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Abstract

In this paper, we propose a new transductive learning
framework for image retrieval, in which images are taken
as vertices in a weighted hypergraph and the task of image
search is formulated as the problem of hypergraph ranking.
Based on the similarity matrix computed from various fea-
ture descriptors, we take each image as a ‘centroid’ vertex
and form a hyperedge by a centroid and its k-nearest neigh-
bors. To further exploit the correlation information among
images, we propose a probabilistic hypergraph, which as-
signs each vertex vi to a hyperedge ej in a probabilistic way.
In the incidence structure of a probabilistic hypergraph, we
describe both the higher order grouping information and
the affinity relationship between vertices within each hy-
peredge. After feedback images are provided, our retrieval
system ranks image labels by a transductive inference ap-
proach, which tends to assign the same label to vertices
that share many incidental hyperedges, with the constraints
that predicted labels of feedback images should be similar
to their initial labels. We compare the proposed method to
several other methods and its effectiveness is demonstrated
by extensive experiments on Corel5K, the Scene dataset and
Caltech 101.

1. Introduction

In content-based image retrieval (CBIR) visual informa-
tion instead of keywords is used to search images in large
image databases. Typically in a CBIR system a query im-
age is provided by the user and the closest images are re-
turned according to a decision rule. In order to learn a
better representation of the query concept, a lot of CBIR
frameworks make use of an online learning technique called
relevance feedback (RF) [24] [15]: users are asked to la-
bel images in the returned results as ‘relevant’ and/or ‘not
relevant’, and then the search procedure is repeated with
the new information. Previous work on relevance feed-
back often aims at learning discriminative models to clas-
sify the relevant and irrelevant images, such as, RF meth-
ods based on support vector machines (SVM) [29], deci-

sion trees [22], boosting [28], Bayesian classifiers [9], and
graph-cut [25]. Because the user-labeled images are far
from sufficient for supervised learning methods in a CBIR
system, recent work in this category attempts to apply trans-
ductive or semi-supervised learning to image retrieval. For
example, [16] presents an active learning framework, in
which a fusion of semi-supervised techniques (based on
Gaussian fields and harmonic functions [36]) and SVM are
comprised. In [14] and [13], a pairwise graph based man-
ifold ranking algorithm [33] is adopted to build an image
retrieval system. Cai et al. put forward semi-supervised
discriminant analysis [7] and active subspace learning [6]
to relevance feedback based image retrieval. The common
ground of [25], [16], [14] and [7] is that they all use a pair-
wise graph (for simplicity, we denote the pairwise graph
as a simple graph) to model relationship between images.
In a simple graph both labeled and unlabeled images are
taken as vertices; two similar images are connected by an
edge and the edge weight is computed as image-to-image
affinities. Depending on the affinity relationship of a sim-
ple graph, semi-supervised learning techniques could be uti-
lized to boost the image retrieval performance.

Actually, it is not complete to represent the relations
among images only by pairwise simple graphs. It should
be helpful to take account of the relationship not only be-
tween two vertices, but also among three or more vertices
containing local grouping information. Such a representa-
tion with higher order relationships is a generalization of
a simple graph called a hypergraph. In a hypergraph a set
of vertices is defined as a weighted hyperedge; the magni-
tude of the hyperedge weight indicates to what extent the
vertices in a hyperedge belong to the same cluster [1]. The
initial use of hypergraph partitioning algorithms occurs in
the field of VLSI (Very-Large-Scale Integration) design and
synthesis [3]. In [2], the hypergraph idea is first introduced
to the field of computer vision, but it needs to be trans-
ferred to a pairwise graph by ‘clique average’ to solve the
clustering problems. [32] presents a hypergraph based im-
age matching problem represented as a convex optimization
problem. [26] proposes to use a hypergraph to the prob-
lem of multi-label learning. In [17] a hypergraph cut al-
gorithm [34] is adopted to solve the unsupervised video ob-



Figure 1. Left: A simple graph of six points in 2-D space. Pairwise distances (Dis(i, j)) between vi and its 2 nearest neighbors are marked
on the corresponding edges. Middle: A hypergraph is built, in which each vertex and its 2 nearest neighbors form a hyperedge. Right: The
H matrix of the probability hypergraph shown above. The entry (vi, ej) is set to the affinity A(j, i) if a hyperedge ej contains vi, or 0
otherwise. Here A(i, j) = exp(−Dis(i,j)

D̄
), where D̄ is the average distance.

ject segmentation problem. Tian et al. introduce a semi-
supervised learning method named HyperPrior [27] to clas-
sify gene expression data using biological knowledge as
constraints.

In this paper, we propose a hypergraph based transduc-
tive algorithm to the field of image retrieval. Based on the
similarity matrix computed from various feature descrip-
tors, we take each image as a ‘centroid’ vertex and form
a hyperedge by a centroid and its k-nearest neighbors. To
further exploit the correlation information among images,
we propose a novel hypergraph model called the probabilis-
tic hypergraph, which presents not only whether a vertex
vi belongs to a hyperedge ej , but also the probability that
vi ∈ ej . In this way, both the higher order grouping infor-
mation and the local relationship between vertices within
each hyperedge are described in our model. To improve the
performance of content-based image retrieval, we adopt the
hypergraph-based transductive learning algorithm proposed
in [34] to learn beneficial information from both labeled and
unlabeled data for image ranking. After feedback images
are provided by users or active learning techniques, the hy-
pergraph ranking approach tends to assign the same label
to vertices that share many incidental hyperedges, with the
constraints that predicted labels of feedback images should
be similar to their initial labels. The effectiveness and supe-
riority of the proposed method is demonstrated by extensive
experiments on Corel5K [12], the Scene dataset [20] and
Caltech-101 [19].

In summary, the contribution of this paper is threefold:
(i) we propose a new image retrieval framework based on
transductive learning with hypergraph structure, which con-
siderably improves image search performance; (ii) we pro-
pose a probabilistic hypergraph model to exploit the struc-
ture of the data manifold by considering not only the lo-
cal grouping information, but also the similarities between
vertices in hyperedges; (iii) in this work we conduct an in-
depth comparison between simple graph and hypergraph
based transductive learning algorithms in the application
domain of image retrieval, which is also beneficial to other
computer vision and machine learning applications.

2. Probabilistic Hypergraph Model
Let V represent a finite set of vertices and E a family of

subsets of V such that
⋃

e∈E = V . G = (V, E, w) is called
a hypergraph with the vertex set V and the hyperedge set
E, and each hyperedge e is assigned a positive weight w(e).
A hypergraph can be represented by a |V | × |E| incidence
matrix Ht:

ht(vi, ej) =
{

1, if vi ∈ ej

0, otherwise.
(1)

The hypergraph model has proven to be beneficial to var-
ious clustering/classification tasks [2] [26] [17] [27]. How-
ever, the traditional hypergraph structure defined in Equa-
tion 1 assigns a vertex vi to a hyperedge ej with a binary
decision, i.e., ht(vi, ej) equals 1 or 0. In this model, all the
vertices in a hyperedge are treated equally; relative affinity
between vertices is discarded. This ‘truncation’ processing
leads to the loss of some information, which may be harm-
ful to the hypergraph based applications.

Similar to [8], in this paper we propose a probabilistic
hypergraph model to overcome this limitation. Assume that
a |V | × |V | affinity matrix A over V is computed based on
some measurement and A(i, j) ∈ [0, 1]. We take each ver-
tex as a ‘centroid’ vertex and form a hyperedge by a centroid
and its k-nearest neighbors. That is, the size of a hyperedge
in our framework is k + 1. The incidence matrix H of a
probabilistic hypergraph is defined as follows:

h(vi, ej) =
{

A(j, i), if vi ∈ ej

0, otherwise.
(2)

According to this formulation, a vertex vi is ‘softly’ as-
signed to ej based on the similarity A(i, j) between vi and
vj , where vj is the centroid of ej . A probabilistic hyper-
graph presents not only the local grouping information, but
also the probability that a vertex belongs to a hyperedge. In
this way, the correlation information among vertices is more
accurately described. Actually, the representation in Equa-
tion 1 can be taken as the discretized version of Equation 2.
The hyperedge weight w(ei) is computed as follows:

w(ei) =
∑

vj∈ei

A(i, j). (3)



Based on this definition, the ‘compact’ hyperedge (local
group) with higher inner group similarities is assigned a
higher weight. For a vertex v ∈ V , its degree is defined
to be d(v) =

∑
e∈E w(e)h(v, e). For a hyperedge e ∈ E,

its degree is defined as δ(e) =
∑

v∈e h(v, e). Let us use
Dv,De and W to denote the diagonal matrices of the vertex
degrees, the hyperedge degrees and the hyperedge weights
respectively. Figure 1 shows an example to explain how to
construct a probabilistic hypergraph.

3. Hypergraph Ranking Algorithm
The previously proposed algorithms for partitioning a

hypergraph can be divided into two categories. The first cat-
egory aims at constructing a simple graph from the original
hypergraph, and then partitioning the vertices by spectral
clustering techniques. These methods include clique expan-
sion [37], star expansion [37], Rodriquez’s Laplacian [23],
etc. The second category of approaches define a hyper-
graph ‘Laplacian’ using analogies from the simple graph
Laplacian. Representative methods in this category include
Bolla’s Laplacian [4], Zhou’s normalized Laplacian [34],
etc. In [1], the above algorithms are analyzed and verified
that they are equivalent to each other under specific condi-
tions. For a hypergraph partition problem, the normalized
cost function [34] Ω(f) could be defined as

1
2

∑
e∈E

∑
u,v∈e

w(e)h(u, e)h(v, e)
δ(e)

(
f(u)√
d(u)

− f(v)√
d(v)

)2

, (4)

where the vector f is the image labels to be learned. By
minimizing this cost function, vertices sharing many in-
cidental hyperedges are guaranteed to obtain similar la-

bels. Defining Θ = D
− 1

2
v HWD−1

e HT D
− 1

2
v , we can derive

Equation 4 as follows:

Ω(f) =
∑
e∈E

∑
u,v∈e

w(e)h(u, e)h(v, e)
δ(e)

(
f2(u)
d(u)

− f(u)f(v)√
d(u)d(v)

)

=
∑
u∈V

f2(u)
∑
e∈E

w(e)h(u, e)
d(u)

∑
v∈V

h(v, e)
δ(e)

−
∑
e∈E

∑
u,v∈e

f(u)h(u, e)w(e)h(v, e)f(v)√
d(u)d(v)δ(e)

= fT (I − Θ)f, (5)

where I is the identity matrix. Above derivation shows that
(i) Ω(f, w) = fT (I−Θ)f if and only if

∑
v∈V

h(v,e)
δ(e) = 1 and∑

e∈E

w(e)h(u,e)
d(u) = 1, which is true because of the definition

of δ(e) and d(u) in Section 2; (ii) Δ = I − Θ is a pos-
itive semi-definite matrix called the hypergraph Laplacian

and Ω(f) = fT Δf . The above cost function has the simi-
lar formulation to the normalized cost function of a simple
graph Gs = (Vs, Es):

Ωs(f) =
1
2

∑
vi,vj∈Vs

As(i, j)

(
f(i)√
Dii

− f(j)√
Djj

)2

= fT (I − D− 1
2 AsD

− 1
2 )f = fT Δsf, (6)

where D is a diagonal matrix with its (i, i)-element equal
to the sum of the ith row of the affinity matrix As; Δs =
I−Θs = I−D− 1

2 AsD
− 1

2 is called the simple graph Lapla-
cian. In an unsupervised framework, Equation 4 and Equa-
tion 6 can be optimized by the eigenvector related to the
smallest nonzero eigenvalue of Δ and Δs [34], respectively.

In the transductive learning setting [34], we define a vec-
tor y to introduce the labeling information of feedback im-
ages and to assign their initial labels to the corresponding
elements of y: y(v) = 1

|Pos| , if a vertex v is in the positive

set Pos, y(v) = − 1
|Neg| , if it is in the negative set Neg. If

v is unlabeled, y(v) = 0. To force the assigned labels to ap-
proach the initial labeling y, a regularization term is defined
as follows:

‖f − y‖2 =
∑
u∈V

(f(u) − y(u))2. (7)

After the feedback information is introduced, the learning
task is to minimize the sum of two cost terms with respect
to f [33] [34], which is

Φ(f) = fT Δf + μ‖f − y‖2, (8)

where μ > 0 is the regularization parameter. Differentiating
Φ(f) with respect to f , we have

f = (1 − γ)(I − γΘ)−1y, (9)

where γ = 1
1+μ . This is equivalent to solving the linear

system ((1 + μ)I − Θ) f = μy.
For the simple graph, we can simply replace Θ with Θs

to fulfill the transductive learning. In [14] and [13], this sim-
ple graph based transductive reasoning technique is used for
image retrieval with relevance feedback. The procedures of
the probabilistic hypergraph ranking algorithm and simple
graph based manifold ranking algorithm are listed in Algo-
rithm 1 and Algorithm 2.

4. Feature Descriptors and Similarity Mea-
surements

To define the similarity measurement between two im-
ages, we utilize the following descriptors: SIFT [21],
OpponentSIFT, rgSIFT, C-SIFT, RGB-SIFT [30] and
HOG [10] [5]. The first five are appearance-based color



Algorithm 1 Probabilistic Hypergraph Ranking
1: Compute similarity matrix A based on various features using Equation 11, where A(i, j) denotes the similarity between

the ith and the jth vertices.
2: Construct the probabilistic hypergraph G. For each vertex, based on the similarity matrix A, collect its k-nearest neighbors

to form a hyperedge.
3: Compute the hypergraph incidence matrix H where h(vi, ej) = A(j, i) if vi ∈ ej and h(vi, ej) = 0 otherwise. The

hyperedge weight matrix is computed using Equation 3.

4: Compute the hypergraph Laplacian Δ = I − Θ = I − D
− 1

2
v HWD−1

e HT D
− 1

2
v .

5: Given a query vertex and the initial labeling vector y, solve the linear system ((1 + μ)I − Θ) f = μy. Rank all the
vertices according to their ranking scores in descending order.

Algorithm 2 Manifold Ranking
1: Same to Algorithm 1.
2: Construct the simple graph Gs. For each vertex, based on the similarity matrix A, connect it to its k-nearest neighbors.
3: Compute the simple graph affinity matrix As where As(i, j) = A(i, j) if the ith and the jth vertices are connected. Let

As(i, i) = 0. Compute the vertex degree matrix D =
∑

j As(i, j).
4: Compute the simple graph Laplacian Δs = I − Θs = I − D− 1

2 AsD
− 1

2 .
5: Same to Algorithm 1, expect that Θ is replaced with Θs.

descriptors that are studied and evaluated in [30]. It is ver-
ified that their combination has the best performance on
various image datasets. HOG (histogram of oriented gra-
dients) is the shape descriptor widely used in object recog-
nition and image categorization. Similar to [30], we extract
both the sparse and the dense features for five appearance
descriptors to boost image search performance. The sparse
features are based on scale-invariant points obtained with
the Harris-Laplace point detectors. The dense features are
sampled every 6 pixels on multiple scales. For sparse fea-
tures of each appearance descriptor, we create 1024-bin by
k–means; for dense features of each appearance descriptor,
we create 4096-bin codebooks because each image contains
much more dense features than the sparse features. For
each sparse (or dense) appearance descriptor, we follow the
method in [31] to obtain histograms by soft feature quanti-
zation, which was proven to provide remarkable improve-
ment in object recognition [31]. For the HOG descriptor,
we discretize gradient orientations into 8 bins to build his-
tograms. For each of above 11 features (5 sparse features +
5 dense features + 1 HOG feature), we use a spatial pyramid
matching(SPM) approach [18] to calculate the distances be-
tween two images {i, j} because of its good performance:

Dis(i, j) =
L∑

l=0

1
αl

m(l)∑
p=1

βl
pχ

2(Hisl
p(i), Hisl

p(j)). (10)

In the above equation, Hisl
p(i) and Hisl

p(j) are two im-
age’s local histograms at the pth position of level l; α
and β are two weighting parameters; χ2(·, ·) are the chi-
square distance function used to measure the distance be-
tween two histograms. For the sparse and dense appearance
features, we follow the setting of [30]: three levels of spa-

tial pyramids are 1 × 1(whole image, l = 0, m(0) = 1,
β0

1 = 1), 1 × 3(three horizontal bars, l = 1, m(1) = 3,
β1

1 ∼ β1
3 = 1

3 ), 2 × 2(image quarters, l = 2, m(2) = 4,
β2

1 ∼ β2
4 = 1

4 ); α0 ∼ α2 = 3. For the HOG feature, we
employ L = 4 levels (l = 0 ∼ 3) of the spatial pyramids
as in [5]: 1 × 1, 2 × 2, 4 × 4 and 8 × 8; α0 = 2L and
αl = 2L−l+1 for l = 1, 2, 3. After all the distance ma-
trices for 11 features are obtained, the similarity matrix A
between two images can be computed as follows:

A(i, j) = exp(− 1
11

11∑
k=1

Disk(i, j)
Dk

), (11)

where Dk is the mean value of elements in the kth distance
matrix.

5. Experiments

5.1. Experimental Protocol

In this section, we used SVM and similarity based
ranking as the baselines. The similarity based ranking
method sorts retrieved image i according to the formula

1
|Pos|

∑
j∈Pos

A(i, j) − 1
|Neg|

∑
k∈Neg

A(i, k), where Pos and

Neg denote positive/negative sets of feedback images re-
spectively. We compare the proposed hypergraph ranking
frameworks to the simple graph based manifold ranking al-
gorithm [14] [13], and we also evaluate the performances
of the probabilistic hypergraph ranking against the hyper-
graph based ranking. The hypergraph ranking algorithm is
the same as Algorithm 1 except for using the binary inci-
dence matrix (where ht(vi, ej) = 1 or 0). For the parameter
γ in Equation 9, we follow the original work [33] [35] and



r (scope) 20 40 60 80 100
MR P(r) 0.695 (at K = 40) 0.606 (at K = 40) 0.537 (at K = 40) 0.475 (at K = 40) 0.424 (at K = 40)
HR P(r) 0.728 (at K = 40) 0.644 (at K = 30) 0.571 (at K = 40) 0.508 (at K = 40) 0.450 (at K = 40)

PHR P(r) 0.748 (at K = 40) 0.659 (at K = 40) 0.583 (at K = 40) 0.519 (at K = 40) 0.459 (at K = 50)

Table 1. Selection of the hyperedge size and the vertex degree in the simple graph. We list the optimal precisions and corresponding K
values at different retrieved image scopes. MR: Manifold Ranking. HR: Hypergraph Ranking. PHR: Probabilistic Hypergraph Ranking. K
denotes the hyperedge size and the vertex degree in the simple graph.

fix it as 0.1 for the best performance of both the hypergraph
and the simple graph based algorithms. We use the respec-
tive optimal hyperedge size or the vertex degree (in the sim-
ple graph) in all experiments. Other parameters are directly
computed from experimental data. Three general purpose
image databases are used in this paper: Corel5K [12], the
Scene dataset [20] and Caltech-101 [19]. Two measures are
employed to evaluate the performance of above five ranking
methods: (1) the precision vs. scope curve, (2) the precision
vs. recall curve. We use each image in a database as a query
example and both measures are averaged over all the queries
in this database.

To provide a systematic evaluation, in the first round of
relevance feedback 4 positive images and 5 negative images
are randomly selected for each query image to form a train-
ing set containing 5 positive/ 5 negative examples. In the
second and third round, another 5 positive/ 5 negative ex-
amples are randomly labeled for training, respectively. In
this way a total of 10,20 and 30 images are marked after
each of the three relevance feedback cycles. The rest of the
images are used as testing data.

Besides the above passive learning setting, we also ex-
plore the active learning technique on Corel5K. Same set-
ting as in [14], [13], [7] and [6], the ground truth labels of
the 10 top ranked examples are used as feedback images
after each round of retrieval cycle.

5.2. In-depth Analysis on Corel5K

We choose to conduct an in-depth analysis on
Corel5K [12] because it is used as the benchmark in [14]
and [13] for the manifold ranking method and a lot of other
work [11]. Since all 50 categories of Corel5K contain the
same number of 100 images, the precision-scope curve is
used by [14] and [13] as the measurement. Therefore, we
choose the precision-scope curve here in order to make a
direct comparison with [14] and [13].

Combination of multiple complementary features for
image retrieval. As presented in Section 4, we utilize to-
tally 11 features to compute the similarity matrix A. To
demonstrate the advantage of combining multiple comple-
mentary features, we employ the similarity based ranking
method on Corel5K using the combined feature and all 11
single features. In this group experiment, only query im-
age is provided and no relevance feedback is performed. As
shown in Fig 2, the combined feature outperforms the best

single feature (sparse C-SIFT) by 5 ∼ 12% for the differ-
ent retrieval scopes r. All our comparisons are made on the
similarity matrix computed with the same combined fea-
ture.
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Figure 2. Combination of multiple complementary features for im-
age retrieval. Best viewed in color.

Selection of the hyperedge size and the vertex de-
gree in the simple graph. Intuitively, very small-size hy-
peredges only contain ‘micro-local’ grouping information
which will not help the global clustering over all the im-
ages, and very large-size hyperedges may contain images
from different classes and suppress diversity information.
Similarly, in order to construct a simple graph, usually ev-
ery vertex in the graph is connected to its K-nearest neigh-
bors. For the fair comparison, in this work we perform a
sweep over all the possible K values of the hyperedge size
and the vertex degree in the simple graph to optimize the
clustering results. As shown in Table 1, after the first round
of relevance feedback (using the passive learning setting),
almost all the methods get optimal values at K = 40. So
we set both the hyperedge size and the vertex degree in the
simple graph as 40 in the experiments on Corel5K.

Comparison under passive learning setting. As shown
in Fig 3, the probabilistic hypergraph ranking outperforms
the manifold ranking by 4% ∼ 5% and the traditional hy-
pergraph ranking by 1% ∼ 3% after each round of rele-
vance feedback.

Comparison under active learning setting. As shown
in Fig 4, we start the experiment from Round 0, in which
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Figure 3. Precision vs. scope curves for Corel5K, under the passive learning setting. Best viewed in color.
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Figure 4. Precision vs. scope curves for Corel5K, under the active learning setting. Best viewed in color.

only the query image is used for retrieval. Although the
probabilistic hypergraph ranking achieved similar precision
to the manifold ranking and the hypergraph ranking in the
Round 0(without feedback), it progressively spaces out the
difference in precision after the first round and the second
round. At the end of the second round, it outperforms the
manifold ranking by 4% ∼ 10% and the traditional hyper-
graph ranking by 1% ∼ 2.5% on different retrieval scope.
Another observation is that the manifold ranking provides
much less increase on precisions at the end of the second
round. For example, at r = 20 the precision of the manifold
ranking increases from 50.4% to 54.3%, while the preci-
sion of the probabilistic hypergraph ranking increases from
50.8% to 63.9%.

Our method outperforms the manifold ranking results
in [13] and [14] by approximately 8% ∼ 20% under the
similar setting.

Computation cost. The most time consuming parts
in both Algorithm 1 and Algorithm 2 are to solve the
5000 × 5000 linear system in the 5th steps, which have
the same time complexity. On a desktop with Intel 2.4GHz

Core2-Quad CPU and 8GB RAM, our Matlab code, without
code optimization, takes 31.1 and 26.4 seconds to complete
5000 queries for Algorithm 1 and Algorithm 2, respectively.
Thus, the computational cost of the hypergraph ranking is
similar to that of the simple graph-based manifold ranking.

5.3. Results on the Scene Dataset and Caltech-101

The Scene dataset [20] consists of 4485 gray-level im-
ages which are categorized into 15 groups. It is also impor-
tant to mention that we only use 3 features for gray-level
images (sparse SIFT, dense SIFT and HOG) to compute the
similarity matrix in this experiment; the optimal hyperedge
size is K = 90 and the optimal vertex degree of the sim-
ple graph is K = 330. Since every category of the Scene
dataset contains different number of images, we choose the
precision-recall curves as a more rigorous measurement for
the Scene dataset. As shown in Fig 6, the probabilistic
hypergraph ranking outperforms the manifold ranking by
5% ∼ 7% on Precision for Recall < 0.8, after each round
of feedback using the passive learning setting; the proba-
bilistic hypergraph ranking is slightly better than the hyper-



graph ranking. In addition, we also show the per-class com-
parison on precisions (Fig 5) at r = 100 after the 1st round.
Our method exceeds the manifold ranking in 13 classes (out
of the total 15 classes).

Figure 5. Per-class precisions for Scene dataset at r = 100 after
the 1st round. Best viewed in color.

To demonstrate the scalability of our algorithm, we also
conduct a comparison on Caltech-101 [19] which contains
9146 images grouped into 101 distinct object classes and a
background class. For Caltech-101, both the optimal hyper-
edge size and the optimal vertex degree of the simple graph
are K = 40. The precision-recall curves are shown in Fig 7,
in which we can observe the advantage of the probabilistic
hypergraph ranking on both the hypergraph ranking and the
manifold ranking.

Above analysis confirms our proposed method from two
aspects: (1) by considering the local grouping information,
both hypergraph models can better approximate relevance
between the labeled data and unlabled images than the sim-
ple graph based model; (2) probabilistic incidence matrix H
is more suitable for defining the relationship between ver-
tices in a hyperedge.

6. Conclusion

We introduced a transductive learning framework for
content-based image retrieval, in which a novel graph struc-
ture – probabilistic hypergraph is used to represent the rel-
evance relationship among the vertices (images). Based on
the similarity matrix computed from complementary image
features, we take each image as a ‘centroid’ vertex and form
a hyperedge by a centroid and its k-nearest neighbors. We
adopt a probabilistic incidence structure to describe the lo-
cal grouping information and the probability that a vertex
belongs to a hyperedge. In this way, the task of image re-
trieval with relevance feedback is converted to a transduc-
tive learning problem which can be solved by the hyper-
graph ranking algorithm. The effectiveness of the proposed
method is demonstrated by extensive experimentation on
three general purpose image databases.
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Figure 6. The precision-recall curves for Scene dataset under the passive learning setting. Best viewed in color.
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Figure 7. The precision-recall curves for Caltech-101. Best viewed in color.
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