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Image Retrieval by Examples
Roberto Brunelli and Ornella Mich

Abstract—A currently relevant research field in information sci-
ences is the management of nontraditional distributed multimedia
databases. Two related key issues are to achieve an efficient con-
tent-based query by example retrieval and a fast response time. This
paper presents the architecture of a distributed image retrieval
system which provides novel solutions to these key issues. In par-
ticular, a way to quantify the effectiveness of low level visual de-
scriptors in database query tasks is presented. The results are also
used to improve the system response time, which is an important
issue when querying very large databases. A new mechanism to
adapt system query strategies to user behavior is also introduced
in order to improve the effectiveness of relevance feedback and
overall system response time. Finally, the issue of browsing mul-
tiple distributed databases is considered and a solution is proposed
using multidimensional scaling techniques.

Index Terms—Clustering, distributed database, image database
browsing, image retrieval, multidimensional scaling, relevance
feedback.

I. INTRODUCTION

T
HE CURRENT ever growing amount of multimedia data

requires a large integrated effort in the research fields of

computer vision, information retrieval and database manage-

ment for its effective management. In particular, retrieving in-

formation from multimedia repositories requires the develop-

ment of techniques to supplement traditional methods based on

textual descriptions and searches. The reason for this necessity

is twofold: associating textual descriptions to multimedia data

can be very expensive, and, more importantly, textual descrip-

tions may not characterize data adequately for subsequent re-

trieval.

An attempt to overcome this limitation is through query by

example where non textual queries are formulated by the user

using multimedia items related to the material he/she is looking

for, e.g., images or video clips for searching footage [1]–[6].

In the query by example framework, the user formulates a

query by providing examples of objects similar to the one he/she

wishes to retrieve. The system converts them into an internal

representation used for assessing their similarity to the items

stored in the database to be searched. The main advantage of

query by example is that the user is not required to provide an

explicit description of the items, which is instead computed by

the system. In order for this paradigm to be effective, good con-

tent descriptions must be computed automatically by the system
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Fig. 1. General architecture for an image retrieval system based on the query
by example paradigm. The shaded blocks are considered in detail by the current
paper.

and ways to compare them obtaining results in accordance with

human judgment should also be available.

This paper discusses the use of pattern analysis techniques,

such as density estimation, clustering, and multidimensional

scaling, for the development of a computer assisted image

search system, COMPASS.

The architecture of the system is described in Section II.

The issue of small yet effective image descriptors is considered

in Section III, while different query strategies with relevance

feedback are described in Section IV. Algorithms for opti-

mizing search strategies are presented in Section V. Finally,

some browsing issues are considered in Section VI and the

concluding remarks are reported in Section VII.

II. SYSTEM ARCHITECTURE

The overall structure of COMPASS, an image retrieval

system to support the query by example paradigm for multiple

distributed databases, is presented in Fig. 1. The system is

configured as a client–server architecture in which a client

1520–9210/00$10.00 © 2000 IEEE
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application can submit a user query to multiple image servers.

The answers from multiple image servers are then merged and

proposed to the user as a single result.

Following the query by example paradigm, users rely on the

images themselves to formulate queries. A generic image is

characterized as a triple whose elements represent a

complete description of the image pixels , possibly indirectly

by pointing to the corresponding memory storage, a derived fea-

ture description , automatically computed by the

system, and associated meta data providing information on

image contents. Derived image descriptions can be computed

directly by the client application while meta information is not

usually provided automatically.

A query by example is defined by giving a set of images

and, possibly, by selecting a subset of and a comparison

strategy to be used by the image servers when comparing the

query images to those stored in the database:

(1)

In order to answer a query, the image server compares the im-

ages in the query set to the stored ones using strategy , ob-

taining a dissimilarity score for each of them. The dissimilarity

of images could be computed using both the derived descrip-

tors and image meta-data . Derived descriptors are often

represented as numerical vectors while meta data is usually in

textual form. The analysis presented in this paper will be limited

to the use of derived descriptors represented as numerical vec-

tors, leaving out any available meta data in the computation of

image similarity. As the set of query images must be compared

to other images, a function to compute the dissimilarity of an

image from an image set must be introduced. If we restrict our-

selves to metric spaces for the derived descriptors, the distance

between an image and an image set can be computed using

the following formula:

(2)

where represent the distance defined in the metric space.

The effectiveness of feature comparison is improved by the

use of relevance feedback which modifies the distance of the

metric space using information derived from the interaction of

the user with the system. The servers then sort database items by

increasing dissimilarity. The set of the top ranked ones is re-

turned to the client together with their dissimilarity value and, if

available and requested, associated meta-data. The client, upon

receiving the answer from each server, sorts the resulting com-

plete set by dissimilarity and offers to the user a single answer.

The interaction of the user with the client is based on a graph-

ical interface (see Fig. 2), which, in close resemblance to the

interfaces for querying traditional databases, provides: an area

for the specification of the query; the possibility of restricting

searchable image content, i.e., image descriptors; an area where

retrieved items are displayed; a way to limit the number of items

retrieved by imposing a threshold on the minimum required

image similarity.

Besides database query by example, COMPASS also supports

another very important activity: database browsing. This op-

eration is important in the case of multimedia databases used

Fig. 2. COMPASS client GUI. The areas corresponding to the different
functionalities of the client are outlined.

as repositories of material to be creatively (re)assembled into

new multimedia products such as cd-rom, composite images,

footage, etc. Browsing support requirements differ from those

of querying: database items should be organized and presented

to the user in such a way that exploration of content is possible.

The solution investigated in COMPASS is the organization of

databases in clusters of similar images (see Section VI). Each

cluster is represented by the client with a key image and cluster

elements can be displayed on user demand providing a more de-

tailed view of available images.

III. IMAGE DESCRIPTION

One of the key issues in querying image databases by simi-

larity is the choice of appropriate image descriptors and corre-

sponding similarity measures. In a recent paper [7] the problem

of quantifying the effectiveness of several low level visual de-

scriptors was addressed. The proposed solution relies on the fol-

lowing definition:

Definition 1: Given an -dimensional histogram space

and a dissimilarity measure1 on , the capacity curve of

is defined as the density distribution of the dissimilarity be-

tween the two elements of all possible histogram couples within

.

Histogram capacity curves provide a basis on which the ef-

fectiveness, i.e., the discrimination ability, of different image de-

scriptors can be compared. The shape of is an indicator of

the distribution of histograms in with the topology induced

by the selected comparison dissimilarity measure. If the average

value of dissimilarity is low, histograms are not sparse enough

in and histogram indexing is not effective. This can be for-

malized by the following definition:

Definition 2: The indexing effectiveness of an histogram

space is given by the average dissimilarity value:

(3)

The indexing effectiveness can be used to assess several

descriptor-dissimilarity combinations for image retrieval

1In this context, a dissimilarity measure is a bounded, positive, and symmetric
function defined over a subset of RRR �RRR .
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TABLE I
THE EFFECTIVENESS E OF SOME

LOW-LEVEL VISUAL DESCRIPTORS. EDGENESS IS DEFINED AS THE

MAGNITUDE OF THE LUMINANCE GRADIENT WHILE THE CO-OCCURENCE OF

HUE OR LUMINANCE IS A TWO DIMENSIONAL HISTOGRAM OBTAINED BY

PARTITIONING THE IMAGE SPACE INTO COUPLES OF PIXELS BY MEANS OF A

BINARY SPATIAL RELATION: THE DESCRIPTOR VALUES AT THE TWO PIXELS

ARE USED AS INDICES IN A 2-D HISTOGRAM

applications. Several ways to compute image dissimilarity

were considered in [7]: , Kolmogorov–Smirnov, Kuiper,

and norms. The norm provided the best overall results

in terms of indexing effectiveness and stability with respect

to the number of histogram bins used. The main findings

of [7] on the discrimination ability of some basic image

descriptors on two different databases (VIDEO, a set of 40 000

frames from nine different video clips, and STILLS, a set of

3500 still images from a commercial collection) are summa-

rized in Table I.

The effectiveness of the different descriptors can also be

used to optimize the order in which they are compared. In

image retrieval tasks, a threshold on the minimum acceptable

similarity is usually imposed to limit the number of retrieved

items. The computation of image dissimilarity can be stopped

as soon as its monotonically increasing value exceeds the

retrieval threshold. When multiple histograms are used to char-

acterize an image, they can be concatenated in many different

ways to obtain a single numerical vector describing the image.

However, the order in which histograms are concatenated

impacts on the performance of the system. Comparing the

descriptors sorted by decreasing effectiveness is expected to

increase the computational savings associated with the use of a

retrieval threshold. Experiments on the same data used in [7]

are reported in Fig. 3 and confirm this expectation.

IV. QUERY BY EXAMPLES WITH RELEVANCE FEEDBACK

Relevance feedback is a fundamental mechanism by which

system response can be improved by using information fed by

the user [8]–[11]. Whenever the system presents to the user a

set of images considered to be similar to the provided exam-

ples, the user can pick among them the most relevant to the sub-

mitted query and add them to the original query. The resulting

extended set can be used to improve system response in a

variety of ways [11]. A common approach to the implementa-

tion of relevance feedback for a system using image descriptors

in numerical form is that of feature weighting and is based on

the vector model used for textual documents.

Fig. 3. Expected gain in speed resulting from properly sequencing the image
descriptors before comparing them. Note the significant advantage over the
worst case, where the order in which the descriptors are used is inversely
proportional to their capacity.

As COMPASS image derived descriptors are his-

tograms with the same number of bins and normalization, the

dissimilarity of two images can be computed by

(4)

where represents the th descriptor and the value of the th

bin of the descriptor. This distance introduces a metric structure

in the derived descriptors space and can be used to compute the

distance of the query set from each database item using the

formula reported in (2).

The set is computed by the system and is used to incor-

porate relevance feedback into the comparison metric. Relevant

images should be similar to each other for some of the com-

ponents of their descriptors . This means that the standard

deviations computed over set should be small for the

components capturing the similarity of the images and larger

for the components which are not relevant. In this paper the fol-

lowing family of weighting schemes is introduced to emphasize

distances along the appropriate directions

(5)

where is a normalizing factor, and

is a parameter which modulates the weighting effect. These

weighting schemes are a generalization of the single scheme

proposed in [12]. There are some major drawbacks to the use

of (5):

• the use of tacitly assumes that the images in the query

represent a compact set with ellipsoidal shape;

• the comparison metric is modified in the same way over

the descriptor space;

• the time necessary for the computation of depends on

the number of images in the query set .
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Fig. 4. Effect of the introduction of negative examples on the computation
of distances. Negative examples define repulsive regions in pattern space by
modifying the metric used in the computation of image distances. The size of
the repulsive regions is controlled by the value of  .

Furthermore, the amount of weighting specified by is ex-

pected to be query dependent and should be optimized on a

case-by-case basis. A way to overcome these drawbacks is pre-

sented in Section V.

An interesting addition to relevance feedback for image re-

trieval comes from the introduction of negative examples. An

approach based on the generalization of Boolean searches has

been presented in [13] relating image distances to fuzzy pred-

icates. In this paper a new approach is introduced using nega-

tive examples as a perturbation in the metric used to compute

the image distances. The user, by providing positive examples,

implicitly defines a generalized Boolean query whose value is

given by normalized image distances. However, when the im-

ages looked for are organized in complex arrangement in the

descriptor space, computing image similarity with (4) and (5)

may result in persistent irrelevant images, i.e., negative exam-

ples. Knowledge of which of the retrieved images are not rele-

vant to the current query, can be used to better characterize the

regions of the descriptor space which contain relevant images by

creating negative regions carving complex geometries in feature

space. The set of irrelevant images retrieved by the system

can be used to introduce a modified dissimilarity function

(6)

where represents the intensity of the action of and

represents the set of relevant images (i.e., the positive examples).

As set is close to , for points lying far from and

in feature space , for points nearer to than to

the original dissimilarities are reduced, and for points nearer to

than they are increased. A visual presentation of this

effect is shown in Fig. 4.

V. QUERY OPTIMIZATION

The drawbacks associated with the use of (5) on the effective-

ness and efficiency of relevance feedback can be minimized by

Fig. 5. Flow chart of the proposed query supervisor agent.

• determining whether the specified query set while not

being compact itself, is composed of two or more compact

sets: the query could then be split into simpler subqueries,

each of them better suited to the use of (5).

• condensing the query set using a smaller number of images

while preserving the effectiveness of the original set;

• adaptively choosing , the parameter that modulates the

amount of metric change.

A block structure of the resulting query optimization module is

reported in Fig. 5, while the following sections introduce the

necessary pattern analysis techniques.

A. Query Subdivision

The cloud of points representing the query images in the de-

scriptor space may exhibit local grouping, i.e., clusters, sug-

gesting the splitting of the original query set into multiple sub-

sets, each of them characterized by the images belonging to one

of the clusters.

From a data analysis perspective, the relevant issue is whether

the structure of the point distribution supports the presence of

multiple clusters or not. There are no completely satisfactory

methods to determine the number of clusters for any type of

cluster analysis [14], [15]. The situation analyzed by the current

paper presents additional difficulties due to the small number

of images used to define the query: no asymptotic results can

be used, and methods relying on density estimates can not be

applied. The proposed strategy is based on two steps:

1) establish whether the original query should be split or not;

2) if the original query should be split determine the number

of clusters into which it should be split.

The first step is based on the use of a statistic originally proposed

by Duda and Hart [16]. Let us denote with the distance

between the descriptors of two images and with the

clustering criterion function for clusters :

(7)
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where is the central image of the th cluster. The quantity

is a random variable whose average value decreases mono-

tonically with . In particular, if data are organized into com-

pact, well separated clusters, the value of is expected to

decrease rapidly until , and much more slowly thereafter.

Knowledge of the distribution of under the null hy-

pothesis that all samples belong to a single cluster forms the

basis for a test to reject or accept the null hypothesis. Unfor-

tunately, analytical results are often not available. An approx-

imate result is derived in [16] when the distance used in the

comparison is the Euclidean norm. As the comparison metric

used by COMPASS is the norm for which results are much

harder to obtain, a Monte Carlo approach was chosen [17]. As

detailed in Section III, each image is represented by histograms

of several low level visual features, normalized to unit. In order

to determine the distribution of for different

sample sizes (from six to 16), 10 000 random samples were

generated, satisfying the image descriptors constraints: number

of features, number of bins, and normalization to unit. For each

random sample the Linde–Buzo–Gray clustering algorithm [18]

using the metric was applied ten times to find the optimal

two cluster partition. The corresponding values of were then

used to compute the required distributions. The empirical distri-

butions for different values of are markedly different, being

too small to ensure an asymptotic regime.

Given a set of query images the value of is computed:

if the null hypothesis of a single cluster can be rejected with

the prescribed confidence, the appropriate number of clusters

should then be determined. The most appropriate number of

subqueries into which the original query should be split is de-

termined by the so called silhouette coefficient introduced in

[19]. Let us introduce the following quantities:

where is the number of elements in cluster ; the silhouette

of element is then defined as

(8)

When a cluster contains a single object, . The higher

the value of the stronger the membership of to its corre-

sponding cluster. Elements that can not be clearly assigned to

any cluster have a silhouette value near to zero. The silhouette

coefficient is then defined as

(9)

The value of is bound to the closed interval : the higher

the value the better the overall classification of data for the given

clustering. Furthermore, is a dimensionless quantity that does

not change when the distances between samples are multiplied

by a constant factor. The knowledge of the silhouette coefficient

Fig. 6. Sample query and the way it would be split by the system.

can be used to choose an appropriate number of clusters such

that

(10)

The above computations are used to subdivide the original query

images into several, simpler queries, each of which is better con-

ditioned for the application of relevance feedback mechanisms

(see Fig. 6).

The resulting simplified queries are then submitted to the

image databases. For each simplified query a new comparison

metric is computed according to (5). As a result, the metric used

for image comparison is no longer a uniform modification of the

unweighted distance: each subquery locally modifies the com-

parison metric, overcoming one of the limitations of the original

feature weighting approach.

B. Strategy Optimization

Splitting the original query into smaller ones does not impact

directly on the complexity of the computation of and does

not provide any hint on the optimal value of . However, the

system, upon receiving user feedback, can automatically com-

pare different query strategies by looking at the ranking of the

images selected by the user in the corresponding answers: the

lower the average rank, the better the strategy. Note that this is

quite different from the approach introduced in [20] where the

user is required to rank all the images returned by the system.

Two aspects characterize the choice of the optimal search

strategy: the determination of the best query representation and

the selection of the optimal value. In the following analysis
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only two representations for the (positive) query set are consid-

ered: the original set and a condensed set obtained replacing

the images in with a virtual image represented by the arith-

metic average of the descriptors in set.

For each representation of the query set, different values of

provide different strategies: the resulting set of dissimilarity

functions constitutes the optimization space from which the best

comparison method must be chosen.

Replacing the original query set with a single, virtual average

image reduces the amount of computation required to estimate

the distance of each database image from the query images.

However, this simplification may not be always appropriate. As

an example, if the original query set is not convex, the results

may be meaningless, as the average image could be located in a

region of feature space which is not representative of the original

set. While query subdivision reduces these problems, the possi-

bility of using the condensed representation should be assessed

more directly. Since the purpose of using such a representation

is to speed up the computation while obtaining, essentially, the

same results associated to the original, complete set, it is neces-

sary to verify that the two representations yield very correlated

answers.

At each interaction, the system returns an image set with

the database images most similar to the submitted query.

Using this restricted number of images, it is possible to decide

which representation of the query set is most efficient for the

given query. This can be done by simulating system response

using the restricted set as image database. If the responses

using the full and condensed representations are strongly cor-

related, the condensed representation is to be preferred being

faster. Let us see how this correlation can be computed.

Each image in can be characterized with a couple of

values representing its dissimilarity to the query

using the condensed and full representations respectively.

The set can be considered as a random

sample from a population with a bivariate distribution function.

Let be the rank of among when they

are arranged in descending order, and the rank of

among defined similarly to . The amount

of correlation of the two answers can then be quantified by

their Spearman rank correlation coefficient [21]. An important

characteristic of rank correlation is its nonparametric nature. To

assess the significance of a correlation value it is not necessary

to know the bivariate distribution from which are

drawn. Given a confidence level, it is possible to decide whether

the complete and condensed query representations results are

sufficiently correlated or not.

The next step in choosing the optimal strategy is the selection

of . In order to adapt its value to the query more information

is needed. The required additional data are provided by the user

him(her)self with the selection of relevant images from set .

Let us restrict to a discrete set of possible values. For each

value a query can be performed on : the optimal value of

is chosen by minimizing the average rank of the newly added

relevant images and of the original ones if they were selected

from the queried databases. As in the complete representation

the query images obtained from the queried databases always

appear in the first positions (having a zero distance), this proce-

Fig. 7. Average rank of the query images when a condensed search is
employed with different weights. The rank correlation with the results obtained
using all the images in the query bag is also reported.

Fig. 8. Final stress J for different distances and dimensionality reduction
techniques.

dure is only useful to optimize the condensed query. However,

the value of can also be optimized for the complete repre-

sentation in the following way: for each image in the query set

obtained from the queried databases, a synthetic query is cre-

ated by removing it and its rank in the resulting system answer

stored. The average rank over the synthetic queries is then used

for the optimization (see Fig. 7). The condensed query represen-

tation is then employed using the lowest value of for which

the rank correlation of the condensed and complete representa-

tion results satisfy the required confidence level.

VI. DATABASE ORGANIZATION AND BROWSING

Browsing an image database is substantially different from

querying it and presents specific interaction problems. These

problems become more evident when multiple databases are

browsed simultaneously. As large image databases cannot be
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Fig. 9. Effect of sorting the cluster representatives of two databases using global luminance information. Note how the picture to the right, with sorted
representatives, appears more homogeneous and easy to analyze than the one to the left where images are unsorted.

presented in their entirety to the user, useful abstractions should

be developed, presenting to the user a limited number of key

images which can be used to pivot the search. It would also be

important to present the images in such a way that their layout

reflect the notion of similarity used by the system: nearby im-

ages should be visually similar and similarity relations among

images should be preserved as much as possible. The task is fur-

ther complicated by the dynamic nature of image similarity due

to the adoption of relevance feedback techniques which change

the metric structure of the descriptor space.

The solution adopted by COMPASS relies on clustering and

multidimensional scaling techniques. Each image database is

clustered into groups of images similar to each other according

to the norm. Each group is then represented by a key image,

the image closest to the cluster center. The set of cluster represen-

tatives provides the required abstraction for database browsing.

Each representative acts as an hyper-link to the complete cluster

population that can be shown to the user on demand.

As the number of clusters is usually much smaller than the

number of images in the database, computationally expensive

algorithms can be applied to organize the visual presentation of

the key images to reduce browsing stress. Let us consider the

situation in which two databases are used for browsing and a

weighted norm is used for comparing the images. Key im-

ages should be arranged on the screen in such a way that nearby

images are visually similar. The user can choose one (or more)

of the image features, e.g., luminance, as a sorting key for the

arrangement of the images onto the screen. The key images

from the two databases are then arranged onto a line preserving

as far as possible their mutual similarities as quantified by

distance. This can be accomplished by using multidimensional

scaling techniques [16] which deal with the following problem:

Given a set of similarities or distances between every pair of

items, find a representation of the items in few dimensions

such that the inter item proximities nearly match the original

similarities or distances.

While it is not necessary to use the values of the similarity

between the samples (the rank orders could be used instead), the

following discussion is restricted to the case where the values

are explicitly used. Following [16], let

be a set of samples represented by points in . Let

be the projection of in and

the distances between samples and in and

respectively. The objective of multidimensional scaling is then

to find a configuration of image points for which

. A measure of closeness, usually called stress, must

then be introduced: the lower the stress the better the obtained

scaling. A commonly used measure of stress is

(11)

It is important to observe that it is not necessary for the dis-

tances and to be computed in the same way, e.g., using

the Euclidean distance. This is true in particular in the reported

context as the original distances between image descriptors are

computed using the weighted norm while the distances of the

projected set are computed using the Euclidean norm which

corresponds to the user perceived distance in the space where

images are to be presented. The necessity of relying on different

metric structures in the original and projected spaces somehow

limits the choice of the algorithms to be used in finding the de-

sired configuration. For instance, a commonly used technique
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to project vectors onto a lower dimensional space is given by

the Principal Component Analysis (PCA). This algorithm pro-

vides good results when the metric structure in the original and

reduced space is given by the Euclidean norm. Direct minimiza-

tion of the stress value leads to the so called Sammon map-

ping which does not depend on the type of distances used in

the source and destination spaces but suffers from the following

disadvantages:

• high computational requirements;

• presence of many suboptimal local minima;

• the map is given as a look-up table that must be recom-

puted whenever new points are added.

More recently, a fast algorithm for multidimensional scaling,

FastMap, was introduced [22]. Given the set of original dis-

tances, the algorithm finds a representation of the original points

in computing the set using the Euclidean distance. When

new data points are added, they can be easily projected in the re-

duced space.

In the presented work the three cited algorithms (PCA,

Sammon mapping, and FastMap) have been compared in the

task of projecting points from to using as stress

indicator and different metrics in the source and destination

spaces. Points in source space are given by the image lumi-

nance histograms. The results are reported in Fig. 8. Sammon

mapping outperforms the competing algorithms in quality and

is considered to be a viable choice in spite of its shortcomings.

An example of the application of multidimensional scaling to

the presentation of images using as the luminance histogram as

derived descriptor is reported in Fig. 9.

VII. CONCLUSIONS

In this paper an architecture for a general image retrieval and

browsing system featuring relevance feedback was presented

and discussed. In particular, the possibility of tuning search

strategies and comparison metrics to varying user behavior

was investigated and novel solutions presented using pattern

analysis techniques. The resulting image retrieval system is

able to optimize retrieval speed by reducing the number of

query images while preserving retrieval effectiveness. The use

of local modification of the image comparison metric, coupled

to the use of negative examples further enhances the ability of

the system at modeling user needs on a per query basis. The

possibilities offered by data analysis techniques have been

adapted to the activity of database browsing, suggesting how

clustering techniques and multidimensional scaling can be used

to present a database map to the user.
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