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Abstract—Image retargeting aims to adapt images to displays of small sizes and different aspect ratios. Effective retargeting requires

emphasizing the important content while retaining surrounding context with minimal visual distortion. In this paper, we present

such an effective image retargeting method using saliency-based mesh parametrization. Our method first constructs a mesh image

representation that is consistent with the underlying image structures. Such a mesh representation enables easy preservation of

image structures during retargeting since it captures underlying image structures. Based on this mesh representation, we formulate

the problem of retargeting an image to a desired size as a constrained image mesh parametrization problem that aims at finding a

homomorphous target mesh with desired size. Specifically, to emphasize salient objects and minimize visual distortion, we associate

image saliency into the image mesh and regard image structure as constraints for mesh parametrization. Through a stretch-based

mesh parametrization process we obtain the homomorphous target mesh, which is then used to render the target image by texture

mapping. The effectiveness of our algorithm is demonstrated by experiments.

Index Terms—Image retargeting, mesh parametrization, attention model.

✦

1 INTRODUCTION

Mobile devices, such as cellular phones and PDAs,
are increasingly common. These devices often have im-
age display functionality. Normally, images have much
higher resolutions and different aspect ratios than the
small screens of these mobile devices. Those images need
to be adapted to fit the target displays. We define the
problem of adapting an image to various target screens
as image retargeting.

A common solution to image retargeting is to uni-
formly rescale the original image according to the tar-
get screen size. This naive scaling is problematic. The
important objects in image maybe become too small
to be recognized. Moreover, if the original image has
a different aspect ratio than target screen, distortion is
introduced into the result. Alternatively, an important
image region is cropped and displayed [3], [21], [25].
The disadvantage of cropping is the loss of contextual
content which is important to appreciate the image.
When there exist multiple important objects that are
faraway from each other, cropping inevitably loses some
of them in order to keep a necessary resolution of the
selected object.

Recent methods achieve focus+context image retarget-
ing by non-uniform warping [12] or segmentation-based
image composition [24], [23]. The former suffers from im-
age distortion and the latter is subject to performance of
segmentation. The seam carving method achieves image
resizing by iteratively carving less noticeable seams [2].
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Although it tries to remove less noticeable seams, it
still produces artifacts like breaking objects since image
structures have not been explicitly considered. Similarly,
the non-homogenous retargeting method [29] tries to
achieve seamless retargeting results without resorting
to image segmentation. It, however, fails to take image
structures into account, and sometimes breaks important
object shapes.

Effective image retargeting should emphasize impor-
tant content while retaining surrounding context with
minimal visual distortion. Given the limited target size
and different aspect ratios, we necessarily have to in-
troduce distortion into the target image, in order to
emphasize important content and meanwhile to retain
the context. The challenge is to minimize the visual
distortion. In this paper, we propose to represent the
image by a mesh that is consistent with the underly-
ing image structures, and then adapt images via mesh
transformation. This mesh representation enables us to
easily preserve image structures during retargeting. Also
adapting images via transforming mesh ensures smooth
image transformation. This helps to achieve effective
image retargeting. Specifically, in this paper, we define
image retargeting as a mesh parametrization problem,
which aims to find a homomorphous mesh with the
target size. We first build a feature relevant controlling
mesh from the source image. To emphasize salient ob-
jects, we associate image saliency with the mesh, and
accordingly encourage the mesh to morph in such a
way that the size of a salient mesh cell (triangle) is
reduced less than non-salient ones. To minimize visual
distortion, our method encodes preservation of salient
objects and image structure as constraints during mesh
parametrization. The target mesh is solved using a
stretch minimizing parametrization scheme. The target
image is finally rendered by texture mapping.
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The main contribution of this paper is an effective im-
age retargeting method which has the following benefits.

• Our method emphasizes important image content
while retaining the surrounding context with mini-
mal visual distortion. Mesh representation endows
salient objects and strong structures with compact
representations. Emphasis of salient objects as well
as preservation of structures are simultaneously
achieved by encoding them as constraints of para-
metrization during retargeting.

• Image with multiple salient objects can be easily
retargeted via mesh parametrization. Retargeted po-
sitions of salient objects are automatically deter-
mined by the mesh parametrization process, rather
than placing objects’ positions beforehand as previ-
ous methods have done. Furthermore, exaggerated
scales of salient objects can be determined automat-
ically or controlled by user with simple parameter
setting.

The rest of this paper is organized as follows. We
give a brief overview of previous work in Section II. In
Section III, we describe the retargeting approach using
saliency-based mesh parametrization in detail. We exam-
ine our method in Section IV and conclude the paper in
the last Section.

2 RELATED WORK

The problem of retargeting images to small screens
has been considered by many researchers. Almost all
image browsers on small-screen devices provide scaling
functionality. A large image is uniformly downsampled
to fit the target screens. Important objects in the image
are often small and difficult to identify. To account for
different aspect ratios, either the distortion caused by
aspect ratio change is introduced or black letter box is
used to fill in the blank space, thus wasting the precious
space.

Many methods identify an important region in the im-
age and crop this region to fit target screen. These meth-
ods usually rely on image analysis, such as attention
model extraction and object detection, to identify the im-
portant region [3], [7], [9], [8], [17]. Eye-tracking systems
can also be used to infer the important region [21]. After
obtaining the important region, it is cropped out [3],
[21], [25]. These cropping-based retargeting methods can
effectively preserve important information of the original
image, at the expense of losing valuable context infor-
mation. Moreover, their performance is dependent on
the accuracy of important region detection. Alternatively,
when multiple important objects are identified, a tour
on the image can be created by jumping through each
object [10], [16]. While this scheme is effective in some
situations, it is infeasible when viewer must examine
many images within limited time.

Recently, Liu and Gleicher [12] presented a fish-eye
view warping scheme to achieve the goal of emphasizing
the important region while retaining the surrounding

context. This method can effectively achieve the fo-
cus+context view of the original image. However, it
creates noticeable distortion, especially in the contex-
tual region. Setlur et al. [24] proposed to segment the
prominent objects and to re-compose them onto resized
background. This method can achieve focus+context at
the minimal distortion. However, the performance is
subject to that of image segmentation. In [13], Gal et al.
presented a Laplacian editing based texturing method
that allows any image to be warped in a feature-aware
manner. One difference between their method and the
proposed approach is that they employ regular grid to
represent input image, while we use triangular meshes.
Using irregular triangular meshes enables a better ap-
proximation of structured edges, thus facilitating the
preservation of them, especially for slant edges. A simi-
lar quad grids-based method is given by Wang et al. [14],
which computes the optimal target grids by distributing
warping scales non-uniformly among grid lines accord-
ing to image content. An efficient formulation for the
non-linear optimization, which allows interactive image
resizing, has also been developed. Most recently, Avidan
and Shamir [2] proposed a nice “seam carving” method
for resizing images. Their method iteratively carves un-
noticeable seams to reduce the image size. However, it
often breaks image structures since the carving proce-
dure only relies on low-level saliency information and
fails to consider image structures.

Retargeting videos has also been considered [5], [11],
[15], [20], [27], [29]. For example, Fan et al. [5] used a
visual attention model to find important regions, and
provided automatic, semi-automatic and manual modes
for users to select and zoom into these important re-
gions while browsing. Liu and Gleicher [15] utilized
cinematography rules and designed a video retargeting
system to automate pan and scan operation. Both Setlur
et al. [23] and Cheng et al. [4] proposed context re-
composition for preserving salient information. These
methods first segment salient objects based on the de-
tected saliency prior. Then they fill in the holes left after
object segmentation. Finally, they compose salient objects
back onto the resized background video frames based
on a set of aesthetic criteria. Wolf et al. introduced an
optimization algorithm for non-homogeneous video re-
targeting [29]. Considering spatial-temporal constraints,
a per-pixel discrete transformation that shrinks less im-
portant pixels is utilized to resize video sequences.

3 RETARGETING USING MESH
PARAMETRIZATION

Image retargeting attempts to adapt a source image
to display of a smaller size and different aspect ratio
than originally intended. We formulate image retargeting
as a mesh parametrization problem that emphasizes
the important content while retaining the surrounding
background with slight distortion. Fig. 1 illustrates the
outline of our algorithm. To emphasize salient objects in
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(a) (b) (c) (d) (e)

Fig. 1. Algorithm overview. Our algorithm first builds a feature relevant controlling mesh (b) from the input (a). The source mesh
is then associated with image saliency information (c) to emphasize the salient objects, marked with blue edges in (b). Afterwards,
the target mesh with desired resolution is produced by solving a mesh parametrization problem (d). Standard texture mapping is
finally used to render target image as shown in (e).

image, we first calculate a saliency map of the source
image (Section 3.1). Then we build a controlling mesh of
the input image that is consistent with the underlying
image structures, and associate the saliency information
with the source mesh (Section 3.2). In this way, retar-
geting is transformed into a parametrization problem
of finding a target mesh with the desired resolution. In
order to improve visual quality of the target image, we
interpret preservation of saliency and image structure in-
formation as constraints of parametrization (Section 3.3).
Afterwards, the target mesh is solved by a constrained
stretch-based mesh parametrization scheme (Section 3.4).
Retargeting result is finally rendered using the standard
texture mapping algorithm.

3.1 Importance Computation

The information of important objects in an image is
necessary for image retargeting to emphasize those ob-
jects. Although semantic image understanding is be-
yond the state-of-the-art, heuristic rules have been used
successfully as an alternative (c.f. [16], [3], [23], [12],
[25]). Like previous work, we use the low-level saliency
information as well as high-level object information to
infer important objects.

Saliency has been used in many applications to detect
the important region in an image. It has been extensively
explored in the past several years [9], [8], [3], [17]. We use
the contrast-based saliency detection method proposed
by Ma et al. [17] to compute a normalized saliency
value for each image pixel. Based on heuristic rules
about human visual perception, this method calculates
the visual-feature contrast as saliency.

Human face and body are usually important in photos.
We employ the Viola-Jones face detector to detect faces
[26]. Besides, We have developed a method that uses
the located face to automatically estimate the body. We
estimate one rough head-shoulder mask covering human
body and then extract human body using an iterative
Graph Cut algorithm [28]. Specially, saliency values for
those pixels in human body are set 1. In addition, users
can also specify important objects that are hard to detect
automatically.

3.2 Image Representation

Generating a mesh from an image has been used in some
multimedia applications like video compression [1]. The
key issue is to generate a mesh that is consistent with
the input image structures. Inspired by the previous
work [1], we first detect feature points from the input
image Is, and then use Delaunay triangulation [22]
algorithm to generate the mesh as follows:

• We first evenly discretize the input image boundary,
and use all the points there as part of the feature
points.

• We employ an edge detection operator, for example
Canny operator, for extracting some feature points.
Note that, only part of Canny detected pixels are
kept as mesh points using a distance threshold. For
keeping uniformity of point density, some auxiliary
ones are usually added, as mesh with nearly uni-
form density normally facilitates its processing.

• Finally, we use the constrained Delaunay triangula-
tion algorithm [22] to generate a feature-consistent
mesh Ms (Fig. 2).

(a) (b)

Fig. 2. Mesh generation. (a) Input image with boundary (the
yellow dots) and feature points (orange ones) evenly distributed.
(b) Delaunay triangulation result. The rest mesh points are
added automatically with a distance threshold to maintain mesh
uniformity.

For clarity of exposition, we define here some nota-
tions of the mesh. Let Mt be the target mesh to be
solved. {Pi = (xi, yi)|i = 1, ..., n} and {Qi = (ui, vi)|i =
1, ..., n} represent the points of Ms and Mt separately.
{Qi|i = 1, ..., n} are to be solved in Mt, and Qi is
the counterpart of Pi of Ms. △P = △(Pi, Pj , Pk) and
△Q = △(Qi, Qj, Qk) are corresponding triangle pairs of
Ms and Mt. Due to the same topology of Mt and Ms,
edge e(QiQj) in Mt corresponds to edge e(PiPj) in Ms.
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In Fig. 1, (b) is Ms produced using the above scheme
and (d) is Mt solved by parametrization.

In order to treat image regions discriminatively, we
associate the source mesh Ms with the saliency map of
Is. The salient value S△P

of a triangle △P is calculated
by averaging saliency values of all pixels in △P . With
these associated saliency information, we can perform
mesh parametrization in such a way that salient edges
shrink less than those less salient ones. In this way,
salient objects are emphasized.

3.3 Constraints in Parametrization

Retargeting should completely preserve salient objects
that are immune from even slight distortion. Meanwhile,
emphasize them to some extent. Furthermore, image
structures in the remaining regions, which show in terms
of strong edges, are important visual features. They
shall be retained as-rigid-as possible. To achieve these
goals, we define here several constraints, and incorpo-
rate them into mesh parametrization. The constraints
include boundary constraint ensuring boundary con-
sistence, saliency constraint emphasizing salient objects
and avoiding distorting them, and structure constraint
preserving strong edges as-rigid-as possible.

3.3.1 Boundary constraint

The source image boundary shall be mapped onto that
of the target screen. Therefore, we require that the target
mesh boundary should be adhere to the target screen
boundary by defining the following constraints.

First, we map the points of Mt which correspond
to four corner points of Ms onto the target screen’s
corners by fixing those corner points. For the other non-
corner points on the up and bottom boundaries, the
v−coordinates of M′

ts boundary points are fixed as the
corresponding y−coordinates of the screen’s up and bot-
tom boundary respectively. While their u−coordinates
are to be solved by parametrization. Similarly, for
those non-corner points on the left and right bound-
ary, we fix their u−coordinates while solving for their
v−coordinates (Fig. 3).

PU

PB

PL PR

yU

yB

xL xR

QU=(uU,vU)

QB=(uB,vB)

Q
L

=
(u

L
,v

L
)

Q
R

=
(u

R
,v

R
)

(a) (b)

Fig. 3. Boundary constraint. (a) Boundary points PU , PB, PL,
and PR of Ms should be mapped onto boundary of the target
screen. (b) Accordingly, v−coordinates of QU and QB are set
as yU and yB separately, and we solve for their u−coordinates.
For QL and QR, opposite case exists.

Suppose that M′
ts up, bottom, left, and right bound-

ary points are QU,i|i=1,.,nU
, QB,i|i=1,.,nB

, QL,i|i=1,.,nL
,

and QR,i|i=1,.,nR
respectively. Correspondingly, target

screen’s up and bottom y−coordinates are yU and yB . Its
left and right x−coordinates are xL and xR. We express
the above boundary constraints as:

FB =

nU
∑

i=1

|vU,i − yU | +

nB
∑

i=1

|vB,i − yB| +

nL
∑

i=1

|uL,i − xL| +

nR
∑

i=1

|uR,i − xR| = 0. (1)

3.3.2 Saliency constraint

We aim to emphasize salient objects in an image and
minimize their distortion. Since automatically obtaining
accurate object boundary is difficult, we use a conser-
vative strategy. Specifically, we cluster triangles with
saliency above a given threshold Sµ as an object. Gener-
ally, we try to include non-object area rather than miss
a triangle that is a part of the object by using a small
threshold. An object is defined as follows:

{Osj =

nj
⋃

i=1

(S△i
> Sµ)|j = 1, ..., J}, (2)

where Osj is a salient object in the source image with
nj triangles. J is the number of salient objects. Through
extensive experiments, Sµ is set to 0.6 empirically.

Pos2
Pos1

Qos1 Qos2

(a) (b)

Fig. 4. Saliency constraint. (a) The input image contains two
salient objects. (b) Each salient object undergos rigidly scale
and translation transform. Its retargeted part is determined by
mass point’s position, together with a scale factor encoded in
polar coordinate transformation.

We define the following constraint to avoid distortion
of objects. Specifically, only a scaling transformation is
allowed for every salient object Osj . To achieve this
goal, a mass-center point POsj

is first calculated by
averaging all points in Osj of Ms. Afterwards, the polar
coordinates (ri, θi) of Pi in Osj is obtained by taking
POsj

as the pole. During retargeting, Osj undergos rigid
transformation with a scale factor zOsj

. Hence the trans-
formed polar coordinates of Pi equal (zOsj

·ri, θi). If given
QOsj

, the target position of POsj
after retargeting, we can

convert the polar coordinates into the target Euclidean
coordinates of Qi, the corresponding target point of Pi
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(Fig. 4). Assume that the formula of transforming polar
coordinates to Euclidean coordinates is f , we then have:

Qi = f(QOsj
, zOsj

· ri, θi), (3)

We can represent the above saliency constraint as:

FSA =

J
∑

j=1

(

nj
∑

i=1

|Qi − f(QOsj
, zOsj

· ri, θi)|) = 0, (4)

where retargeted part of Osj has nj points Qi|i=1,.,nj
.

To emphasize salient objects, relative scales of salient
objects should be exaggerated in contrast to other re-
gions so that salient ones have higher resolution. We
calculate the scale factor zOsj

as follows. For a sin-
gle salient object in image, zOsj

can be determined
by restricting the retargeted salient object within the
target screen. If several salient objects exist, total area
of retargeted objects should not exceed that of the target
screen. Furthermore, the summed width and height of
retargeted objects should not exceed those of the target
screen as well.

In parametrization, QOsj
is the only unknown parame-

ter for salient object Osj to be solved by parametrization.
All points of retargeted salient object are encoded by it in
(3). Once QOsj

is known, they can be figured out using
(3).

3.3.3 Structure constraint

Strong edges are important visual features. They are
vital clues for understanding image content, and should
be maintained as-rigid-as possible. As salient objects
are preserved completely by using the above saliency
constraint, we only address here strong edge segments
in the rest regions. We detect those strong edge segments
using Hough transform. The segments detected are as
follows:

{Lk = (

mk
⋃

i=1

Pk,i)|k = 1, ..., K}. (5)

where Lk is the segment passing through points
Pk,i|i=1,..,mk

of Ms as illustrated in Fig. 5 (a). K is the
number of segments. As Hough transform may produce
too many trivial segments, we filter out those segments
by requiring that the length of each segment exceeds a
given threshold. The default value of this threshold is set
to 0.1 fold of the minimum of ws and hs. Furthermore,
only one segment is reserved if several segments are
close enough. In implementation, Hough transform is
first exerted and the resulting segments are discretized
into points before Delaunay triangulation for ensuring
that mesh edges adhere to strong edges.

We require that Qk,i|i=1,..,mk
, target points of

Pk,i|i=1,..,mk
, still pass through a line. We call it

linearity constraint. Assume the retargeted lines are:

{RLk = (

mk
⋃

i=1

Qk,i)|k = 1, ..., K}. (6)

P1,i0

P1,i, i=1,...,5 P2,i, i=1,...,8

Q1,i, i=1,...,5 Q2,i, i=1,...,8

(a) (b)

Fig. 5. Structure constraint. (a) Two feature point sets P1,i,i=1,.5

and P2,i,i=1,.8 adhere to strong edges detected in input image.
(b) Their retargeted sets Q1,i,i=1,...,5 and Q2,i,i=1,...,8 should
pass through lines as well. We interpret this as soft constraint.

RLk is the retargeted line of Lk by the expression y =
ak·x + bk. Qk,i satisfies vk,i = ak·uk,i + bk. Here ak and
bk can be easily represented by two points in RLk.

In practice, however, some line segments have to
violate the linearity constraint in order to emphasize
important objects in the input image. So we define the
following soft energy constraint and encourage meet of
the above linearity constraint as much as possible:

EST =

K
∑

k=1

(

mk
∑

i=1

(vk,i − ak·uk,i + bk)2). (7)

We have defined several constraints. In following, we
show how to integrate them into parametrization as soft
or hard constraints during parametrization.

3.4 Constrained Mesh Parametrization

With the source mesh Ms, we formulate retargeting as a
parametrization problem that tries to find a target mesh
Mt. Mt has the same topology as Ms and the target
screen size. Mesh parametrization has been extensively
studied in computer graphics. Its original intention is
to establish the correspondence between unordered 3D
mesh and the mesh on parametric domain, e.g., plane or
sphere. Most methods typically seek solutions by mini-
mizing the metric deformation involved in parametriza-
tion. Till now, many different metric criteria have been
brought forward. Among them, stretch-based methods
usually work well when reducing the global mesh dis-
tortion [18], [30]. The basic observation is that from per-
spective of discrete computational geometry, the mesh
can be fully determined by the lengthes of all its edges.
We extend traditional 3D-to-2D mesh parametrization to
2D-to-2D, and solve Mt using one constrained stretch-
based parametrization scheme.

3.4.1 Computation of edge lengthes of target mesh

Mt is completely characterized by the lengths of its
edges. As edges of salient objects are determined by
their scale factors, we describe the method of computing
the ideal lengths of remaining edges of Mt. Such ideal
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ws

hs

os1 os2

wt

ht

(a) (b)

Fig. 6. Scale factor for each edge is determined by resolution
variance of retargeting, as well as its position with respect to
salient objects.

lengths will serve as the objective stretches in parame-
trization. Reasonable length setting normally facilitates
the parametrization process, leading to topology valid
target mesh.

Intuitively, edges of Mt are transformed from their
counterparts of Ms with respect to resolution variation
of retargeting. Transforming scale of each edge is also
subject to exaggerated scales of salient objects. We ad-
dress such scale in x and y directions separately. To
determine transforming scale in x direction, the mesh is
divided according to salient objects’ positions as shown
in Fig. 6 (a). We first compute a virtual scale for each
mesh point, then compute the transforming scale for one
edge by averaging scales of its two points.

Let ws×hs and wt×ht represent resolutions of the
source image and target screen separately. It is obvious
that if a point Pi = (xi, yi) lies in the red rectangle in
Fig. 6 (a), its ideal scale should be wt/ws. Otherwise,
if it lies in the green or blue rectangle, the scale is also
related to the scale factors of salient objects. Assume that
segment lengthes formed by the line y = yi intersecting
with salient objects are {lOsj

|j = 1, ..., J}. The ideal scale
factor of Pi is

(wt −
J

∑

j=1

zOsj
∗ lOsj

)/(ws −
J

∑

j=1

lOsj
). (8)

where zOsj
is the scale factor of Osj . For instance the

mesh of Fig. 6 (a), if Pi lies in the red rectangle, lOs1
=

lOs2
= 0. If it lies in the green rectangle, lOs1

= 0 and lOs2

is positive. Otherwise both lOs1
and lOs2

are positive.

We can similarly compute the virtual scale for Pi in
y direction. For each edge e(PiPj), its scale factor is
calculated by averaging the scale factors of Pi and Pj in
x and y directions separately. Let (sxij , syij) be e(PiPj)

′s
scale factor.

Assume that x and y directional lengthes of edge
e(PiPj) are (lxij , lyij). Taking the above e(PiPj)

′s scale
factor into account, the reasonable length configuration
of edge e(QiQj) in Mt is:

lij = le(QiQj) =
√

(sxij ∗ lxij)2 + (syij ∗ lyij)2. (9)

3.4.2 Mesh parametrization

Mt can be inferred from its edge lengths by minimizing
the following energy function:

El =
∑

(QiQj)∈edges

(||Qi − Qj ||
2 − l2ij)

2/l2ij . (10)

For salient object Osj , stretching terms about edges
within its retargeted part are precluded from (10). Only
the terms about edges connecting their boundary points
with outer points take effect. Boundary points are en-
coded by retargeted pole of Osj as described in subsec-
tion 3.3.2.

Taking symmetry of the above equation into account,
energy gradients on point Qi are:

∂El

∂ui

= 8
∑

(QiQj)∈edges

(||Qi − Qj ||
2 − l2ij) · (ui − uj)/l2ij (11)

∂El

∂vi

= 8
∑

(QiQj)∈edges

(||Qi − Qj||
2 − l2ij) · (vi − vj)/l2ij (12)

Obviously, the above equations can be easily solved.
But when Mt is excessively dense, directly solving the
above equations may cause adjacent triangles of Mt to
flip over, leading to invalid topology. This is caused by
inverting the orientation of the triangle points. To tackle
this issue, we revise the energy function by penalizing
reversion of triangle orientation with sign function [18].

Original mesh

x

y

Pj

Pk2

Pi

Pk1

Retargeted mesh
u

v

Qj

Qi

Qk2

Qk1

(a) (b)

Fig. 7. Orientations of the triangles (b) in retargeted mesh
should keep consistent with orientations of their corresponding
ones (a) in original mesh.

Assume that △Q1 = △(QiQk1Qj), △Q2 =
△(QiQjQk2) are two adjacent triangles incident upon
edge e(QiQj). Their corresponding triangles in Ms of
the source image are △P1 = △(PiPk1Pj), and △P2 =
△(PiPjPk2) (Fig.7). For each pair of corresponding tri-
angles, the orientations of points should be equal. To
achieve this, we define:

wij = sign min(det(
−−−−→
QiQk1,

−−−−→
QjQk1) · det(

−−−→
PiPk1,

−−−→
PjPk1),

det(
−−−−→
QiQk2,

−−−−→
QjQk2) · det(

−−−→
PiPk2,

−−−→
PjPk2)). (13)

The new energy function is defined as follows accord-
ingly:

El =
∑

(QiQj)∈edges

(wij · ||Qi − Qj ||
2 − l2ij)

2/l2ij , (14)
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Input Mesh Target mesh Our result

Fig. 8. Our retargeting results. The first column shows the input images with lines detected. The middle two columns are the
meshes resulting from triangulation and the target meshes. In the last column, we show our retargeting results.

where coefficient wij penalizes the triangle in Mt that
flips over its orientation. If so, wij is chosen as -1,
otherwise +1. This scheme guarantees a valid target
mesh.

Overall, taking into account constraints in subsection
III.3, the constrained mesh parametrization is finally
defined as,

argminQi,i=1,...,n(El + λ · EST ), s.t. FB , FSA = 0. (15)

Boundary constraint and saliency constraint are hard
constraints in the above equation, while structure con-
straint is viewed as soft constraint. λ is one weight factor
balancing the influence of parametrization energy and
structure constraint. Through extensive experiments, it
is set to 0.5 for all our results in Section 4.

The energy of (15) is minimized using the multi-
dimensional Newton’s method. For each iteration of
Newton’s method, a multi-grid solver [19] is used to
solve the sparse linear equations. In practice, the initial
solutions of the equation are set to the positions of mesh
points resulting from scaling the input image. For the

spare mesh density as shown in Fig. 1(b), the equation
converges to the final solution very fast.

Points of Mt in less salient region and retargeted poles
of salient objects are generated through minimization
of (15). Afterwards, points on retargeted salient objects
are produced using equation (3). Once the target mesh
Mt is obtained, we render the resulting image using a
standard texture mapping algorithm [6]. Such process
in general can be efficiently implemented, since texture
mapping is a basic function supported by modern graph-
ics processing units (GPUs) and graphics hardware on
cellular phones.

4 EXPERIMENTS

We experimented with our algorithm on a variety
of images. Some representative results are shown in
Figs. 8, 9, 10, 11, and 15.

Fig. 8 demonstrates some results together with the
intermediate meshes. The second and third columns give
the meshes generated by triangulation, and the target
meshes produced by our algorithm respectively. For
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(a)          (c)      (d)          (b) 

Fig. 9. Results for horses in grassland with different aspect ratios. (a) Original image with 743 × 512 resolution. (b), (c), and (d)
Our results of sizes 320 × 320, 480 × 270, and 320 × 240, and in aspect ratios of 1 : 1, 16 : 9, and 4 : 3 separately.

(a) (b) (c) (e) 

(d) 

Fig. 10. Results for the cow and goat in grassland with different aspect ratios. (a) Original image with 800 × 534 resolution. (b),
(c), (d), and (e) Our results of sizes 240 × 320, 240 × 240, and 664 × 240 and 428 × 240. They are in aspect ratios of 3 : 4, 1 : 1,
25 : 9, and 16 : 9 respectively.

Fig. 11. Example of retargeting salient objects with different target scales. From left to right: input image of size 910 × 720, and
resulting images of size 320 × 320 and with the scales of 0.25, 0.35 and 0.5 of salient people compared with the original.

images with background structures, lines detected and
used as structure constraints are shown in the first col-
umn. Although such lines are sparse, they exert crucial
effect in preserving background structures. For the input
image in the fourth row, retargeting positions of the two
girls are automatically computed by our algorithm.

Figs. 9 and 10 show several examples where there
exist multiple important objects. Original images are
adapted to different sizes and aspect ratios of popular
mobile devices, e.g. 1:1, 3:4, 4:3, 16:9, even 25:9. As
can be seen, our method effectively emphasizes all the
important objects by non-uniformly shrinking contextual

regions. The distortion in these results is merely visible.
Using our approach, target scales of salient objects can
be controlled by the user. Fig. 11 gives such an example.
The retargeting scales of salient objects vary according
to user input scale parameters.

To demonstrate the effectiveness of our algorithm,
we also compare to the results of many representative
methods as shown in Fig. 15. The original images in the
first, third and fifth rows are of sizes 1024×768, 685×512
and 800×586 separately. All resulting images are of size
320 × 320 except the uniform scaling results. Obviously,
we can see that uniform scaling usually makes the faces



PAPER TO APPEAR IN IEEE TRANSACTIONS ON MULTIMEDIA 9

(a) (b) (c) (d)

Fig. 12. Comparison between our approach and quad grids-based methods. (a) Input image. (b) Gal et al’s result [13]. (c) Wang
et al’s result [14]. (d) Our result. Our result is comparable to their results. (a), (b), and (c) are fetched from the paper [14].

too small to identify. While automatic cropping can
effectively emphasizes the important content [25], the
context is lost. Results of fisheye warping (last column
in odd rows) can achieve the goal of focus+context.
However, fisheye warping may introduce noticeable
distortions to background structures. Moreover, it only
works well for image with single important object. The
results in the first column of even rows are produced
by segmentation-based composition [23]. For image with
similar foreground and background color distributions,
accurate segmentation poses a big challenge. Moreover,
inpainting for background with complex structure is
difficult. The seam carving method [2] may also destroy
persons in the images (second column of even rows).
We then integrate saliency and face detection into seam
carving algorithm such that humans can be preserved
completely (third column of even rows). But objects in
background are destroyed now (see the artifacts high-
lighted by the red rectangles).

The last column of even rows in Fig. 15 gives our retar-
geting results. In our results, the persons are given high
resolution and free from distortion. Since our method
preserves image structures as much as possible, little
visual distortion is introduced to the background of
images. For example, the structure of the Golden Gate
Bridge is well preserved.

We further compare our result with those produced
by quad grids-based methods [13], [14]. From Fig. 12, it
is obvious that our result is comparable to their results.

Computational complexity of our approach mainly
depends on the size of the mesh, namely the number of
mesh points and edges. The mesh size again depends
on the source image size and mesh density. The ma-
jor computation is spent on minimizing the energy in
Equation (15). Normally, a source image is divided into
a spare mesh, with several hundred mesh points. For
example, the mesh of Fig. 1(b) has around 150 points.
The number of variables of equation (15) for this example
is around 120. Such equation can be solved efficiently
using the multidimensional Newton’s method. Given
the target mesh, rendering the target image using the
standard texture mapping method is trivial especially
when such operation is accelerated by a common PC or

cellular phone graphics chip.

(a) (b)

Fig. 13. Example of the image display for user study. Partic-
ipants were shown two versions of each image on the image
panels of a virtual Palm Treo. The input image was also given
as reference.

4.1 User Study

To further evaluate the effectiveness of our approach, we
carried out one user study. The objective is to determine
whether the results of our method are preferred by users
to those of other methods including uniform scaling,
automatic cropping [25], fisheye warping [12], and seam
carving [2].

TABLE 1

Statistical data of user study.

Parti Std.
Images cipants Mean (%) of wins dev. p

Croping 25 28 18.5 2.05 0.0001
(73.86%)

Scaling 25 23 19.7 1.61 0.0001
(78.8%)

Fisheye 25 22 16.27 3.91 0.0041
warp (65.1%)
Seam 25 24 15.3 2.58 0.0126

carving (61.2%)
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Fig. 14. Images (odd rows) and our retargeting results (even rows) used in user study. Another image is shown in Fig. 13.

25 representative images, together with the results of
the tested algorithms, were used in our experiments. The
images have wide diversity of types, e.g. images with
simple and complex background, people and multiple
salient objects. All the target images are of size 320×320
that fits a Palm screen resolution. The input high reso-
lution images and our retargeting results are shown in
Fig. 14. The user study consisted of four parallel parts, in
which we compare the results of our method with those
of scaling, cropping, fisheye warping, as well as seam
carving separately. For fair comparison, seam carving is
executed by incorporating saliency and face detection.

The study was conducted off-line and on-line simulta-
neously. For the off-line study, a participant was shown a
pair of retargeted results of each input image, displayed
on the image panels of a virtual Palm Treo as shown in
Fig. 13. Each pair consisted of one result of our method
and one of the other method. Whether our result was
on the left or right was randomized. Specifically, the
input image was also displayed for comparison. The
participant was asked to select one from the pair they

preferred, and to write the answer on the answer sheet.
On-line study was conducted similarly. The link of the
study was opened to our computer science department
and one consumer electronics company during the study.
Subjects voluntarily responded to advertisements posted
to the mailing lists and were not compensated for their
time. Totally 97 different participants participated in
our user study. They were in ages of 20 to 35, and
were mainly undergraduate and graduate students of
our department, as well as the IT employees. To our
knowledge, they remained unknown about our project.

The statistical data of user study are shown in Table
1. For each part of the study, we count the total number
of times that our result was preferred by participants.
Overall, participants selected our results over cropped
images 18.5 out of 25 times (73.86%) and over scaled
images 19.7 (78.7%). p values of the t test given in the
last column of the Table show that the comparisons
were statistically significant. We further checked the
testing images, and found that for images with a simple
background, users normally chose cropping against ours.
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While for the image with obvious structures in the back-
ground, they usually enjoyed ours as we preserved more
image structures and avoided distortion as much as
possible. This phenomenon indicates that visual features
in surrounding context still have dominant effects on
viewing experience in addition to the important objects.

Participants selected our results over results of fisheye-
view warping 65.1% of times, over those of seam carving
61.2% of times. Actually, both fish-eye warping and seam
carving achieve “focus+context” image retargeting with
different schemes. Participants finally reported that for
most of the results, they cannot distinguish our effect
from the effects of fish-eye warping and seam carving
at first glance. Our results visually resemble those of the
two methods, especially when fitting images with simple
background to a Palm screen of size 320×320. However,
for images with complex background structures, fish-
eye warping tends to shrink objects near background
too much. In addition, seam carving inevitably destroys
some background structures. While our results can pre-
serve the original background structures as-rigid-as pos-
sible, and meanwhile emphasize the important objects
to some extent. As a result, users normally prefer our
results when referring to the input images.

4.2 Limitations

Our method retargets images with salient objects by a
process of saliency-based mesh parametrization. Salient
object extraction relies on image saliency and face detec-
tion. Since 2D image is prone to variations of body poses,
face expression, and illumination, the robust human
face and body detection is still challenging. This makes
accurate salient object extraction difficult. In our test
examples, our method fails to capture some important
human bodies with varied face poses or illumination. It
is one drawback of our approach.

In addition, we emphasize salient object with an em-
phasis scale which can be determined automatically or
set by the user. Emphasis of relative scale of salient object
however will inevitably distort its nearby objects. We
try to relieve such artifact with the structure constraint,
which is imposed by detected structured segments dis-
tributed over background. Nevertheless, if background
contains fewer detected segments, the structure con-
straint is insufficient. One example can be seen in the
Universal Studios near the Globe example in Fig. 15.
As the left part of the image contains fewer structured
segments, structure constraint can not perfectly deal
with the deformation of this area during retargeting.
The people standing near the Globe in background are
distorted as a result. This is another limitation of our
current implementation. In fact, such image has many
other structured curves, e.g. the contour of the Globe. In
future, we intend to integrate preservation of more com-
plex curved structures into our parametrization formula-
tion, for better relieving obvious structure deformation.
Furthermore, now we mainly evaluate the effectiveness

of our structure constraint for images with a variety
amount of structures, ranging from simple background
to complex background such as some examples shown in
Fig. 8 and Fig. 14. We do not fully evaluate it for overly
complex images. It will be helpful to further evaluate
our approach on more images with more complex back-
ground.

5 CONCLUSIONS AND FUTURE WORK

We have proposed an effective image retargeting method
based on a mesh image representation. For the first time,
we formulate image retargeting as a mesh parametriza-
tion problem that aims to find a homomorphous mesh
with the desired size of the target display. Our method
achieves emphasizing important objects while retaining
the surrounding context. Our scheme of using mesh
representation for image adaptation enables easy preser-
vation of images structures. Thus little visual distortion
is introduced into the target image.

Representing images with mesh provides a feasible
way for image retargeting with the solid foundation
from mesh parametrization. Under mesh representation,
salient objects have a compact structure using triangles,
which makes emphasis of them more convenient and
controllable. However, for computation efficiency, we
usually triangulate the image with sparse mesh density.
The object shape is not precise. To relieve this prob-
lem, we include more triangles into the object rather
than missing some parts of the object. In this way, we
guarantee least distortion to the object. Extra valuable
screen space however is allocated to some non-important
regions that are taken as parts of the object. This is a
limitation of our current implementation. To account for
this, we will explore the use of multi-resolution meshes
for representation of images in future. That is, salient ob-
ject is precisely approximated by dense triangles, while
background is endowed with coarse ones for efficiency.

Our approach tries to adapt images with little distor-
tion. Nevertheless, image layout in terms of semantic
and topological relations between objects is not ad-
dressed. Such aspects are important to the visual per-
ception. For instance the positional relations of players
in football match, as well as their locations relative to
the ball are important. In future, we shall take into con-
sideration such relations, and investigate the solutions to
the problem. Moreover, extending our current method to
video is important.
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Fig. 15. Comparisons between our approach and previous methods. All results are produced to fit a 320 × 320 PDA screen.


