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W
hether for passports, credit

cards, laptops, or mobile

phones, automated methods

of identifying citizens through

their anatomical features or behavioral traits

have become a common feature of modern

life. Biometric recognition, or simply biomet-

rics, refers to the automatic recognition of

individuals based on their anatomical and/or

behavioral characteristics.1 One of the most

well-known biometric traits is fingerprints.

The success of automatic fingerprint systems

in law enforcement and forensics around the

world has prompted the use of biometrics in

various civil identification systems. For exam-

ple, in 2007 alone, the US Department of

Homeland Security Immigration and Border

Management System (US-VISIT, www.dhs.gov/

files/programs/usv.shtm) collected fingerprint

and face images of more 46 million visitors to

the US.

Although tremendous progress has been

made in biometrics and forensics, many situa-

tions exist where the primary biometric

traits—fingerprint, face, and iris—alone cannot

identify an individual with sufficiently

high accuracy. This is especially true when

image quality is poor (for example, because a

surveillance camera obtained a blurred image

or off-central pose) or only a partial fingerprint

is available (as in the case of latent fingerprints

lifted at crime scenes). In the case of face recog-

nition, the matching performance severely

degrades under pose, lighting, and expression

variations and because of occlusion and aging.

In such cases, it is critical to acquire supple-

mentary information to assist in the identifica-

tion procedure.

On the basis of this rationale, the US Federal

Bureau of Investigation is developing the Next-

Generation Identification (NGI) system for

identifying criminals.2 In addition to using ad-

ditional biometric modalities, such as a palm

print and iris, to augment fingerprint evidence,

the NGI system will include soft biometric

traits, including scars, marks, and tattoos, col-

lectively referred to as SMT.

The use of soft biometrics in forensics has

been recognized as a valuable tool for solving

crimes. This article focuses on one such soft

biometric, namely tattoo images, which are

routinely collected by law enforcement

agencies and used in apprehending criminals

and identifying suspects. The current practice

of tattoo matching and retrieval, based on

ANSI/NIST classes, is prone to significant errors

due to limited vocabulary and the subjective

nature of labeling. To improve the performance

and robustness of keyword-based tattoo match-

ing, we introduced the Tattoo-ID content-based

image retrieval (CBIR) system. This system

automatically extracts features from a query

image and retrieves near-duplicate tattoo

images from a database. In this article, we pres-

ent two Tattoo-ID modifications that further

improve the retrieval accuracy, particularly for

queries with low quality. The modifications in-

volve a robust similarity measure and metadata

utilization in the form of free-keyword annota-

tion in conjunction with the large lexical data-

base WordNet. Experimental results on a

database of 100,000 images show that the

enhanced system achieves a top-20 retrieval ac-

curacy of 90.5 percent.

Soft Biometrics in Use

Soft biometric traits are characteristics that

provide some identifying information about

an individual, but they lack the distinctiveness

and permanence to sufficiently differentiate
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Two modifications to

the Tattoo-ID system,

based on automatic

content-based image

retrieval, help

improve its retrieval

accuracy, particularly

for low-quality tattoo

image queries.
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between two individuals.1 Because soft bio-

metric traits help narrow the identity of a sus-

pect or a victim in forensics investigations,

many law enforcement agencies collect and

maintain such information in their databases.

It is thus not surprising that the FBI collection

standard includes prominent SMT present on a

subject’s body.

Among the various soft biometric traits, tat-

toos have been considered one of the most im-

portant pieces of evidence. Tattoos provide

more discriminative information for identify-

ing a person than the traditional demographic

indicators such as age, height, race, and gen-

der.3 In addition, because many individuals ac-

quire tattoos to individuate themselves, display

their personality, or exhibit a group member-

ship (see Figures 1c through 1e), the analysis

of tattoos often leads to a better understanding

of an individual’s background and membership

in various organizations.

Despite the value of soft biometrics in foren-

sics, putting them to practical use has been dif-

ficult. Unlike primary biometric traits, much

variability exists in pattern types in many of

the soft biometric traits. Whereas a primary bio-

metric trait has its own unique physical repre-

sentation (including ridge patterns and

minutiae in fingerprints; eyes, nose, and lips

on faces; and texture in irises), tattoo images

often consist of objects with varying shapes,

colors, and textures (see Figure 1), making it

challenging to effectively represent them. This

is the main reason why researchers have made

relatively little effort in automatic matching

and retrieval of tattoo images.

Tattoo Image Retrieval

Tattoos engraved on the human body have

been successfully used to assist human identi-

fication in forensics. This is not only because

of the increasing prevalence of tattoos, but

also due to their impact on other methods of

human identification such as visual, patholog-

ical, or trauma-based identification. (A study

published in the Journal of the American Acad-

emy of Dermatology in 2006 reported that

about 36 percent of Americans 18 to 29 years

old have at least one tattoo.4) Tattoo pigments

are embedded in the skin to such a depth that

even severe skin burns often do not destroy a

tattoo. For this reason, tattoos helped identify

victims of the 9/11 terrorist attacks and the

2004 Asian tsunami3 (Figure 1b). Criminal

identification is another important applica-

tion because tattoos often contain hidden

meanings related to a suspect’s criminal his-

tory, such as gang membership, previous con-

victions, years spent in jail, and so forth (see

Figures 1 and 2).

Law enforcement agencies routinely photo-

graph and catalog tattoo patterns for the
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Figure 1. Tattoos for identification. Potential tattoo identification applications include (a) a crime suspect

and (b) a victim of the 2004 Asian Tsunami. For gang membership tattoos of the well-known Mexikanemi

Mafia gang in Texas, (c) through (e), we can see the large intraclass variability in the same gang’s

membership tattoos.

(a) (b) (c)

Figure 2. Tattoo images. These samples are from a database of 64,000 tattoo images from the Michigan

State Police.
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purpose of identifying victims and suspects

(who often use aliases). The ANSI/NIST-ITL1-

2011 standard defines eight major classes

(human, animal, plant, flag, object, abstract,

symbol, and other) and a total of 70 subclasses

(including male face, cat, narcotics, American

flag, fire, figure, national symbols, and word-

ing) for categorizing tattoos.5 A search of a typ-

ical tattoo image database currently involves

matching a query tattoo’s class label with the

labels for the tattoos in the database. The cur-

rent practice of matching tattoos according to

the manually assigned ANSI/NIST class labels

has the following limitations:

� Class label does not capture the semantic in-

formation in tattoo images.

� Law enforcement agencies maintain mil-

lions of tattoo images.

� Tattoos often contain multiple objects and

cannot be classified appropriately into the

ANSI/NIST classes.

� Tattoo images have large intraclass

variability.

� The ANSI/NIST classes are incomplete for

describing new tattoo designs.

To overcome the limitations of the current

practice of keyword-based tattoo matching,

we have developed the Tattoo-ID automatic tat-

too matching and retrieval system.6�8 This sys-

tem has been licensed to MorphoTrak, which

plans to release a commercial version.9 To the

best of our knowledge, Tattoo-ID is the first

prototype of an operational system for tattoo-

image matching and retrieval. Although Scott

Acton and Adam Rossi also proposed a tattoo

matching and retrieval system based on global

features (such as color and shape),10 their

system was evaluated on high-quality Web-

downloaded images, where query images were

synthetically generated from the gallery

images. In a previous work,6 we showed that

such global features are inadequate for match-

ing tattoo images in operational databases.

The Tattoo-ID System

Tattoo-ID is based CBIR,11 in which the goal is

to find the images from a database that are

nearly duplicates of the query image.

Although general-purpose CBIR systems have

only limited retrieval performance because of

the well-known semantic-gap problem,11

CBIR systems have been shown to be effective

for near-duplicate image retrieval,11 which fits

well with tattoo-image retrieval. Tattoo-ID

extracts keypoints from images using scale-

invariant feature transform (SIFT)12 and uses

a matching algorithm7,8 to measure the visual

similarity between two images. It then

retrieves the database images with the largest

similarities to the query. We choose SIFT be-

cause it yields the best performance for tattoo

matching and retrieval compared to both the

global image features (color, shape, and tex-

ture) and the other local descriptors (such as

speeded up robust features [SURF], gradient lo-

cation and orientation histogram [GLOH], and

Harris Laplace13).

To objectively evaluate Tattoo-ID’s perfor-

mance, we constructed a database of 64,000 tat-

too images provided by the Michigan State

Police (see Figure 2). We cropped the tattoo

images to extract the foreground and suppress

the background. To construct the query set,

we manually identified 1,000 images in the

database that had near duplicates. These dupli-

cates are introduced in the database as a result

of multiple arrests of the same person at differ-

ent times or multiple photographs of the same

tattoo taken during a booking (see Figure 3).

We used one of the duplicates as a query to re-

trieve other duplicates in the database.

To examine our system’s robustness, we fur-

ther augmented the 64,000 tattoo images with

36,000 randomly selected images from the

ESP game database (www.gwap.com/gwap/

gamesPreview/espgame). We evaluated Tattoo-

ID’s retrieval performance using cumulative

matching characteristics (CMC). That is, for a

given rank position N, its CMC score is com-

puted as the percentage of queries with

matched images that are found in the top-N

retrieved images. Our previous work8 showed

that Tattoo-ID can correctly retrieve the dupli-

cate tattoos in the top 20 images (N ¼ 20) for

85.6 percent of queries, and the average re-

trieval time per query is approximately 191 sec-

onds on an Intel Core 2, 2.66-GHz, 3-Gbyte

RAM processor (see Figure 3). In addition, we

proposed an unsupervised ensemble ranking

approach to manage the scalability problem.8

The approach achieves similar retrieval accu-

racy (85.9 percent for rank-20 accuracy) at a
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significantly reduced retrieval time (14.7 sec-

onds per query).

Although Tattoo-ID’s overall retrieval accu-

racy is good, the performance drops off signifi-

cantly if query images are of low quality (see

Figure 4). For example, when images have low

contrast, uneven illumination, or small tattoo

size, only a few keypoints are extracted from

the images, making it difficult to perform the

matching. If tattoo images are covered by heavy

body hair, the majority of keypoints are extracted

from the body hair rather than the tattoos. These

noisy keypoints lead to several false matches and,

consequentially, low retrieval accuracy. We refer

to the images with limited retrieval performance

as ugly tattoo images, following the nomenclature

introduced for poor-quality latent fingerprint

images in the NIST-SD27 database.

To systematically evaluate the performance

of Tattoo-ID for ugly tattoos, we extracted a

subset of 252 ugly tattoo images from the

1,000 query images. The extracted images

were query tattoos for which either

� the correct duplicate could not be retrieved

in the top-20 ranks or

� the matching score of the first retrieved

image was small (less than 10) and the top-

10 retrieved images had similar matching

scores (the standard deviation of the top-10

matching scores was less than 0.1).

Figure 5 compares Tattoo-ID’s retrieval per-

formances against 748 typical quality and 252

ugly-quality queries. Compared to the typical

[3B2-9] mmu2012010003.3d 6/12/011 17:9 Page 5

Figure 3. Tattoo-ID retrieval examples. Each row shows a query tattoo (with the number of keypoints),

the top-7 retrieved images, and the associated matching score (number of matching keypoints). Three

duplicates were retrieved from the database for the first query, and two duplicates were retrieved for

the second query.

Figure 4. Examples of ugly tattoo images: (a) tattoo with low contrast (0), (b) tattoo with uneven

illumination (11), (c) small tattoo size (2), (d) tattoos faded and covered with hair (15), and (e) tattoo

covered by substantial body hair (381). The numbers in parentheses indicate the number of extracted

keypoints.

(a) (b) (c) (d) (e)

Query 1 (250) 62 48 36 11 10 10 10

Query 1 (330) 60 15 15 12 12 12 11
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quality queries (97.7 percent for rank-20 accu-

racy), the 252 ugly-quality queries show signifi-

cantly lower retrieval performance (49.6 percent

for rank-20 accuracy). In this article, we aim to

improve the system’s robustness, especially for

low-quality images, and consequently, overall

retrieval performance.

Tattoo-ID Enhancements

We have improved the system performance by

developing more robust similarity measures

and using the metadata associated with tattoo

images.

Robust Similarity Measures

Because of the low image contrast and vague-

ness of faded tattoos, the numerous spurious

keypoints extracted often lead to many false

matches. To address this challenge, we devel-

oped two strategies to improve the robustness

of the similarity measure: symmetric matching

and weighted keypoint matching.

To measure the similarity between a query

image Iq and a database image I, denoted by

S(Iq, I), we compute the number of keypoints

from Iq that match the keypoints from I.12 A

keypoint Ki
q from Iq is considered to match a

keypoint from I if the ratio of the shortest

and the second-shortest distance from Ki
q to

the keypoints from I is smaller than a prede-

fined threshold � (� ¼ 0.49). This similarity

measure is asymmetric; that is, S(Iq, I) 6¼ S(I, Iq).

One shortcoming of the asymmetric similar-

ity measure is that it might produce many false

matches, particularly if there is a keypoint in

the database image I with a descriptor that is

very similar to that of several keypoints in Iq.

We address this limitation by developing a

symmetric similarity measure for a pair of

images Iq and I as follows:

1. Compute the asymmetric match scores be-

tween Iq and I and between I and Iq, result-

ing in two sets of matched keypoint pairs,

denoted by M(Iq | I) and M(I | Iq).

2. Compute the symmetric similarity measure,

denoted by SS(Iq, I), as the number of

matched keypoint pairs that appear in both

sets; that is, SS(Iq, I) ¼ |M(Iq | I) \ M(I | Iq)|.

Note that SS(Iq, I) ¼ SS(I, Iq). This symmetric

similarity measure lets us remove some of the

false matches.

The weighted keypoint matching approach

tries to reduce the effect of false matches by

introducing two sets of weights to the key-

points in a query image. This approach is

based on two intuitions. First, if a keypoint KI

in a gallery image I is matched to multiple key-

points from a query image, we consider these

multiple keypoints in the query image to be

indistinctive and assign them low weights in

the similarity measure. We refer to this weight

as local distinctiveness. Second, if a keypoint Ki
q

finds its matches from many different gallery

images, we consider it to be indistinctive and

assign it a low weight. We refer to this weight

as global distinctiveness. More specifically, sup-

pose a query image Iq has l keypoints,

Kq ¼ K1
q;K

2
q; . . . ;Kl

q

n o
and there are NG images in the gallery G. Let

mi(I) be the number of keypoints in Kq that

are mapped to the same keypoint in a gallery

image I as Ki
q, and let ni be the number of

images in the gallery G where Ki
q finds its

matched keypoints. Given mi(I) and ni, the

similarity between a query image Iq and a data-

base image I, denoted by SW(Iq, I), is computed

as follows:

SW Iq; I
� �

¼
Xl

i

xi
1

miðIÞ log
NG

ni

� �
where

xi ¼
1;

0;

(
if Ki

q is matched

otherwise
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Figure 6 compares the retrieval performance

of the asymmetric similarity, the symmetric

similarity, and the weighted keypoint match-

ing on the database of 100,000 images with

the 1,000 query images that we described ear-

lier. Both the symmetric matching and

weighted keypoint matching improve the re-

trieval performance. The average rank-20 accu-

racy improved from 85.6 to 86.3 percent by the

symmetric matching and to 88 percent by the

weighted keypoint matching (Figure 6b).

More noticeable improvements are clear for

the ugly query images (Figure 6a), where the av-

erage rank-20 accuracy improved from 49.6 to

51.8 percent by the symmetric matching and

to 57 percent by the weighted keypoint match-

ing. Finally, compared to the symmetric match-

ing, the weighted keypoint matching is more

effective. According to the student t test (at

the level of 5 percent), all the improvements

are statistically significant. Overall, our results

indicate that a soft-weighting approach is

more robust to false matches than a hard-

threshold approach such as in symmetric

matching.

Metadata Utilization

To further improve retrieval performance, we

evaluated the utility of metadata for tattoo-

image retrieval. We created a collection of tat-

too images with manually assigned metadata.

Because of the substantial manual labor

needed to label the images, we randomly

selected 21,000 tattoo images from the

64,000 tattoo images in our database, includ-

ing the 1,000 queries and their near-duplicate

images, for manual annotation. The labeling

was done by 12 subjects who were Michigan

State University students. On average, each

subject was asked to annotate approximately

3,500 images in two ways: using up to four

ANSI/NIST major classes and using his or her

own keywords. The average number of classes

assigned per tattoo image was two, and the av-

erage number of free keywords was approxi-

mately 3.5. Each image was annotated by

two subjects, and we formed the final annota-

tion by merging the annotations from the two

subjects. After performing spell check and

word stemming, the final number of unique

free keywords for this database was 2,019. (Re-

call that the number of ANSI/NIST major

classes is only eight.) We used this collection

of manually annotated tattoo images to exam-

ine the effect of metadata on the retrieval

performance.

To utilize the ANSI/NIST-based metadata

(eight major classes), we implemented a two-

stage matching scheme:

1. Select a subset of database tattoos that

shared at least one class label with the

query tattoo.

2. Perform keypoint-based image matching

only for the selected subset.

Figure 7 shows the retrieval results for 252

ugly-quality tattoo queries and all 1,000 tattoo

queries. In both cases, the introduction of

ANSI/NIST class labels leads to a significant

drop in retrieval performance because each

ANSI/NIST class covers a broad range of tattoo

types. Consequently, ‘‘similar’’ tattoo images
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could be assigned to different classes, making it

difficult to match tattoo images according to

their ANSI/NIST class assignments (see Figure 8).

This limitation of the ANSI/NIST major

classes led us to explore the free-keyword an-

notation for improving tattoo-image retrieval

performance.

Metadata Generated by Free-Keyword

Annotations

We treat the keyword annotations as free text

and apply the standard text-retrieval methods

to compute the similarity score for metadata.

More specifically, we use the tf-idf weighting

scheme for text retrieval and the Lemur text

search engine (www.lemurproject.org) to effi-

ciently compute the matching scores between

free-keyword annotations. Given the similar-

ity SW(Iq, I) based on the weighted keypoint

matching, and the similarity ST(Iq, I) based

on keyword matching, we compute the com-

bined similarity score as S(Iq, I) ¼ SW(Iq, I) þ
w � ST(Iq, I), where the weight parameter w is

empirically tuned to optimize the retrieval

performance.

In Figure 7, the line plot labeled ‘‘Image fea-

ture and keyword (merged)’’ shows the retrieval

results of combining the free-keyword-based

[3B2-9] mmu2012010003.3d 6/12/011 17:9 Page 8

Figure 7. Retrieval performance for (a) 252 ugly quality queries and (b) all 1,000 tattoo queries with and without metadata

information against the database of 21,000 images. The use of ANSI/NIST class labels leads to a significant drop in retrieval

performance.

(a) (b)Abstract Object Human Animal Symbol Abstract(c)

Figure 8. Examples of inconsistent assignment of ANSI/NIST classes to near-duplicate tattoo pairs. Although each set shows near-

duplicate images of the same tattoo, the subjects in our experiment annotated them differently on the basis of the ANSI/NIST classes

(shown under each image).
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matching with image matching. There is a sig-

nificant improvement in retrieval performance

for both ugly-quality queries (approximately

27 percent) and all the tattoo queries (approxi-

mately 10 percent). This indicates that the free-

keyword annotation is more effective than the

ANSI/NIST classes for retrieving near-duplicate

tattoo images. This is because, unlike the

small number of major classes in ANSI/NIST

standard, which are often ambiguous in terms

of labeling tattoos, most human subjects ap-

pear to be consistent in choosing free keywords

for describing similar visual content.

One potential problem with this experiment

is that the free-keyword annotations for query

images were created by the same subjects who

created the annotations for the gallery images.

In an operational system, we would expect dif-

ferent subjects to perform keyword annotation

for query images than for gallery images, which

could degrade the retrieval performance. In

fact, for the 21,000 annotated tattoo images,

on average, less than 50 percent of the key-

words are shared by two different subjects.

To accommodate this scenario, we changed

the design of the metadata experiment by

using the free-keyword annotations for query

images by one subject, and the annotations

for gallery images by a different subject. The

line plot labeled ‘‘Image feature and keyword’’

in Figure 7 shows retrieval results for ugly-quality

queries and all 1,000 queries. As expected, there

is a significant drop in retrieval accuracy com-

pared to the case when both query images and

gallery images were annotated by the same sub-

jects. On the other hand, compared to using

image features alone, we still observe a signifi-

cant improvement (approximately 7 percent)

for ugly-quality queries and a marginal, but con-

sistent improvement (approximately 1 percent)

for all 1,000 tattoo queries.

Figure 9 shows examples of retrieval results

based on a combination of free-keyword anno-

tations and image features, where the images in

Figures 9a through 9c are successful retrievals

and the images in Figures 9d and 9e are failure

cases.

An analysis of the failure cases shows that

subjects in our experiments assigned different

free keywords to describe similar tattoos. For

example, different subjects annotated the

image in Figure 9d as ‘‘face’’ and ‘‘skull.’’ To ad-

dress this problem, we expanded the annota-

tion keywords using WordNet.14 WordNet is a

large lexical database where nouns, verbs,

adjectives, and adverbs are grouped into sets

of cognitive synonyms, called synsets. Synsets

interlink different conceptual-semantic and

lexical relations. The underlying assumption is

that different keywords used to describe similar

tattoo images are likely to share the same se-

mantic concept, and as a result, the concept ex-

pansion from WordNet might be able to bridge

this gap.

In our study, we use the hypernym hierar-

chy in WordNet for keyword expansion. A

hyponym shares a type-of relationship with

its hypernym. For example, the hypernym of

‘‘dog’’ is ‘‘canine.’’ We chose the hypernym re-

lation because two words sharing the same con-

cept are likely to share common hypernyms in

WordNet. Among the 2,019 different free key-

words our subjects used in annotating the

21,000 tattoos, 1,737 keywords were found in

WordNet and expanded with the correspond-

ing hypernym hierarchy.

The line plot labeled ‘‘Image feature and

WordNet’’ in Figure 7 shows the retrieval results

using WordNet expansion for both ugly-quality

queries and all 1,000 queries. For both cases, we

observe up to an 8 percent improvement by

using the WordNet expansion. The WordNet

expansion clearly helps bridge the gap due to

differences in free-keyword annotations. For

example, for the query tattoo in Figure 9a, the

correct retrieved image is found at rank-12 by

fusion of the weighted keypoint matching and

free-keyword matching scores. By expanding
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Figure 9. Comparison

of retrieval results with

and without free-

keyword annotation.
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and the second number

(in parentheses) is the

ranking position for the

correct retrieval based

on both the image

features and the

merged free keywords.
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the free keywords with WordNet, the correct

retrieved image is found at rank-8 and the

matching score is improved from 5 to 8.6.

The WordNet expansion fails (see Figures 9d

and 9e) when the gap between free keyword

annotations by different subjects is too large.

For example, the keyword annotation for the

tattoo in Figure 9e is ‘‘symbol,’’ whereas the

keyword annotation for its true mate image in

the database is ‘‘cross.’’

Conclusion
In this article, we took an unsupervised

approach in designing appropriate similarity

measures to explicitly address the challenge

arising from low-quality tattoo image match-

ing. In the future, we plan to improve the

matching algorithm by exploring both super-

vised and semisupervised learning algorithms.

Besides tattoos,. Although Tattoo-ID focuses

on tattoo image matching and retrieval, the un-

derlying techniques developed in Tattoo-ID

system can be adopted to other forensic image

databases.15 Other types of soft forensic image

evidence might include shoeprints and gang

graffiti images. In the future, we plan to extend

the Tattoo-ID system to different application

domains. MM
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