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Abstract

The most popular approach to large scale image re-

trieval is based on the bag-of-visual-word (BoV) represen-

tation of images. The spatial information is usually re-

introduced as a post-processing step to re-rank the retrieved

images, through a spatial verification like RANSAC. Since

the spatial verification techniques are computationally ex-

pensive, they can be applied only to the top images in the

initial ranking. In this paper, we propose an approach that

can encode more spatial information into BoV representa-

tion and that is efficient enough to be applied to large-scale

databases. Other works pursuing the same purpose have

proposed exploring the word co-occurrences in the neigh-

borhood areas. Our approach encodes more spatial in-

formation through the geometry-preserving visual phrases

(GVP). In addition to co-occurrences, the GVP method also

captures the local and long-range spatial layouts of the

words. Our GVP based searching algorithm increases little

memory usage or computational time compared to the BoV

method. Moreover, we show that our approach can also be

integrated to the min-hash method to improve its retrieval

accuracy. The experiment results on Oxford 5K and Flicker

1M dataset show that our approach outperforms the BoV

method even following a RANSAC verification.

1. Introduction

Similar image retrieval has attracted increasing interests

in recent years. Given a query image or region, the goal

is to retrieve the images of the same object or scene from

a large database and return a ranked list. Three important

factors must be considered in a large-scale retrieval system:

retrieval accuracy, memory usage, and efficiency.

Most state of the art retrieval technologies are based

on the bag-of-visual-word (BoV) model initially introduced

by [17], in which images are represented as histograms of

visual words. Image querying is typically accomplished

in two steps: searching and post-processing. During the

searching step, similar images are retrieved from the large

database and an initial ranking is generated. This step must
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Figure 1. The images on the left show the matched visual words of

a query image with two different images, and images on the right

show the matched geometry-preserving visual phrases (GVP).

Each GVP is composed of two words in the same color. With

the visual words, we have more matches for images of different

objects (top image pair) than images of the same object (bottom

image pair). On the contrary, with the GVP, we have much fewer

matches for different objects than the same object. If we use the

number of matches for ranking, the bag of words model will give

incorrect ranking for these two images, while the GVP can gener-

ate correct ranking.

be facilitated with an efficient algorithm in order to deal

with large scale databases. The most popular approach is to

index images with inverted files [17] to facilitate fast access

to the images with common words. The post-processing

step provides a more precise ranking of the retrieved im-

ages, usually through spatial verification [15]. Numerous

works have been proposed and have successfully improved

the retrieval performance and efficiency. The approximate

nearest neighbor [15] and tree vocabulary [13] increase the

efficiency of building a large vocabulary, while soft match-

ing [16] and hamming embedding [7] address the hard

quantization problem of visual words. Spatial verification

methods [15] and query expansion [5] have been proposed

for re-ranking at the post-processing step, and many meth-

ods [9, 22, 8, 14] have been introduced to decrease the mem-

ory usage for the inverted files.

In this paper, we are interested in improving the BoV

model with spatial information. Despite its simplicity and

efficiency, the BoV model discards spatial information,

which is crucial for visual representation because of the

ambiguity of visual words. Spatial information is usually
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re-introduced in the post-processing step through a geome-

try verification, such as RANSAC [15] or neighboring fea-

ture consistency [17]. Since geometry verification meth-

ods are usually computationally expensive, they are applied

only to the top images in the initial ranking. Therefore,

efficient algorithms that encode more spatial information

into the searching step are beneficial. Lin and Brandt [12],

and Lampert [10] rank the images based on the matching

scores of the query image with the localized sub-windows

in images. These methods encode more spatial information

than the the BoV model on the entire image and provide

localizations of the query. However, when the query re-

gion is large, they are used primarily as a post-processing

step because of the memory usage and speed[12]. Spa-

tial Pyramid Matching (SPM)[11] and methods with GIST

features [19] encode rigid spatial information by quantiz-

ing the image space and lack the invariance to transforma-

tions. Spatial-bag-of-features[1] handle variances of SPM

by changing the order of the histograms; the spatial his-

togram of each visual word is rearranged by starting from

the position with the maximum frequency, resulting in im-

provement over both BoV and SPM. However, this rear-

rangement may not correspond to the true transformation.

Another approach is to search using phrases or colloca-

tions generated from visual words. Previous works usually

use the phrases to model the co-occurrences of the words,

either in the entire images or in local neighborhoods. Co-

occurrences in the entire images [18] do not capture spatial

information between the words, while co-occurrences in lo-

cal neighborhoods [21, 25, 20] capture neighboring infor-

mation, but ignore long-range interactions. Moreover, they

ignore the spatial layouts of the words in the neighborhoods

[21, 25] or only perform weak spatial verification[20]. An-

other problem with existing methods [18, 21, 25] is that,

because the total number of phrases can increase exponen-

tially to the number of words in a phrase, they must select

a subset from the entire phrase set. Sophisticated mining or

learning algorithms have been proposed for this selection,

but it may still be risky to discard a large portion of phrases,

some of which may be representative ones for the images.

We use geometry-preserving visual phrases (GVP) to en-

code more spatial information in the searching step. A GVP

is a set of visual words in a particular spatial layout, so

different layouts define different GVP. Our searching algo-

rithm with GVP is inspired by a recent algorithm proposed

by Zhang and Chen [23] for object categorization. They

propose an efficient algorithm which can identify the co-

occurring GVP 1 in time linear to the number of local words

in an image. The algorithm is used to build a kernel of

the SVM for object categorization task, and do not consider

large-scale databases. We extend the algorithm so we can

1In their paper, they use high order features. We use phrases to make

consistency with papers in the image retrieval literature.

perform efficient large-scale image search. Our approach

increases little memory usage or runtime of the traditional

searching method with the BoV model, while providing a

better initial ranking with more spatial information. Figure

1 illustrates the differences of the ranking results using BoV

and GVP.

Moreover, our approach can integrate the geometry-

preserving visual phrases(GVP) into the popular min-hash

method to further improve the efficiency of searching with

GVP, because the min-hash method reduces memory usage

and increases the search efficiency. The traditional min-

hash method [4, 6] is based on the BoV model. Our ap-

proach increases its retrieval accuracy by adding spatial in-

formation without increasing the computational cost. In this

line of work, we are related to [3] and [2]. While they con-

sider local co-occurrences [3] or global co-occurrences [2],

we encode more spatial information.

2. Inverted Files with GVP

2.1. Inverted File Index

We first review the traditional searching scheme with

the inverted file structure. An image Ii is represented

as a vector V (Ii), with one component for each visual

word in the dictionary. The jth component in the vector

vj(Ii) is the weight of the word j: the tf -idf weighting

scheme is usually used. The similarity of two images Ii
and Ii′ is defined as the cosine similarity of the two vec-

tors V (Ii) · V (Ii′)/(‖V (Ii)‖‖V (Ii′‖). Ranking with this

similarity also gives the same result as ranking with the Eu-

clidean distance of the L2-normalized vectors. With a large

vocabulary, this vector representation is very sparse. The

inverted file structure [17] utilizes this sparseness to index

images and enables fast searching. For each visual word

in the vocabulary, this structure stores the list of images in

which the word occurs and its term frequency (tf ).

Searching Scheme: Given a query image q, the search

can be interpreted as a voting scheme [7]: 1) The scores

of all images in the database are initialized to 0. 2) For

each word j in the query, we retrieve the list of images that

contain this word through the inverted files. For each image

i in the list, we increment its score by the weight of this

word score(i)+ = tfij × idfj . After processing all words

in the query, the final score of image i gives the dot product

of the vectors of image i and the query. 3) We normalize

the scores to obtain the cosine similarities for ranking.

2.2. Geometry­Preserving Visual Phrases

A geometry-preserving visual phrase (GVP) of length k
is defined as k visual words in a certain spatial layout. Dif-

ferent words and different spatial layouts both define differ-

ent phrases. To tolerate shape deformation, the image space

is quantized into bins. Figure 2 shows example occurrences
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Figure 2. Illustration of the co-occurrences of the same GVP. Dif-

ferent alphabets (A,B, ...) represent different visual words.

of the same GVP of length 3 in the two images. An image

will be represented as a vector defined with the GVP. Sim-

ilar to the BoV model, the vector representation V k(I) of

an image I is defined as the histogram of GVP of length

k, with the ith component representing the frequency (tf )

of phrase pi. For simplicity of explanation, we first ignore

the idf part of the weighting. This vector can be extremely

long even when k = 2 while a large vocabulary is used.

Therefore, it is impractical to create the vectors directly and

perform the search. However, it can be easily proven that

the dot product of such vectors of two images equals the

total number of co-occurring GVP in these images.

We utilize the algorithm proposed in [23] to identify the

co-occurring GVP in two images. The algorithm is illus-

trated in figure 2. For each pair of the same word j in images

I and I ′, we calculate their offset (△xj ,△yj), which is the

location of the word in image I ′ substracts that in image I .

Then a vote is generated on the offset space at (△xj ,△yj).
On the offset space, k votes locating at the same place cor-

respond to a co-occurring GVP of length k. In the exam-

ple of figure 2, word A,B,C corresponds to a co-occurring

GVP of length 3. Thus, by utilizing the offset space, we

can efficiently count the number of co-occurring GVP. For

example, the number of co-occurring GVP of length 2 in

figure 2 is 1 (for bin with D,F ) + 1 (for bin with B,F ) +(
3

2

)
(3 choose 2, for bin with A,B,C). After obtaining the

dot product, the similarity of the two images is the dot prod-

uct dividing the L2-norms. The L2-norm of an image I can

be calculated by counting the co-occurring GVP with itself,

since ‖V k(I)‖ =
√
V k(I) · V k(I).

2.3. Searching with GVP

The previous section presented the algorithm for calcu-

lating the GVP similarity score of two images. In order

to search a large database with this similarity, we integrate

the algorithm into the inverted file structure. Suppose for

each visual word in the inverted files, other than the images

that contain this word, we have also stored the location in

which the word occurs. Multiple entries are created if a

word occurs multiple times in one image. We discuss about

the storage strategy in the later section.

The key idea is to calculate the number of votes in each

offset bin for all images in the database during the process

of searching. We modify the searching scheme introduced

in Section 2.1. Rather than keeping one bin for each im-

age for accumulating the scores, we keep M bins for each

image, where M is the number of possible offsets. The vot-

ing procedure for obtaining the similarity scores of length

k-GVP is as follows.

1. Initialize M bins for each image in the database to 0.

Each bin represents an offset value.

2. For each word j in the query image, retrieve the im-

age IDs and locations of the occurrences of j through

the inverted files. For each retrieved word occurrence

d in image i, we calculate the offset of d and j and

increment the corresponding offset bin of image i.

Si,xd−xj ,yd−yj
+ = 1 (1)

where, (xd, yd) and (xj , yj) are the x and y axis of the

locations (in the quantized image space) of d and j, Si

are the scores for image i.
3. Calculate the number of co-occurring GVP of length k

for each image i by traversing each bin m.

Ŝi =
∑

m>=k

(
Si,m

k

)
(2)

4. Obtain the final score S∗
i of each image by normalizing

Ŝi with its L2-norm.

2.4. IDF Weighting for Phrases

We further consider the idf weights of visual words.

The idf value for a word wj is calculated as log(Nj/N),
where Nj is the number of images that contain wj and N
is the total number of images. For the sake of efficiency,

we define the idf weight of a GVP p as the summation

of the idf weights of the words composing it: idf(p) =∑
wj∈p idf(wj)
When the idf weights considered, the dot product of the

vector representations of two images is equal to the summa-

tion of the idf weights of the co-occurring GVP. Suppose an

offset bin of two images has m votes generated from words

w1, ..., wm (for example, the bin with words A,B,C in fig-

ure 2); the summation of the idf weights of GVPs of length

k in this bin can calculated as follows:

∑

p∈{w1,...,wm}k

idf(p) =

(
m− 1

k − 1

) m∑

i=1

idf(wi) (3)

To calculate the similarity scores of all images, we mod-

ify the voting procedure in the previous section as follows.
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Figure 3. Inverted file structure and the illustration for updating

the scores of images with this structure. Green numbers are the

offsets of word j and the word occurrences in the database, which

are calculated online using the location of j.

For each image i, other than the number of words Si,m in

each offset bin m, we also keep the summation of the idf

weights of these words Di,m. At step 2, for each word j,

we update both these values:

Si,xd−xj ,yd−yj
+ = 1 (4)

Di,xd−xj ,yd−yj
+ = idf(j) (5)

Equation 2 for calculating the score of image i is changed

to:

Ŝi =
∑

m>=k

Di,m

(
Si,m − 1

k − 1

)
(6)

2.5. Index Structure

We discuss about the storage strategy of the inverted

files. For storing the images that contain a visual word, there

are two standard strategies for the inverted files [15, 7]. The

first one is to keep one entry for each image, and store its

ID and the term frequency of this word in this image. The

second one is to keep one entry for each word occurrence,

and avoid the storage for the term frequencies. With a large

vocabulary, the memory usage is almost equivalent for the

two strategies, since the same word rarely occurs multiple

times in one image [7][3].

To store the locations of the words, one simple way is

to adopt the second strategy and associate each word occur-

rence with the location in which it occurs. Since our algo-

rithm uses only the quantized locations, an alternative stor-

age method is illustrated in figure 3. For each visual word j
and each quantized image location (x, y), we store the list

of images that contain word j at location (x, y). This data

structure only increases the memory by the pointers of the

locations. Supposing we have 1M images with 2 billion fea-

tures and the image space is quantized to 10 by 10 grids, the

first method costs additional 2G bytes of memory to store

the locations, while the second one only increases the mem-

ory by 100M bytes. Another advantage of this structure is

Figure 4. Four example sets of words that have the same offset.

The object in the right image is a 90 degree rotation from the same

object in the left image.

that we do not need to calculate the offsets for each word

occurrences in step 2. The offset can be calculated before

referring to the image lists at a location (x, y) (Figure 3).

2.6. Discussion about Invariance

The GVP presented above only captures the translation

invariance. More invariance, such as scale or rotation in-

variance, can be added by increasing the dimension of the

offset space (Section 2.2) as in paper [24]. The search-

ing algorithms proposed in this paper will remain the same.

However, since adding more dimension increases both the

memory usage and the runtime, we prefer to only encode

translation invariance into the GVP. In figure 4, we show

what will happen when we match two images with a rota-

tion difference. Because of the quantization of the image

space, the algorithm matches the words in local neighbor-

hoods. In this case, our approach degenerates to model the

local histograms as in spatial pyramid matching [11] and

its extension [1]. However, we consider the interactions of

all local histogram pairs in contrast to the exact one-to-one

matching in [11] and [1].

3. Min-hash with GVP

GVP can also be used to improve the retrieval accuracy

of the min-hash method. The min-hash method [4, 6] is

one popular dimension reduction technique that reduces the

memory usage of inverted files and increases the search-

ing efficiency, and is originally designed based on the bag-

of-visual-words model. It is particularly suitable for near-

duplicate image retrieval. We briefly review the min-hash

algorithm based on BoV.

3.1. Min­hash Review

A number of independent random hash functions are

generated. Each hash function fj randomly assigns a real

number to each visual word, and thus defines a permutation

of the words. An image I is represented as a set AI consist-

ing of the words that occur in I . The min-hash value of the

image AI under function fj is defined as the smallest word

in AI : mfj(AI) = argminw∈AI
fj(w). We call this mfj a

min-hash function, which has the property that the probabil-

ity of two sets AI and AI′ having the same min-hash value
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Figure 5. Illustration of the min-hash method with GVP.

is equal to their set overlap. The similarity of two images is

defined as their set overlap.

p(mfj(AI) = mfj(AI′)) =
|AI ∩AI′ |

|AI ∪AI′ |
= sim(AI , AI′)

(7)

If l is the number of times mfj(AI) = mfj(AI′) among

the N min-hash functions we defined, the similarity of im-

ages AI and AI′ can be estimated as l/N .

For efficient retrieval, the min-hashes are grouped into

k-tuples F = (mf1(AI),mf2(AI), ...,mfk(AI)) called

sketches. The probability that two images AI and AI′ has

identical k-tuples is sim(AI , AI′)k. The typical retrieval

procedure estimates the similarity of the query with only

images that have h identical sketches out of S randomly

generated sketches.

3.2. Min­hash with GVP

To integrate the GVP to the min-hash algorithm, we first

force one-to-one mapping from a min-hash function to a

feature (a word occurrence) for each image. A min-hash

function mfj selects the word w in image I , which has the

minimum value under function fj . If the word occurs only

once in the image, we set the function value mfj(I) to this

occurrence. If the word occurs multiple times, we randomly

select one of them and use the selected one as the function

value. In practice, with a large vocabulary, most words has

only one occurrence in the same image (more than 95% re-

ported in [3]).

Thus, k min-hash functions will locate k features,

a length-k-GVP, in an image. The similarity score

simk(I, I ′) of two images I and I ′ is defined as the prob-

ability that the GVP located by a set of k min-hash func-

tions on these images are the same GVP. The calculation

of this similarity is illustrated in figure 5. For each min-

hash function mfj , we locate the corresponding feature

in each image. If the two features are the occurrences of

the same word, that is, the min-hash value of the two im-

ages is the same, we calculate their offset and generate

a vote on the offset space. k votes at the same bin on

the offset space correspond to a co-occurring GVP located

by a set of k min-hash functions. Let ms be the number

of votes in bin s of the offset space and N be the total

number of min-hash functions used; the similarity score

simk(I, I ′) =
∑

s

(
ms

k

)
/
(
N
k

)
. We use this similarity for

ranking.

Collision probability

We look into the defined similarity score simk(I, I ′),
which is also the probability that a GVP collision occurs.

This also equals to the probability that for k min-hash func-

tions, 1) the min-hash values of all functions are the same

for the two images; 2) the located feature pairs generate

votes in the same bin on the offset space. Suppose the two

images have ρ1(I, I ′) number of same word pairs. This also

indicates that if we generate one vote for each same word

pair (gray and red circles in figure 5), we have ρ1(I, I ′) to-

tal number of votes on the offset space. Because of its ran-

domness, when a min-hash function has the same min-hash

values for images I and I ′, it will randomly generate one

vote among the ρ1(I, I ′) votes (red circles). Therefore, let

Ms be the number of votes (gray and red circles) in offset

bin s, and sim(AI , AI′) be the word set overlap defined in

equation 7; the similarity score is:

simk(I, I ′) = sim(AI , AI′)k
∑

s M
k
s

(
∑

s Ms)k
(8)

= sim(AI , AI′)k
ρk(I, I ′)

ρ1(I, I ′)k
(9)

where ρk(I, I ′) is the total number of co-occurring GVP of

length k2.

Note that the left part of equation 9 is the probability of a

sketch collision. By using GVP, we further decrease the col-

lision probability. Table 1 gives typical probabilities that a

pair of relevant images has at least one sketch or GVP colli-

sion among S number of sketches or GVP3. Even for length

2, the probability is quite low for at least one GVP colli-

sion among 1024 GVPs. The proposed algorithm works

because with N number of min-hash functions, we have al-

ready considered
(
N
k

)
number of GVP. Therefore, when we

have 512 min-hash functions, we can ensure to have at least

one GVP collision with probability 1.0 for both k = 2 and

k = 3.

4. Experiments

We evaluate our approach based on the three important

factors in image retrieval: retrieval accuracy, memory usage

and searching time.

2The GVP here include the phrases generated using the same word mul-

tiple times
3The probability is calculated as the median of the probabilities of the

relevant image pairs on the University of Kentucky dataset [13] with a

100K vocabulary
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method
S=512 S=1024

k=2 k=3 k=2 k=3

sketch 0.61 0.04 0.85 0.08

GVP 0.075 0.002 0.15 0.004

Table 1. The probabilities that at least one sketch or GVP collision

for relevant image pairs among S number of sketches or GVP. k is

length of the sketch or GVP.

Datasets: The experiments are conducted on three

publicly available image retrieval datasets: Oxford 5K

Dataset[15], Flicker 1M dataset[7], and University of Ken-

tucky dataset[13]. Oxford 5K dataset contains 5062 im-

ages with more than 16M features. It also provides 55 test

queries of 11 Oxford landmarks with their ground truth re-

trieval results. Flicker 1M dataset contains 1M images with

more than 2 billion features. This dataset is added as dis-

tractors to the Oxford dataset to test the scalability of our

system. University of Kentucky dataset contains 10,200 im-

ages of 2550 objects where each object has four images.

Using each image to query the database should return the

four images of the same object. To ensure the compatibility

of the experiments, we use the public available descriptors

(SIFT features on hessian affine regions or maximally stable

extremal regions) on the dataset web pages. To create the

vocabulary, we adopt the approximate k-means [15] whose

code is published by the authors.

Baseline: We posit our approach as an efficient algo-

rithm that improves the initial ranking at the searching step.

Therefore, we consider the searching with bag-of-visual-

words (BoV) as our baseline. We also compare favorably

with other works that encode spatial information to BoV at

the searching step. Methods that improve the visual word

quantization or methods performed at the post-processing

step are complimentary to our method.

4.1. Inverted Files with GVP

We evaluate our searching method with the inverted file

structure (method in Section 2) on the Oxford 5K and

Flicker 1M dataset. We use the same experiment settings

as previous papers [15]. The retrieval accuracy is measured

with the mean average precision (mAP) score generated as

follows: the precision-recall curve is created for each query

to calculate the average precision (AP). The mAP is defined

as the mean of the APs of all queries.

Parameter effects: We first examine the effect of the

main parameters in our approach on the Oxford 5K dataset.

All the experiments here are conducted with 1M vocabu-

lary size. Table 2(a) shows the mAP scores of different

lengths of the geometry-preserving phrases phrases (GVP).

We quantize the image space with 10 by 10 steps4. The

4To lessen the problem of hard quantization of the image space, and

we also quantize the offset space by a factor of 2, that is, we merge the

neighboring offset bins. The left sides of Equation 4 and 5 will be changed

to Si,x(xd−xj)/2y,x(yd−yj)/2y
and Di,x(xd−xj)/2y,x(yd−yj)/2y

0.6

0.62

0.64

0.66

0.68

0.7

1 2 3 4 5

mAP

Phrase Length

# steps mAP # r. Imgs

2 0.657 3949

5 0.682 3334

10 0.696 2597

15 0.698 1510

20 0.692 1354

(a) (b)
Table 2. The effect of parameter changes on Oxford 5K dataset.

(a): mean average precisions with GVP of different lengths.

Length 1 corresponds to the BoV model. (b): the change of mAP

and average number of retrieved images when changing the num-

ber of quantization steps of the image space.

BoV model (length 1) has a mAP score of 0.634, and us-

ing GVP of length 2 improves the mAP score to 0.696. The

searching algorithm with a longer GVP corresponds to a

more rigorous geometry modeling. Length 2 is also the op-

timal length among the lengths from 1 to 5. Since we only

retrieve images with common GVP, a longer GVP may also

leads to a lower recall when the shape deformation of the

relevant images is large. Table 2(b) shows the effect of dif-

ferent number of steps for quantizing the image space. The

same number of steps is used for x and y axis of the image

space. We use GVP of length 2 in these experiments. A

larger number of steps corresponds to a more rigorous spa-

tial modeling. Increasing the number of steps also increases

the memory usage for storing the accumulated scores in the

offset bins. Therefore, we choose to use 10 steps with GVP

of length 2 in our retrieval system.

Comparison: Table 3 compares the retrieval accuracy

(mean average precision) of our approach with the other

methods under different vocabulary sizes on the Oxford 5K

dataset. The results showed that encoding spatial infor-

mation (GVP) to the BoV model (BoV) can significantly

improve the retrieval accuracy. More significant improve-

ment is made on smaller vocabulary sizes, because the vi-

sual words are more ambiguous. Searching with GVP also

performs better than the BoV model plus a RANSAC post-

processing (BoV+RANSAC, for this method, we cite the

results reported in [15]), especially on larger vocabularies.

The reason is that our approach can provide spatial exam-

ination for the whole database, while the RANSAC only

runs on the top images resulted by BoV and thus will be

affected a lot when the precision of the top images is low.

On the smaller dictionary, BoV+RANSAC performs better

than GVP. The reason is that when the visual words are

very ambiguous, the GVP will also be affected, while the

RANSAC is less influenced since it is running on raw fea-

tures. We further apply RANSAC on the top 400 images

ranked with the GVP (GVP+RANSAC), which provides the

best results among these methods. The improvement from

GVP to GVP+RANSAC is resulted from the spatial infor-

mation the GVP failed to capture, such as scale or affine
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Vocab BoV GVP
BoV + GVP  +

RANSAC RANSAC

50K 0.490 0.594 0.599 0.614

100K 0.536 0.607 0.597 0.622

250K 0.598 0.672 0.633 0.688

500K 0.626 0.683 0.642 0.699

1M 0.634 0.696 0.653 0.713

C C

0.45

0.50

0.55

0.60

0.65

0.70

0 500 1000

mAP

Vocabulary Size (K)

BoV
GVP
BoV + RANSAC
GVP+RANSAC

Table 3. Comparison of the performances of GVP and BoV with

different vocabulary size for the Oxford 5K dataset.

Figure 6. The precision-recall curve for example queries on the

Oxford 5K dataset. The left one is for query all souls 1, and the

right one is for radcliffe camera 3.

transformation, or the errors in GVP caused by visual word

quantization.

We also compare the proposed GVP with the Spatial

Bag-of-Feature method (SBOF) [1], which also integrate

spatial information into the BoV model. The SBOF uses

the concatenated histogram of the histograms in local bins

and introduces the transformation invariance by reordering

the histogram so that it starts from the bin with maximum

number of words. We encode more spatial information by

considering the interaction between the local bins, and our

method is more robust to invariance since we do not fix one-

to-one matching between bins of two images. They report

0.651 mAP with the SBOF on the 1M vocabulary [1], while

the proposed GVP achieved 0.696 mAP.

Analysis: Figure 6 presents the precision-recall curves

of the BoV model and the proposed GVP for two example

queries. These curves are also typical among the curves for

other queries. Our approach with GVP improve the preci-

sion of the BoV model at lower recalls. Close precision is

shown when the recall reaches a certain point. We found

the reason of this phenomenon is as follows. There are

some relevant images which have few matched visual words

with the queries. For these images, we can neither find co-

occurring GVP with the queries. Therefore, our method

with GVP fails to improve the ranks of these images.

Flicker 1M: We show the retrieval accuracy when

adding the Flicker 1M images in figure 7. The proposed

method with the GVP consistently improve the ranking re-

sults of the BoV model on different number of images. The

GVP outperforms the BoV by 12% on the 1M images.

Computational cost: We run our experiments on a sin-

gle CPU of a 2.26G Quad-Core Intel Xeon server with 12G

memory. The Flicker 1M + Oxford 5K dataset contains

around 2G features and therefore, the size of the inverted

# Images BoV GVP

105K 0.509 0.604

205K 0.479 0.581

505K 0.443 0.554

1M+5K 0.413 0.532

0.4

0.45

0.5

0.55

0.6

0.65

0 200 400 600 800 1000

mAP

Number of  Images

BoV

GVP

Figure 7. The mean average precision of Oxford 5K dataset com-

bined with Flicker 1M images as distractors.

Method Memory
Runtime

Quantization Search

BoV 8.1G
0.89s

0.137s

GVP 8.6G 0.248s

Table 4. The memory usage and average runtime per query on the

Flicker 1M dataset.

files is around 8G. Compared with the BoV model, the GVP

method needs additional memory to store the relative point-

ers of the locations as presented in figure 3 and the scores

of offset bins. The additional memory required is around

500M, insignificant comparing to the inverted files. Ta-

ble 4 summarizes the memory usage as well as the running

time. Feature extraction time is not included. The proposed

GVP achieves a significant improvement in retrieval accu-

racy with little speed penalty. In comparison, the RANSAC

spatial verification on top 400 images takes more than 4 sec-

onds per query. The increased runtime (around 0.1 seconds)

is mainly because the scores of the offset bins cannot be

saved to the Cache (8M), and the update of them requires

random access to the memory.

4.2. Min­hash with GVP

We evaluate the proposed min-hash method with the

geometry-preserving visual phrases (GVP) on the Univer-

sity of Kentucky dataset [13] which is also used in the pre-

vious min-hash paper [6]. We use the same experiment set-

ting as in [13, 6]. The retrieval accuracy is measured as the

average number of relevant images in the top four retrieved

images. We choose to integrate the GVP into the min-hash

method with the similarity function using histogram inter-

section [6], since the method with histogram intersection re-

ports the best results in [6]. We use sketches of length 2 in

the same way as the traditional min-hash, and compute sim-

ilarity scores with GVP for images with at least one sketch

collision with the query image. We adopt the same number

of sketches with which the best performance is achieved for

each vocabulary size in [6]. We build a 100K vocabulary

using the same features as [4].

Table 5 presents the average number of relevant images

in the top 4 images for the min-hash method with BoV and

GVP. The results using different number of min-hash func-

tions are presented. By encoding the spatial information us-

ing the proposed GVP, our approach outperforms the min-

hash method with BoV. The improvement is less significant
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method
# of min-hash functions

268 512 640 768 896

BoV 2.88 3.07 3.12 3.14 3.17

GVP 2.96 3.14 3.20 3.24 3.26

2.8

2.9

3.0

3.1

3.2

3.3

200 500 800
# of min-hash fun.

BoV

GVP

Table 5. The number of relevant images in top 4 images on the Uni-

versity of Kentucky dataset for the min-hash methods with BoV

and GVP (length 2).

when fewer min-hash functions are used, because the prob-

ability of a GVP collision is low in this case.

4.3. Discussion

We discuss the limitations of our approach in this sec-

tion. First, like most other image retrieval systems, our

approach is built upon the visual word representation. As

already discussed, if few matched visual words are found

for the relevant images, our algorithm cannot correct them.

This problem may be solved with a query expansion [5] on

raw features in the post-processing step. Second, since we

model the spatial interaction among the visual words, our

current algorithm can not be applied to some dimension re-

duction methods that conduct linear transformations on the

histogram of visual words [9, 22, 8]. However, as we have

shown, as long as the dimension reduction method retains

the word representation as the min-hash method [4], our ap-

proach is still applicable.

5. Conclusion

We proposed an approach that encodes more spatial in-

formation into the bag-of-visual-words (BoV) model at the

searching step of a retrieval system. The spatial information

is encoded with the geometry-preserving visual phrases that

models local and long-range spatial interactions between

the visual words. Our approach can deal with all possible

phrases without a learning step in which a set of phrases

are selected. The experiment results showed that our ap-

proach outperforms the BOV model plus a RANSAC post-

processing while requiring similar memory usage and com-

putational time compared as those of the BoV model.
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