KSVD method (Elad and Aharon 2012). With the non-

local extension, the denoising performance of the proposed

method is significantly improved.

3 Solving Simultaneous Sparse Coding via Alternating

Minimization

In this section, we will show how to solve the optimization

problem in Eq. (8) by alternatively updating the estimates of

B and θ . The key observation lies in that the two subproblems

- minimization of B for a fixed θ and minimization of θ for

a fixed B - both can be efficiently solved. Specifically, both

subproblems admits closed-form solutions when the dictio-

nary is orthogonal.

3.1 Solving θ for a Fixed B

For a fixed B, the first subproblem simply becomes

θ = argmin
θ

‖X − DΛB‖2
F + 4σ 2

n log(θ + ǫ), (13)

which can be rewritten as

θ = argmin
θ

‖X −
K

∑

i=1

diβ
iθi‖2

F + 4σ 2
n log(θ + ǫ)

= argmin
θ

‖x̃ − D̃θ‖2
2 + 4σ 2

n log(θ + ǫ), (14)

where the long vector x̃ ∈ R
nm denotes the vectorization of

the matrix X, the matrix D̃ = [d̃1, d̃2, . . . , d̃ K ] ∈ R
mn×K

whose each column d̃ j denotes the vectorization of the rank-

one matrix diβ
i , and β i ∈ R

m denotes the i-th row of matrix

B. For optimizing the nonconvex log penalty in Eq. (14), the

principled difference of convex functions (DC) programming

approach can be used for a local minimum (Gasso et al. 2009).

It has also been shown in Candes et al. (2008) that the log

penalty can be linearly approximated and thus a local min-
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Fig. 3 Denoising performance comparison on the House image with

strong noise corruption. (a) Original image; (b) Noisy image (σn =
100); denoised images by (c) BM3D-SAPCA (Katkovnik et al.

2010) (PSNR = 35.20 dB, SSIM = 0.6767); (d) LSSC (Mairal et al.

2009b) (PSNR = 25.63 dB, SSIM = 0.7389); (e) NCSR (Dong et al.

2013b) (PSNR = 25.65 dB, SSIM = 0.7434); (f) Proposed SSC–GSM

(PSNR = 26.70, SSIM = 0.7430)

imum of the nonconvex objective function can be obtained

by iteratively solving a weighted ℓ1-penalized optimization

problem.

However, the optimization of Eq. (13) can be much simpli-

fied when the dictionary D is orthogonal (e.g., DCT or PCA

basis). In the case of orthogonal dictionary, Eq. (13) can be

rewritten as

θ = argmin
θ

‖A − ΛB‖2
F + 4σ 2

n log(θ + ǫ), (15)

where we have used X = DA. For expression convenience,

we can rewrite Eq. (15) as

θ = argmin
θ

∑

i

aiθ
2
i + biθi + c log θi + ǫ, (16)

where ai = ‖β i‖2
2, bi = −2αi (β i )T and c = 4σ 2

n . Hence,

Eq. (16) can be decomposed into a sequence of scalar mini-

mization problem, i.e.,

θi = argmin
θi

aiθ
2
i + biθi + c log(θi + ǫ), (17)

which can be solved by taking
d f (θi )

dθi
= 0, where f (θi )

denotes the right hand side of Eq. (17). We derive

g(θi ) = d f (θi )

dθi

= 2aiθi + bi + c

θi + ǫ
. (18)

By solving g(θi ) = 0, we obtain the following two sta-

tionary points of f (θi ), i.e.,

θi,1 = − bi

4ai

+

√

b2
i

16
− c

2ai

, θi,2 = − bi

4ai

−

√

b2
i

16
− c

2ai

,

(19)

when b2
i /(16a2

i ) − c/(2ai ) ≥ 0. Then, the global minimizer

of f (θi ) can be obtained by comparing f (0), f (θi,1) and

f (θi,2).

When b2
i /(16a2

i ) − c/(2ai ) < 0, there does not exist any

stationary points in the range of [0,∞). As ǫ is a small posi-

tive constant, g(0) = bi +c/ǫ is always positive. Thus, f (0)

is the global minimizer for this case. In summary, the solution

to Eq. (17) can be written as
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Table 3 PSNR(dB) and SSIM results of the deblurred images

Images 9 × 9 uniform blur, σn =
√

2

Butterfly Boats C. Man Starfish Parrot Lena Barbara Peppers Leaves House Average

FISTA (Beck and Teboulle 2009) 28.37 29.04 26.82 27.75 29.11 28.33 25.75 28.43 26.49 31.99 28.21

0.9058 0.8355 0.8278 0.8200 0.8750 0.8274 0.7440 0.8134 0.9023 0.8490 0.8400

IDD-BM3D (Danielyan et al. 2012) 29.21 31.20 28.56 29.48 31.06 29.70 27.98 29.62 29.38 34.44 30.06

0.9216 0.8820 0.8580 0.8640 0.9041 0.8654 0.8225 0.8422 0.9418 0.8786 0.8780

NCSR (Dong et al. 2013b) 29.68 31.08 28.62 30.28 31.95 29.96 28.10 29.66 29.98 34.31 30.36

0.9273 0.8810 0.8574 0.8807 0.9103 0.8676 0.8255 0.8402 0.9485 0.8755 0.8814

Proposed SSC-GSM 30.45 31.36 28.83 30.58 32.05 30.11 28.78 29.79 30.83 34.31 30.71

0.9377 0.8918 0.8669 0.8862 0.9145 0.8783 0.8465 0.8491 0.9582 0.8748 0.8904

Gaussian blur with standard deviation 1.6, σn =
√

2

FISTA (Beck and Teboulle 2009) 30.36 29.36 26.80 29.65 31.23 29.47 25.03 29.42 29.33 31.50 29.22

0.9374 0.8509 0.8241 0.8878 0.9066 0.8537 0.7377 0.8349 0.9480 0.8254 0.8606

IDD-BM3D (Danielyan et al. 2012) 30.73 31.68 28.17 31.66 32.89 31.45 27.19 29.99 31.40 34.08 30.92

0.9469 0.9036 0.8705 0.9156 0.9319 0.9103 0.8231 0.8806 0.9639 0.8820 0.9029

NCSR (Dong et al. 2013b) 30.84 31.49 28.34 32.27 33.39 31.26 27.91 30.16 31.57 33.63 31.09

0.9476 0.8968 0.8591 0.9229 0.9354 0.9009 0.8304 0.8704 0.9648 0.8696 0.8998

Proposed SSC–GSM 31.12 31.78 28.40 32.26 33.30 31.52 28.42 30.18 32.02 34.65 31.37

0.9522 0.9054 0.8719 0.9245 0.9377 0.9109 0.8462 0.8770 0.9693 0.8834 0.9079

θi =
{

0, if b2
i /(16a2

i ) − c/(2ai ) < 0,

vi , otherwise
(20)

where

vi = argmin
θi

{ f (0), f (θi,1), f (θi,2)}. (21)

3.2 Solving B for a Fixed θ

The second subproblem is in fact even easier to solve. It takes

the following form

B = argmin ‖X − DΛB‖2
F + σ 2

n ‖B − Γ ‖2
F . (22)

Since both terms are l2, the closed-form solution to Eq. (22)

is essentially the classical Wiener filtering

B =
(

D̂
T

D̂ + σ 2
n I

)−1 (

D̂
T

X + Γ

)

, (23)

where D̂ = DΛ. Note that when D is orthogonal, Eq. (23)

can be further simplified into

B =
(

ΛT Λ + σ 2
n I

)−1 (

ΛT A + Γ

)

, (24)

where ΛT Λ + σ 2
n I is a diagonal matrix and therefore its

inverse can be easily computed.

By alternatively solving both subproblems of Eqs. (13)

and (22) for the estimates of Λ and B, the image data matrix

X can then be reconstructed as

X̂ = DΛ̂B̂, (25)

where Λ̂ and B̂ denotes the final estimates of Λ and B.

4 Application of Bayesian Structured Sparse Coding

into Image Restoration

In the previous sections, we have seen how to solve SSC–

GSM problem for a single image data matrix X (a col-

lection of image patches similar to a chosen exemplar).

In this section, we generalize such formulation to whole-

image reconstruction and study the applications of SSC–

GSM into image restoration including image denoising,

image deblurring and image superresolution. The standard

image degradation model is used here: y = Hx + w where

x ∈ R
N , y ∈ R

M denotes the original and degraded images

respectively, H ∈ R
N×M is the degradation matrix and

w is additive white Gaussian noise observing N (0, σ 2
n ).

The whole-image reconstruction problem can be formulated

as

(x, {Bl}, {θ l}) = argmin
x,{Bl },{θ l }

‖ y − Hx‖2
2

+
L

∑

l=1

{η‖R̃x − DΛlBl‖2
F

+ σ 2
n ‖B − Γ ‖2

F + 4σ 2
n log(θ l + ǫ)}, (26)
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Fig. 4 Deblurring performance comparison on the Starfish image.

(a) Original image; (b) Noisy and blurred image (9 × 9 uniform

blur, σn =
√

2); deblurred images by (c) FISTA (Beck and Teboulle

2009) (PSNR = 27.75 dB, SSIM=0.8200); (d) IDD-BM3D (Danielyan

et al. 2012) (PSNR = 29.48 dB, SSIM=0.8640); (e) NCSR (Dong et al.

2013b) (PSNR = 30.28 dB, SSIM = 0.8807); (f) Proposed SSC–GSM

(PSNR = 30.58 dB, SSIM = 0.8862)

where R̃l x
.= [Rl1 x, Rl2 x, . . . , Rlm x] ∈ R

n×m denotes

the data matrix formed by a group of image patches sim-

ilar to the l-th exemplar patch xl (including xl itself),

Rl ∈ R
n×N denotes a matrix extracting the l-th patch xl

from x, and L is the total number of exemplars extracted

from the reconstructed image x. For a given exemplar

patch xl , we search similar patches by performing k-

nearest-neighbor search within a large local window (e.g.,

40 × 40). As the original image is not available, we use

the current estimate of original image for patch matching,

i.e.,

S = {l j | ‖x̂l − x̂l j
‖2

2 < T }, (27)

where T denotes the pre-selected threshold and S denotes the

collection of positions of those similar patches. Alternatively,

we can form the sample set S by selecting the patches that are

within the first m (m = 40 in our implementation) closest to

x̂l . Invoking the principle of alternative optimization again,

we propose to solve the whole-image reconstruction problem

in Eq. (26) by alternating the solutions to the following two

subproblems.

4.1 Solving x for a Fixed {Bl}, {θ l}

Let X̂l = DΛlBl . When {Bl} and {θ l} are fixed, so is {X̂l}.
Therefore, Eq. (26) reduces to the following l2-optimization

problem

x = argmin
x

‖ y − Hx‖2
2 +

L
∑

l=1

η‖Rxl − X̂l‖2
F , (28)

which admits the following closed-form solution

x =
(

HT H+η

L
∑

l=1

R̃
T

l R̃l

)−1 (

HT y + η

L
∑

l=1

R̃
T

l X̂l

)

, (29)

where R̃
T

l R̃l
.=

∑m
j=1 RT

j R j , R̃
T

l X̂l
.=

∑m
j=1 RT

j x̂l j
and x̂l j

denotes the j-th column of matrix X̂l . Note that for image

denoising application where H = I - the matrix to be inversed

in Eq. (29)—is diagonal, and its inverse can be computed eas-

ily. Similar to the K-SVD approach, Eq. (29) can be com-

puted by weighted averaging each reconstructed patches sets

X̃l . For image deblurring and super-resolution applications,
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Fig. 5 Deblurring performance comparison on the Butterfly image.

(a) Original image; (b) Noisy and blurred image (9 × 9 uniform

blur, σn =
√

2); deblurred images by (c) FISTA (Beck and Teboulle

2009) (PSNR = 28.37 dB, SSIM=0.9058); (d) IDD-BM3D (Danielyan

et al. 2012) (PSNR = 29.21 dB, SSIM=0.9216); (e) NCSR (Dong et al.

2013b) (PSNR = 29.68 dB, SSIM = 0.9273); (f) Proposed SSC–GSM

(PSNR = 30.45 dB, SSIM = 0.9377)

Eq. (29) can be computed by using a conjugate gradient (CG)

algorithm.

4.2 Solving {Bl}, {θ l} for a Fixed x

When x is fixed, the first term in Eq. (26) goes away and the

subproblem boils down to a sequence of patch-level SSC–

GSM problems formulated for each exemplar - i.e.,

(Bl , θ l) = argmin
Bl ,θ l

‖Xl − DΛlBl‖2
F + σ 2

n

η
‖B − Γ ‖2

F

+4σ 2
n

η
log(θ l + ǫ), (30)

where we use Xl = R̃l x. This is exactly the problem we have

studied in the previous section.

One important issue of the SSC–GSM-based image

restoration is the selection of the dictionary. To adapt to the

local image structures, instead of learning an over-complete

dictionary for each dataset Xl as in Mairal et al. (2009b),

we learn the principle component analysis (PCA) based dic-

tionary for each dataset here (similar to NCSR (Dong et al.

2013b)). The use of the orthogonal dictionary much sim-

plifies the Bayesian inference of SSC–GSM. Putting things

together, a complete image restoration based on SSC–GSM

can be summarized as follows.

In Algorithm 1 we update Dl in every k0 to save compu-

tational complexity. We also found that Algorithm 1 empir-

ically converges even when the inner loop executes only one

iteration (i.e., J = 1). We note that the above algorithm can

lead to a variety of implementations depending the choice

of degradation matrix H. When H is an identity matrix,

Algorithm 1 is an image denoising algorithm using itera-

tive regularization technique (Xu and Osher 2007). When

H is a blur matrix or reduced blur matrix, Eq. (26) becomes

the standard formulation of non-blind image deblurring or

image super-resolution problem. The capability of capturing

rapidly-changing statistics in natural images - e.g., through

the use of GSM - can make patch-based nonlocal image mod-

els even more powerful.
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Algorithm 1 SSC–GSM based Image Restoration

• Initialization:

(a) set the initial estimate as x̂ = y for image denoising and

deblurring; or initialize x̂ by bicubic interpolation for image super-

resolution;

(b) Set parameters η;

(c) Obtain data matrices {Xl }’s from x̂ (though kNN search) for

each exemplar and compute the PCA basis {Dl } for each Xl .

• Outer loop (solve Eq. (26) by alternative optimization): Iterate on

k = 1, 2, . . . , kmax

(a) Image-to-patch transformation: obtain data matrices {Xl }’s for

each exemplar;

(b) Estimate biased means γ using Eq. (10) for each Xl ;

(c) Inner loop (solve Eq. (30) for each data Xl ): iterate on J =
1, 2, . . . , J ;

(I) update θ l for fixed Bl using Eq. (20);

(II) update Bl for fixed θ l using Eq. (24);

End for

(d) Reconstruct Xl ’s from θ l and Bl using Eq. (25);

(e) If mod(k, k0) = 0, update the PCA basis {Dl } for each Xl ;

(f) Patch-to-image transformation: obtain reconstructed x̂
(k+1)

from {Xl }’s by solving Eq. (29);

End for

• Output: x̂
(k+1)

.

5 Experimental Results

In this section, we report our experimental results of apply-

ing SSC–GSM based image restoration into image denois-

ing, image deblurring and super-resolution. The experimen-

tal setup of this work is similar to that in our previous work

on NCSR (Dong et al. 2013b). The basic parameter setting

of SSC–GSM is as follows: patch size—6 × 6, number of

similar blocks— K = 44; kmax = 14, k0 = 1 for image

denoising, and kmax = 450, k0 = 40 for image deblur-

ring and super-resolution. The regularization parameter η is

empirically set. Its values are shown in Table 1. To eval-

uate the quality of restored images, both PSNR and SSIM

(Wang et al. 2004) metrics are used. However, due to lim-

ited page space, we can only show part of the experimen-

tal results in this paper. More detailed comparisons and

complete experimental results are available at the follow-

ing website: http://see.xidian.edu.cn/faculty/wsdong/SSC_

GSM.htm.

Fig. 6 Deblurring performance comparison on the Barbara image.

(a) Original image; (b) Noisy and blurred image (Gaussian blur,

σn =
√

2); deblurred images by (c) FISTA (Beck and Teboulle

2009) (PSNR = 25.03 dB, SSIM = 0.7377); (d) IDD-BM3D (Danielyan

et al. 2012) (PSNR = 27.19 dB, SSIM = 0.8231); (e) NCSR (Dong et al.

2013b) (PSNR = 27.91 dB, SSIM = 0.8304); (f) Proposed SSC–GSM

(PSNR = 28.42 dB, SSIM = 0.8462)
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Table 4 PSNR(dB) and SSIM results(luminance components) of the reconstructed HR images

Images Noiseless

Butterfly Parrot Plants Hat flower Raccoon Bike Pathenon Girl Average

TV (Marquina and Osher 2008) 26.56 27.85 0.8797 29.20 27.51 27.54 23.66 26.00 31.24 27.88

0.9000 0.8900 0.8909 0.8483 0.8148 0.7070 0.7582 0.7232 0.7880 0.8121

Sparsity (Yang et al. 2010) 24.70 28.70 31.55 29.63 27.87 28.51 23.23 26.27 32.87 28.15

0.8170 0.8823 0.8715 0.8288 0.7963 0.7273 0.7212 0.7025 0.8017 0.7943

NCSR (Dong et al. 2013b) 28.10 30.50 34.00 31.27 29.50 29.28 24.74 27.19 33.65 29.80

0.9156 0.9144 0.9180 0.8699 0.8558 0.7706 0.8027 0.7506 0.8273 0.8472

Proposed SSC–GSM 28.45 30.65 34.33 31.51 29.73 29.38 24.77 27.37 33.65 29.97

0.9272 0.9190 0.9236 0.8753 0.8638 0.7669 0.8062 0.7556 0.8236 0.8512

Noisy

TV (Marquina and Osher 2008) 25.49 27.01 29.70 28.13 26.57 26.74 23.11 25.35 29.86 26.88

0.8477 0.8139 0.8047 0.7701 0.7557 0.6632 0.7131 0.6697 0.7291 0.7519

Sparsity (Yang et al. 2010) 23.61 27.15 29.57 28.31 26.60 27.22 22.45 25.40 30.71 26.78

0.7532 0.7738 0.7700 0.7212 0.7052 0.6422 0.6477 0.6205 0.7051 0.7043

NCSR (Dong et al. 2013b) 26.86 29.51 31.73 29.94 28.08 28.03 23.80 26.38 32.03 28.48

0.8878 0.8768 0.8594 0.8238 0.7934 0.6812 0.7369 0.6992 0.7637 0.7914

Proposed SSC–GSM 27.00 29.59 31.93 30.21 28.03 28.02 23.82 26.56 32.00 28.57

0.8978 0.8853 0.8632 0.8354 0.7966 0.6747 0.7405 0.7066 0.7600 0.7956

5.1 Image Denoising

We have compared SSC–GSM based image denoising

method against three current state-of-the-art methods includ-

ing BM3D Image Denoising with Shape-Adaptive PCA

(BM3D-SAPCA) (Katkovnik et al. 2010) (it is an enhanced

version of BM3D denoising (Dabov et al. 2007) in which

local spatial adaptation is achieved by shape-adaptive PCA),

learned simultaneous sparse coding (LSSC) (Mairal et al.

2009b) and nonlocally centralized sparse representation

(NCSR) denoising (Dong et al. 2013b). As can be seen from

Table 2, the proposed SSC–GSM has achieved highly com-

petitive denoising performance to other leading algorithms.

For the collection of 12 test images, BM3D-SAPCA and

SSC–GSM are mostly the best two performing methods - on

the average, SSC–GSM falls behind BM3D-SAPCA by less

than 0.2d B for three out of six noise levels but deliver at

least comparable for the other three. We note that the com-

plexity of BM3D-SAPCA is much higher than that of the

original BM3D; by contrast, our pure Matlab implementation

of SSC–GSM algorithm (without any C-coded optimization)

still runs reasonably fast. It takes around 20 s to denoise a

256 × 256 image on a PC with an Intel i7-2600 processor at

3.4GHz.

Figures. 2 and 3 include the visual comparison of denois-

ing results for two typical images (lena and house) at

moderate (σw = 20) and heavy (σw = 100) noise lev-

els respectively. It can be observed from Fig. 2 that BM3D-

SAPCA and SSC–GSM seem to deliver the best visual qual-

ity at the moderate noise level; by contrast, restored images

by LSSC and NCSR both suffer from noticeable artifacts

especially around the smooth areas close to the hat. When

the noise contamination is severe, the superiority of SSC–

GSM to other competing approaches is easier to justify—

as can be seen from Fig. 3, SSC–GSM achieves the most

visually pleasant restoration of the house image especially

when one inspects the zoomed portions of roof regions

closely.

5.2 Image Deblurring

We have also compared SSC–GSM based image deblur-

ring and three other competing approaches in the litera-

ture: constrained total variation image deblurring (denoted

by FISTA), Iterative Decoupled Deblurring BM3D (IDD-

BM3D) (Danielyan et al. 2012) and nonlocally centralized

sparse representation (NCSR) denoising (Dong et al. 2013b).

Note that the IDD-BM3D and NCSR are two recently devel-

oped state-of-the-art non-blind image deblurring approaches.

In our comparative study, two commonly-used blur kernal

i.e., 9 × 9 uniform and 2D Gaussian with standard deviation

of 1.6; blurred images are further corrupted by additive white

Gaussian noise with variance of σn =
√

2. Table 3 includes

the PSNR/SSIM comparison results for a collection of 11
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Fig. 7 Image super-resolution performance comparison on the Plant

image (scaling factor 3, σn = 0). (a) Original image; (b) Low-

resolution image; reconstructed images by (c) TV (Marquina and Osher

2008) (PSNR = 31.34 dB, SSIM = 0.8797); (d) Sparsity-based (Yang

et al. 2010) (PSNR = 31.55 dB, SSIM = 0.8964); (e) NCSR (Dong et al.

2013b) (PSNR = 34.00 dB, SSIM = 0.9369); (f) Proposed SSC–GSM

(PSNR = 34.33 dB, SSIM = 0.9236)

images among four competing methods. It can be observed

that SSC–GSM clearly outperforms all other three for 10

out of 11 images (the only exception is the house image

for which IDD-BM3D slightly outperforms SSC–GSM by

0.13d B). The gains are mostly impressive for butter f ly and

barbara images which contain abundant strong edges or tex-

tures. One possible explanation is that SSC–GSM is capable

of striking a better tradeoff between exploiting local and non-

local dependencies within those images.

Figures 4, 5 and 6 show the visual comparison of deblur-

ring results for three test images: star f ish, butter f ly and

barbara respectively. For star f ish, it can be observed that

IDD-BM3D and NCSR achieve deblurred images with sim-

ilar quality (both noticeably better than FISTA); restored

image by SSC–GSM is arguably the most preferred when

compared against the original one (even though the PSNR

gain is impressive). For butter f ly and barbara, visual

quality improvements achieved by SSC–GSM are read-

ily observable—SSC–GSM is capable of both preserve the

sharpness of edges and suppress undesirable artifacts. Such

experimental findings clearly suggest that the SSC–GSM

model is a stronger prior for the class of photographic images

containing strong edges/textures.

5.3 Image Superresolution

In our study on image super-resolution, simulated LR images

are acquired from first applying a 7 × 7 uniform blur to the

HR image, then down-sampling the blurred image by a factor

of 3 along each dimension, and finally adding white Gaussian

noise with σ 2
n = 25 to the LR images. For color images, we

work with the luminance channel only; simple bicubic inter-

polation method is applied to the upsampling of chrominance

channels. Table 4 includes the PSNR/SSIM comparison for

a set of 9 test images among four competing approaches. It

can be seen that SSC–GSM outperforms others in most situ-

ations. Visual quality comparison as shown in Figs. 7 and 8

also justifies the superiority of SSC–GSM to other SR tech-

niques.
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Fig. 8 Image super-resolution performance comparison on the Hat

image (scaling factor 3, σn = 5). (a) Original image; (b) Low-

resolution image; reconstructed images by (c) TV (Marquina and Osher

2008) (PSNR = 28.13 dB, SSIM = 0.7701); (d) Sparsity-based (Yang

et al. 2010) (PSNR = 28.31 dB, SSIM = 0.7212); (e) NCSR (Dong et al.

2013b) (PSNR = 29.94 dB, SSIM = 0.8238); (f) Proposed SSC–GSM

(PSNR = 30.21 dB, SSIM = 0.8354)

Table 5 Running time (sec) and the number of iterations (in parenthesis) of the test methods on a 256 × 256 test image on Intel Core i7-3770 CPU

Denoising

LSSC (Mairal et al. 2009b) NCSR (Dong et al. 2013b) BM3D-SAPCA (Katkovnik et al. 2010) SSC–GSM

− 179.0 127.7 19.0

(27) (−) (4)

Deblurring

FISTA (Beck and Teboulle 2009) NCSR (Dong et al. 2013b) BM3D-IDD (Danielyan et al. 2012) SSC–GSM

5.0 139.6 93.8 501.0

(120) (720) (200) (520)

Superresolution

TV (Marquina and Osher 2008) Sparsity (Yang et al. 2010) NCSR (Dong et al. 2013b) SSC–GSM

25.4 55.6 264.1 573.2

(−) (−) (760) (400)
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5.4 Running Time

The proposed SSC–GSM algorithm was implemented under

Matlab. The running time of the proposed method with com-

parison to other competing methods is reported in Table 5.

The LSSC method is implemented in other platform and

thus we don’t report its running time. For image denois-

ing, the proposed SSC–GSM method is about 6–9 times

faster than the NCSR and BM3D-SAPCA methods. For

image deblurring and superresolution, the proposed SSC–

GSM method is much slower than other competing meth-

ods, as it requires more than four hundreds iterations.

Since the patch grouping and the SSC for each exemplar

patch can be implemented in parallel, the proposed SSC–

GSM method can be much speeded up by using paral-

lel computation techniques (e.g., GPU). Another way to

accelerate the proposed method is to improve the conver-

gence speed of Algorithm 1, which we remain it as future

work.

6 Conclusions

In this paper, we proposed a new image model named SSC–

GSM that connects SSC with GSM and explore its applica-

tions into image restoration. The proposed SSC–GSM model

attempts to characterize both the biased-mean (like in NCSR)

and spatially-varying variance (like in GSM) of sparse coef-

ficients. It is shown that the formulated SSC–GSM problem,

thanks to the power of alternating direction method of mul-

tipliers - can be decomposed into two subproblems both of

which admit closed-form solutions when orthogonal basis is

used. When applied to image restoration, SSC–GSM leads

to computationally efficient algorithms involving iterative

shrinkage/filtering only.

Extensive experimental results have shown that SSC–

GSM can both preserve the sharpness of edges and suppress

undesirable artifacts more effectively than other competing

approaches. This work clearly shows the importance of spa-

tial adaptation regardless the underlying image model is local

or nonlocal; in fact, local variations and nonlocal invariance

are two sides of the same coin - one has to take both of them

into account during the art of image modeling.

In addition to image restoration, SSC–GSM can also be

further studied along the line of dictionary learning. In our

current implementation, we use PCA basis for its facilitating

the derivation of analytical solutions. For non-unitary dictio-

nary, we can solve the SSC–GSM problem by reducing it to

iterative reweighted l1-minimization problem (Candes et al.

2008). It is also possible to incorporate dictionary D into

the optimization problem formulated in Eq. (5); and from

this perspective, we can view SSC–GSM as a generalization

of K-SVD algorithm. Joint optimization of dictionary and

sparse coefficients is a more difficult problem and deserves

more study. Finally, it is interesting to explore the relation-

ship of SSC–GSM to the ideas in Bayesian nonparametrics

(Polson and Scott 2010; Zhou et al. 2012) as well as the idea

of integrating over hidden variacles like BLS-GSM (Portilla

et al. 2003).
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