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Abstract

In this paper we propose a novel computational method

to infer visual saliency in images. The method is based on

the idea that salient objects should have local characteris-

tics that are different than the rest of the scene, being edges,

color or shape. By using a novel operator, these charac-

teristics are combined to infer global information. The ob-

tained information is used as a weighting for the output of

a segmentation algorithm so that the salient object in the

scene can easily be distinguished from the background.

The proposed approach is fast and it does not require

any learning. The experimentation shows that the system

can enhance interesting objects in images and it is able to

correctly locate the same object annotated by humans with

an F-measure of 85.61% when the object size is known,

and 79.19% when the object size is unknown, improving the

state of the art performance on a public dataset.

1. Introduction

Visual saliency is a very important part of our vision: it is

the mechanism that helps in handling the overload of infor-

mation that is in our visual field by filtering out the redun-

dant information. It can be considered as a measure deter-

mining to what extent an image area will attract an eye fix-

ation. Unfortunately, little is known about the mechanism

that leads to the selection of the most interesting (salient)

object in the scene such as a landmark, an obstacle, a prey,

a predator, food, mates etc. It is believed that interesting ob-

jects on the visual field have specific visual properties that

makes them different than their surroundings. Therefore,

in our definition of visual saliency, no prior knowledge or

higher-level information about objects is taken into account.

In this paper, we are interested in the computational sim-

ulation of this mechanism, which can be used in various

computer vision scenarios, spanning from algorithm opti-

mization (less computation spent on uninteresting areas in

the image) to image compression, image matching, content-

based retrieval, etc.

General context-free (i.e. without prior knowledge about

the scene) salient point detection algorithms aim to find dis-

tinctive local events in images by focusing on the detection

of corners, edges [3, 27, 18, 12] and symmetry [20, 13, 4].

These methods are very useful to find locally salient points,

however globally salient regions are usually computed by

partitioning the images into cells and by counting the num-

ber of salient descriptors which fall into them. The above

techniques lack the ability to infer the location of global

structures as an agreement of multiple local evidences.

Therefore, to infer global salient regions, in this paper, we

propose a framework that combines isophotes properties

(Section 2.1) with image curvature (Section 2.2) and color

edges information (Section 2.3). The contributions are the

following:

• Instead of using the widely adopted edge information,

we propose to use the gradient slope information to

detect salient regions in images.
• We use an isophote symmetry framework to map local

evidence close to the centers of image structures.
• We provide an enabling technology for smarter,

saliency aware, segmentation algorithms.
• We solve the problem of defining the size of unknown

interesting objects by segmentation and subwindow

search.

2. The Saliency Framework

By analyzing human vision and cognition, it has been

observed that visual fixations tend to concentrate on cor-

ners, edges, along lines of symmetry and distinctive colors.

Therefore, previously proposed saliency frameworks in the

literature [11, 5, 1, 8, 17, 21, 19] often use a combination

of intensity, edge orientation and color information to gen-

erate saliency maps. However, most interest detectors focus

on the shape-saliency of the local neighborhood, or point

out that salient points are “interesting” in relation to their

direct surroundings. Hence, salient features are generally

determined from the local differential structure of images.

In this paper, the goal is to go from the local structures

to more global structures. To achieve this, based on the

observation that the isophote framework (previously pro-

posed in [24] for eye detection) can be generalized to extract
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generic structures in images, we propose a new isophote-

based framework which uses additional color edges and cur-

vature information. As with many other methods proposed

in the literature, our approach is inspired by the feature inte-

gration theory [22]. Therefore, we compute different salient

features which are later combined and integrated into a fi-

nal saliency map. In the next sections, the principles of each

of the used salient features and how they are combined are

described.

2.1. Isocentric Saliency

Isophotes are lines connecting points of equal intensity

(curves obtained by slicing the intensity landscape). Since

isophotes do not intersect each other, an image can be fully

described by its isophotes both on its edges and on smooth

surfaces [10]. Furthermore, the shape of each isophote is

independent of changes in the contrast and brightness of an

image. Due to these properties, isophotes have been suc-

cessfully used as features in object detection and image seg-

mentation [10, 6]. To formulate the concept of isophote, a

local coordinate system is defined at every point in the im-

age, which points in the direction of gradient. Let the gauge

coordinate frame be {v, w}, the frame vectors can be de-

fined as

ŵ =
{Lx, Ly}

√

L2
x + L2

y

, v̂ =⊥ ŵ,

where Lx and Ly stand for the first-order derivatives of the

luminance function L(x, y) in the x and y dimensions, re-

spectively. Since by definition there is no change in inten-

sity on an isophote, the derivative along v is 0, whereas the

derivative along w is the gradient itself. Thus, an isophote

is defined as L(v, w(v)) = constant.

At each point of the image, we are interested in the

displacement of the center of the osculating circle to the

isophote, which is assumed to be not far away from the cen-

ter of the structure to which the isophote belongs. Knowing

that an isophote is a curvilinear shape, the isophote curva-

ture, κ, is computed as the rate of change, w′′, of the tangent

vector, w′. In Cartesian coordinates, this is expressed as:

κ = −
Lvv

Lw
= −

L2

yLxx − 2LxLxyLy + L2

xLyy

(L2
x + L2

y)3/2
.

The magnitude of the vector (radius) is simply found as

the reciprocal of the above term. The information about

the orientation is obtained from the gradient, but its direc-

tion indicates the highest change in luminance. The dual-

ity of the isophote curvature is then used in disambiguating

the direction of the vector: since the sign of the isophote

curvature depends on the intensity on the outer side of the

curve, the gradient is simply multiplied by the inverse of the

isophote curvature. Since the gradient is
{Lx,Ly}

Lw

, the dis-

placement coordinates D(x, y) to the estimated center are

obtained by

D(x, y) =
{Lx, Ly}

Lw

(

−
Lw

Lvv

)

= −
{Lx, Ly}

Lvv

= −
{Lx, Ly}(L

2

x + L2

y)

L2
yLxx − 2LxLxyLy + L2

xLyy
. (1)

In this manner every pixel in the image gives an estimate of

the potential structure it belongs to. In order to collect and

reinforce this information and to deduce the location of the

objects, D(x, y)’s are mapped into an accumulator, which is

in turn convolved with a Gaussian kernel so that each cluster

of votes will form a single estimate. This clustering of votes

in the accumulator gives an indication of where the centers

of interesting or structured objects are in the image (isocen-

ters). By applying this framework to natural images, many

votes can be affected by noise or are generated by uninter-

esting cluttered parts of the image. To reduce this effect,

each vote is weighted according to its local importance, de-

fined as the amount of image curvature (Section 2.2) and

color edges (Section 2.3).

2.2. Curvature Saliency

A number of approaches use edge information to detect

saliency [27, 18, 12]. The amount of information contained

in edges is limited if compared to the rest of the image. In-

stead of using the peaks of the gradient landscape, we pro-

pose to use the slope information around them. To this end,

an image operator that indicates how much a region deviates

from flatness is needed. This operator is the curvedness [7],

defined as

curvedness =
√

L2
xx + 2L2

xy + L2
yy.

The curvedness can be considered as a rotational invariant

gradient operator, which measures the degree of regional

curvature. Since areas close to edges will have a high slope

and since isophotes are slices of the intensity landscape,

there is a direct relation between the curvedness and the

density of isophotes. Hence isophotes with higher curved-

ness are more appropriate for our goal of mapping from lo-

cal structures to global structures, as they are likely to fol-

low object boundaries and thus belong to the same shape.

An example of the effect obtained by applying the curved-

ness to natural images can be seen in Figure 1(a).

2.3. Color Boosting Saliency

While determining salient image features, the distinc-

tiveness of the local color information is commonly ig-

nored. To fully exploit the information coming from the

color channels, both shape and color distinctiveness should

be taken into account.

The method proposed by van de Weijer et al. [25] is

based on the analysis of the statistics of color image deriva-

tives and uses information theory to boost the color infor-

mation content of a color image. Since color boosting is
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(a) (b) (c) (d) (e)

Figure 1. An example of the conspicuity maps and their combination: (a) Curvedness, (b) Color boosting, (c) Isocenters clustering, (d)

Combined saliency map, (e) Area with highest energy in the saliency map (red: detection, blue: ground truth).

derivative based and its outcome is enhanced color edges,

the method can easily be integrated in our framework. Ac-

cording to information theory, rare events are more impor-

tant than normal events. Therefore, the quantity of informa-

tion I of a descriptor v with probability p(v) can be defined

as
I(v) = − log(p(v)).

In order to allow rare color derivatives to have equal values,

image derivatives are mapped to a new space using a color

saliency boosting function g. The function g can be created

by analyzing the distribution of image derivatives. In fact, it

can be derived that the shape of the distribution is quite sim-

ilar to an ellipse that can be described by the covariance ma-

trix M . This matrix can be decomposed into an eigenvector

matrix U and an eigenvalue matrix V . The color boosting

function g will be the transformation with which the ellipses

are transformed into spheres: g(Lx) = V −1UT Lx, where

the eigenvectors U are restricted to be equal to the opponent

color space, and V = diag(0.65, 0.3, 0.1) as was found in

the distribution of the data in the Corel dataset [25]. After

the mapping, the norm of the image derivatives is propor-

tional to the information content they hold. An example of

the effect obtained by applying this operator to natural im-

ages can be seen in Figure 1(b).

3. Building the Saliency Map

In this section, the previously described saliency features

are combined into a saliency framework. Since all the fea-

tures sections make use of image derivatives, their compu-

tation can be re-used in order to lower the computational

costs of the final system. Furthermore, the three features

were selected as both curvedness and color boosting en-

hance edges, and isophotes are denser around edges. There-

fore, the saliency features can be nicely coupled together to

generate three different conspicuity maps (Figure 1(a), (b)

and (c)): At first, the maps obtained by the curvedness and

the color boosting are normalized to a fixed range [0, 1] so

that they can easily be combined. The linear combination

of these maps is then used as weighting for the votes ob-

tained from Eq. 1 to create a good isocenter clustering of

the most salient objects in the scene. In this way, the energy

of local important structures can contribute to find the loca-

tion of global important structures. An example of isocenter

clustering is given in Figure 1(c), obtained by weighting the

votes for the isocenters using the curvature and color boost-

ing conspicuity maps in Figure 1(a) and (b). The main idea

is that if a region of the image is relevant according to mul-

tiple conspicuity maps, then it should be salient, therefore

the normalized conspicuity maps are linearly combined into

the final saliency map (Figure 1(d)). However, multiple ob-

jects or components could be present in an image and hence

receive higher saliency energy from the conspicuity maps.

For instance, in the example on the second line of Figure 1,

the mouse and the handle of the cup are receiving the most

of the energy, but what is the real salient object? The full

mouse, its face, the cup, the handle or all of them together?

This question raises the problem of scale and size of the ob-

ject that we are looking for. Depending on the application,

the size of the object might be known (e.g. the size of the

silhouette of a person seen from a specific security camera,

the size of the object on which we are performing visual

inspection for quality control etc.). In the experimental sec-
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Figure 2. The proposed saliency scale space framework

tion we will show that, if the size is known, the saliency map

obtained with the described procedure is already enough to

obtain a good location estimate for the salient object. This is

shown in Figure 1(e), where the red box represents the area

with the maximum energy (the salient region in the image),

and the blue box the ground truth annotation. On the other

hand, if the size of the object is unknown, additional infor-

mation about the persistence of the object in scale space and

information about its boundaries are required. These topics

are discussed in the following sections.

3.1. Scale Space

The scale selection is an important problem that must be

considered when defining what a salient object is. The scale

problem is commonly solved by exhaustively searching for

the scale value that obtains the best overall results on a ho-

mogeneous dataset. Given the heterogeneity of the size of

images and the depicted objects, we want to gain scale in-

dependence in order to avoid adjustments of the parameters

for different situations.

To increase robustness and accuracy, a scale space

framework is used to select the results of the conspicuity

maps that are stable across multiple scales. To this end,

a Gaussian pyramid is constructed from the original color

image. The image is convolved with different Gaussians so

that they are separated by a constant factor in scale space.

In order to save computation, the image is downsampled

into octaves. In each octave the conspicuity maps are cal-

culated at different intervals: for each of the image in the

pyramid, the proposed method is applied by using the ap-

propriate sigma as a parameter for the size of the kernel

used to calculate image derivatives. This procedure results

in two saliency pyramids (Figure 2), one retaining the color

saliency and the other the curvature saliency. These two

pyramids are then combined together with isophote infor-

mation to form a third saliency pyramid, containing isocen-

tric saliency. The responses in each of the three saliency

pyramids are combined linearly, and then scaled to the orig-

inal image size to obtain a scale space saliency stack. Every

element of the saliency stack is normalized and therefore

considered equally important, hence they are simply accu-

mulated into a single, final saliency map. The areas with the

highest energy in the resulting saliency map will represent

the most scale invariant interesting object, which we will

consider to be the object of interest in the image.

3.2. Graph Cut Segmentation

Although the obtained saliency map has most of its en-

ergy at the center of image structures, the successful lo-

calization of the most salient object can only be achieved

by analyzing its edges. In fact, since curvedness and color

boosting are combined together with isocentric saliency in

the final saliency map, a great part of the energy in it will

still lie around edges. To distribute the energy from the

center and the edges of the salient structure to connected

regions, a fast and reliable segmentation algorithm is re-

quired. The method proposed in [2] addresses the problem

of segmenting an image into regions by using a graph-based

representation of the image. The authors propose an effi-

cient segmentation method and show that it produces seg-

mentations that satisfy global properties. This method was

chosen in this paper because its computational complexity

is nearly linear in the number of graph edges and it is also

fast in practice. Furthermore, it can preserve the details in

low-variability image regions while ignoring them in high-

variability regions.

As shown in [23], it is possible to extract a salient ob-

ject in an image by means of a segmentation algorithm and

eye fixations. Since the saliency map obtained by our sys-

tem can be considered as a distribution of potential fixation

points, it can be used to enhance the segmentation algo-

rithms to extract connected salient components. The graph

cut segmentation results for a set of images are shown in the

second row of Figure 3. For each of the segmented compo-

nents, the average energy covered in the saliency map is

computed. Therefore, if the component has higher energy,

it will be highlighted in the saliency weighted segmentation.

The third row of Figure 3 shows the effect of weighting

the segmentation components on second row of Figure 3 by

the saliency map in the first row of Figure 3. Note that,

in this case, the brightness indicates the level of saliency

of the region (brighter = more salient) and that, if the re-

sults are thresholded, it is possible to obtain a binary map

of segmented salient regions. This opens the possibility for

saliency based segmentation algorithms that would join seg-

mented components based on their saliency other than their
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Figure 3. An example of the obtained results. From top to bottom: Saliency map, graph-cut segmentation, segmentation weighted by

saliency, ESS result (red: detection, blue: ground truth).

similarity.

4. Experiments

In this section, the accuracy of the proposed algorithm

and of its components is extensively evaluated on a public

dataset.

4.1. Dataset and Measures

The used saliency dataset is the one reported in [11].

The dataset contains 5000 high quality images, each of them

hand labeled by 9 users requested to draw a bounding box

around the most salient object (according to their under-

standing of saliency). The provided annotations are used

to create a saliency map S = {sx|sx ∈ [0, 1]} as follows:

sx =
1

N

N
∑

n=1

an
x

where N is the number of users and an
x are the pixels anno-

tated by user n. In this way, the annotations are combined

into an average saliency map. In order to create a binary

ground truth saliency map, only the bounding box of the

area annotated by more than four users is kept as annota-

tion sx of the most salient object in the scene. Given the

ground truth annotation sx and the obtained detection dx of

the salient region in an image, the precision, recall, and F-

measure are calculated. The precision and recall measures

are defined as:

Precision =

∑

x sxdx
∑

x dx
Recall =

∑

x sxdx
∑

x sx
.

The F-measure is the weighted harmonic mean of pre-

cision and recall, therefore is an overall performance mea-

sure. It is defined as

F -measure =
(1 + α) × Precision × Recall

α × Precision + Recall
,

where α is set to 0.5 as in [11] and [16]. All measures are

then averaged over all the 5000 images in the dataset to give

overall figures.

4.2. Methodology

The task of determining the location and size of an un-

known object in an image is very difficult. The proposed

system is tested against two scenarios: one in which the

size of the interesting object is known and one where no

assumptions on the size are made.

4.2.1 Sliding Window

The purpose of this test is to verify whether or not the lo-

cation of an interesting object can be retrieved if its scale
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Size Known Size Unknown

Method Precision Recall F-measure Precision Recall F-measure

Curvedness 77.55% 77.11% 77.40% 72.47% 50.74% 49.95%

Isocenters 79.95% 79.49% 79.79% 84.23% 66.39% 72.44%

Color 80.91% 80.45% 80.75% 81.63% 37.29% 44.41%

Curvedness + Color 83.79% 83.31% 83.63% 71.50% 71.73% 67.29%

All 85.77% 85.28% 85.61% 84.91% 76.19% 79.19%
Table 1. Contribution of each of the used features and their combination, when the size of the object is known or unknown.

is known. Therefore, in this scenario, the size of the ob-

ject is known, and it corresponds to the size obtained from

the ground truth. The location of the object in the image,

however, is unknown. With the help of integral images (as

defined in [26]), the saliency map is exhaustively searched

for the region dx which obtains the highest energy by slid-

ing the ground-truth window over it.

4.2.2 Efficient Subwindow Search

In this scenario, both the size and the location of the relevant

object in the image are unknown. To solve this problem, an

exhaustive search of all possible subwindows in the saliency

map could be performed, in order to retain the one which

covers the most energy. However, this would be computa-

tionally unfeasible. The Efficient Subwindow Search (EES)

is an algorithm which replaces sliding windows approaches

to object localization by a branch-and-bound search [9]. It

is a simple yet powerful scheme that can extend many ex-

isting recognition methods to also perform localization of

object bounding boxes. This is achieved by maximizing the

classification score over all possible subwindows in the im-

age. The authors show that it is possible to efficiently solve

a generalized maximum subwindow problem in many situ-

ations. However, even if an efficient search of the best sub-

window could be performed, not knowing the size of the

object will result in many subwindows with high energy (as

in the mouse example in Section 3). To obviate this prob-

lem, the ESS algorithm is applied on the integral image of

the saliency weighted segmentation (third row of Figure 3),

obtained as described in Section 3.2.

4.3. Evaluation

In order to estimate the partial contribution of each of

the conspicuity maps to the final saliency map, they are

evaluated independently. The sliding window methodol-

ogy is used to obtain results that are independent of seg-

mentation. Therefore, only the discriminant saliency power

of the features is evaluated. By simply using the curved-

ness, the method can already achieve a good estimate of

the salient object in the image (F-measure 77.40%). How-

ever, curvedness alone fails in cluttered scenes, as the num-

ber of edges will distract the energy from the salient object.

The plain isocenters clustering (without weighting) obtains

better performance (F-measure 79.79%), similar to color

(a) (b)

Figure 4. Effect of changing the standard deviation of the Gaussian

kernel when the object size is known (a) and unknown (b).

boosting alone (F-measure 80.75%). The linear combina-

tion of color boosting and curvedness provides an improved

result over the two features considered independently (F-

measure 83.63%). This indicates that the two features are

somewhat complementary (one succeeds when the other

fails). Finally, the proposed combination of all the features

achieves the best result (F-measure 85.61%).

In the second scenario, the used edge features are ex-

pected to fail as they do not contribute to the center of the

components. In fact, curvedness and color boosting achieve

an F-measure of 49.95% and 44.41%, while their combina-

tion only improves this figure to 67.29%. However, given

its capability to distribute the boundary energy to the cen-

ter of image structures, the isocenter saliency alone has an

F-measure of 72.44%. The combination of all the features

achieves an F-measure of 79.19%. A summary of the ob-

tained precision, recall and F-measure accuracy for each of

the features in both scenarios is shown in Table 1.

The graphs in Figure 4 show how the accuracy changes

with respect to the used standard deviation of the Gaussian

kernel (sigma) in both scenarios. In the first scenario the

sigma parameter can be fine tuned to obtain the best re-

sults. Note that, since the size of the object corresponds

to the size in the ground truth, there is a relation between

precision, recall and F-measure and they are therefore very

similar. In the second scenario, when using the ESS search

over the saliency weighted segmentation, changing the pa-

rameter has virtually no effect on the accuracy of the system

as it has the sole effect of slightly modify the energy in each

the segmentation components.

We compared our results with the ones obtained by other

methods in the literature: The method from Ma et al. [14]

uses fuzzy growing, the framework proposed by Itti et
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Figure 5. A comparison with other methods: 1) Ma et al. [14] 2)

Itti et al. [5] 3) Liu et al. [11] 4) Our method on the first sce-

nario (size known) 5) Our method on the second scenario (size

unknown) 6) Worst human annotation.

al. [5] uses multiscale color, intensity and orientation fea-

tures, and the method from Liu et al. [11] uses multi-scale

contrast, center-surround histogram and color spatial distri-

bution, combined by a learned Conditional Random Field.

To compare the quality of the obtained result with respect to

a human performance, we computed the worst performing

human annotation with respect to the ground truth annota-

tion (obtained by agreement of at least four subjects). This

corresponds to a precision of 87.99%, a recall of 76.74%
and an F-measure of 80.29%.

A summary of the precision, recall, and F-measure

achieved by the cited methods is displayed in Figure 5.

Note that our first scenario (column 4) has prior knowl-

edge about the size of the object and is therefore not directly

comparable with the other methods. However, without us-

ing any prior knowledge (column 5), our method outper-

forms the classical approaches [14, 5] on the same dataset,

while achieving comparable results with the state of the art

method [11] without requiring any learning.

Furthermore, as already discussed in [11], the precision

measure is much more important in saliency than the recall

(e.g. if all the image is selected as the salient region, the

recall is 100%). In our case, we obtain the highest preci-

sion when compared to the state of the art methods, while

achieving the same F-measure as the best computational

methods and as the worst human annotation.

4.4. Visually Salient vs. Semantically Salient

In order to discriminate if an object is visually or se-

mantically interesting, we illustrate in Figure 6 a qualitative

comparison between the obtained saliency map and heat

maps obtained by analyzing eye fixations on the same im-

ages. By analyzing the painting example in Figure 6(a) it

is clear that there is a similarity between the eye fixations

(second row) and the detected salient regions (third row). It

can be seen that, even if they are equally visually salient, the

subject appears to mainly focus on faces as they are more

(a) (b)

Figure 6. A comparison with eye fixations. From top to bottom:

Original image, recorded eye fixations, saliency map obtained by

our method superimposed to the original image.

semantically salient and less on lower areas, which hold less

semantic information (like knees). The same reasoning can

be done for the website example in Figure 6(b): while ev-

ery line of the navigation menu is equally salient, the sub-

ject focuses only on the top entries. Also, while the items

in the middle of the page have similar visual saliency, the

user seems to focus only on few of them. This is a clear

difference between visual saliency and higher levels of rea-

soning (e.g. knowledge and interest), which can be used to

understand if an object is semantically interesting versus

visually interesting. It can be seen, however, that eye fix-

ations are always directly related with salient regions in the

image. Therefore, if eye fixation information is available,

our method could be used to differentiate between salient

regions and the subject’s interest. This information can be

very valuable as it could be used in a multitude in appli-

cations (e.g. to tailor user interfaces or commercial ads in

minimizing the possible elements of distraction in the vi-

sual field).

4.5. Discussion

By analyzing our results, we found that the main rea-

son for the low recall lies on the manner that the dataset is

annotated: by considering the fruit example in the second

column of Figure 3, it can be seen that the detected region

is smaller than the annotated one. However, the saliency

weighted segmentation of the salient object is nearly op-
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timal. By including this last part of the object in the de-

tected subwindow, a big part of the background would get

included as well, lowering the overall energy covered by the

subwindow, which in turn would be discarded by the ESS

algorithm. The same happens in many of the images in the

dataset, explaining our low recall: appendices of object are

often not considered as they would decrease the overall en-

ergy in the detected subwindow.

As the proposed system focuses on images, we are aware

that it is not suitable for locating the salient object in all sit-

uations, especially involving changes and movements (as

in [15]). Given the flexibility of the framework, the con-

spicuity maps from other saliency operators can easily be

added to the system in order to cover additional saliency

cues. However, this will probably require some learning

to correctly integrate the different conspicuity maps, and

thereby reduce the attractiveness of our method as, contrary

to other systems, the actual creation of the saliency map

is computationally fast (only a combination of few image

derivatives is needed) and does not require any training.

5. Conclusions

In this paper, we have presented a computational bottom-

up model to detect visual saliency in common images. The

method is based on the assumption that interesting objects

on the visual field have specific structural properties that

makes them different than their surroundings, and that they

can be used to infer global important structures in the image.

The system performs well as it is able to correctly lo-

cate or give maximum energy to the same object annotated

by humans with an F-measure of 85.61% if the size of the

object is known. If the size of the object is unknown, our

method is used to enhance a segmentation algorithm. An ef-

ficient subwindow search on the saliency weighted segmen-

tation shows that the algorithm can correctly locate an inter-

esting object with an F-measure of 79.19%, while keeping

a high precision. The obtained results are very promising as

they match the worst human annotation. Furthermore, since

no learning is required but only calculation of image deriva-

tives, the system is fast and it can be used as a preprocessing

step in many other applications.
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