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Abstract. In this work, we propose a formal, computational model of
the sense-making of diagrams by using the theories of image schemas and
conceptual blending, stemming from cognitive linguistics. We illustrate
our model here for the case of a Hasse diagram, using typed first-order
logic to formalise the image schemas and to represent the geometry of
a diagram. The latter additionally requires the use of some qualitative
spatial reasoning formalisms. We show that, by blending image schemas
with the geometrical configuration of a diagram, we can formally describe
the way our cognition structures the understanding of, and the reasoning
with, diagrams. In addition to a theoretical interest for diagrammatic
reasoning, we also briefly discuss the cognitive underpinnings of good
practice in diagram design, which are important for fields such as human-
computer interaction and data visualization.
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1 Introduction

Diagrams are often advocated as an effective way to represent and reason with
information—‘a picture is worth a thousand words’ goes the aphorism used in
English and other languages—and their advantages over purely textual repre-
sentations have been studied extensively [24,35,38,40].

An important formal contribution to better understand the relative advan-
tage of one representation formalism over another has been the theory of obser-
vational advantage put forward by Stapleton et al. [38], which stems from Shi-
mojima’s early work on the efficacy of representations [35]. This theory charac-
terizes the advantage that particular representations have for visualizing certain
semantics, because their structure makes some information directly observable.
In contrast, other representations require some transformation steps to provide

c© The Author(s) 2021
A. Basu et al. (Eds.): Diagrams 2021, LNAI 12909, pp. 297–314, 2021.
https://doi.org/10.1007/978-3-030-86062-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86062-2_31&domain=pdf
https://doi.org/10.1007/978-3-030-86062-2_31


298 D. Bourou et al.

the same information. Therefore, this advantage of making some information
directly observable can be a criterion for the suitability of a representational
formalism for a particular reasoning task.

Nonetheless, the theory of Stapleton et al. is based on an abstract character-
isation of ‘observation,’ defined in terms of translations to and from an abstract
syntax for diagrams, not taking into account its actual geometry, and the active
role of the observer in the interpretation [26,40]. Such approaches have been
fruitful when applied to the study of reasoning with diagrammatic represen-
tations, once the interpretation of their syntax is clearly defined. However, we
believe they do not fully capture the way we make sense of geometrical configu-
rations in the first place, and the reason they afford certain interpretations and
reasoning tasks, and not others.

In this paper we propose one way to formally and computationally model this
sense-making process, drawing from the theory of image schemas and concep-
tual blending originating in cognitive linguistics [12,13,19,22]. We take ‘sense-
making’ to be the process by which humans structure percepts into meaningful
constructs [41]. We hereby model the sense-making of diagrams in particular as
conceptual blends of image schemas with the geometric configuration that con-
stitutes a diagram. To the best of our knowledge, modeling the sense-making of
diagrams in this manner is novel, and we believe it could be of value for shedding
further light into the efficacy of diagrammatic representations and their utility
for fields pertaining to human-human or human-machine communication.

To illustrate our approach, we will use the particular example of a Hasse
diagram (Fig. 1; left). Its geometry comprises a configuration of several points,
some of which intersect pairwise with lines. The points are also positioned in
specific locations relative to each other. Two of the possible ways for an observer
to make sense of, for instance, points e, b and a, and the lines eb and ba that
connect them, in Fig. 1 are that:

1. point e with b, and b with a, form two pairs of entities that are linked by lines
eb and ba, respectively

2. points e, b, and a are increasing grades on a scale, with direction from e, to
b and then towards a.

This understanding of the geometric configuration allows for the emergence of
inferences such as the following: since a, b and e represent some quantities such
that b is more than e and a is more than b, then a must be more than e. Accord-
ing to Stapleton et al. [38], such interpretations are ‘direct’ in the sense that they
require zero transformation steps on the geometric configuration. Moreover, dif-
ferent conclusions can be drawn depending on whether the ‘scale’ or the ‘link’
conceptualisation is at play; the former imbues the sense of quantity, while the
latter, the sense of symmetric association. In general, diagrams, taken as geo-
metric configurations, do not bring up a unique way of making sense of them,
that is, they do not have a one-to-one mapping with semantics. Therefore, both
the geometric configuration and the semantics of a diagram are distinct from
each other and from the diagram as we make sense of it.
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Fig. 1. Visual overview of our model. The geometry of the Hasse diagram (left), and
the interpreted diagram (bottom), are distinct. The latter emerges only when schemas
(right) are integrated with the geometry, giving rise to the interpreted diagram as a
blend (bottom).

Our modeling view of the processes underlying the above scenario is that,
although the inferences appear to arise directly from some geometric configura-
tions, we consider that they emerge within a conceptual blend of certain image
schemas with these configurations. Image schemas, like link and scale, are
mental structures acquired by all humans at a very early age [19,22]. According
to the homonymous theory, humans can make sense of stimuli in their environ-
ment by unconsciously integrating image schemas with them. The conceptual
blending theory examines in detail the principles under which this integration
takes place [13].

Hence, in our model, perceptual stimuli (i.e., the geometric configuration of a
Hasse diagram) become meaningful because they prompt the conceptual blend-
ing of image schemas with them. More precisely, we describe this unconscious
process as constituted by the activation of those image schemas that are use-
ful for inference in the current context, and their subsequent integration with
the stimuli, by way of establishing suitable correspondences with it. Given these
correspondences, a conceptual blend can be constructed, whereby the geometric
elements are structured into a coherent, integrated unit through image schemas,
and give rise to the diagram as made sense of by the observer (Fig. 1; bottom).
We implement our model by formalizing the geometric configuration, the internal
structure of the image schemas, the correspondences between the two, and, ulti-
mately, by computing their blend. We further show that our model can account
for several direct inferences afforded by Hasse diagrams.

The remainder of this paper is organised as follows: Sect. 2 introduces the key
ideas directly related to this work. Section 3 presents our blending model and the
inferences resulting therein. Section 4 reviews existing frameworks in diagram-
matic reasoning, and existing formalisations of image schemas and conceptual
blending. Section 5 explains how our work complements the existing approaches
to diagrammatic reasoning, and how it could be developed and applied in the
future.
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2 Background

In this section we present the theoretical background upon which our computa-
tional model is based.

The literature of diagrammatic reasoning has been very valuable for formally
studying the informational content, and the efficacy of diagrams for inference.
To that end, an one-to-one and total mapping between the syntax (geometric
configuration) and the semantics of the diagram is typically assumed [26]. How-
ever, as our example in Sect. 1 shows, a certain configuration does not have one
possible abstract interpretation. Relatedly, many researchers have suggested that
the interpretation of diagrams entails a constructive and imaginative process on
the part of the observer [7,26]. This is in agreement with the claims of enactive
cognition.

The enactive cognition paradigm posits that cognition is the sense-making of
self-sustaining agents who bring their own original meaning upon their environ-
ment [41]. Therefore, in our case study, an enactive cognition approach would
posit that no geometric configuration is meaningful in itself, but it prompts the
observer to unconsciously structure it into a meaningful diagram by activating
suitable frames (in our case, image schemas), and integrating them appropriately
with the configuration.

Image schemas fit the role of such frames because they are mental struc-
tures formed early in life, constituting structural contours of repeated sensori-
motor contingencies, such as container, support, verticality and balance
[19,22]. These mental structures are acquired by experiencing (for instance) our
bodies being balanced, trying to maintain our balance, supporting an object,
etc. Repeated experiences of the same kind lead to to the formation of a mental
structure reflecting what is invariant among them. This mental structure, called
image schema, is a gestalt; it consists of components, in a specific relational
structure, which can be systematically integrated with other domains, structure
them, and enable conceptual meaning to arise in the mind of the observer. This
is related to the phenomenon of mental visualization, i.e., seeing something in
our ‘mind’s eye’, such as visualizing a generic chair when hearing the word ‘chair’
[17,18]. Mental visualization is necessary for inference and prediction, and image
schemas have been proposed to enable such visualization [25, pp. 513, 519–520].

Sense-making as integration of image schemas with other domains can be
described though the theory of conceptual blending. The central claim of this
theory is that a systematic process of building correspondences between differ-
ent mental spaces underlies diverse instances of sense-making. Mental spaces are
“small conceptual packets constructed as we think and talk, for purposes of local
understanding and action.” [13, p. 40] They comprise coherent and integrated
chunks of information, containing entities, and relations or properties that char-
acterise them. To construct a blend, some pairs of elements from two mental
spaces (called input spaces) must be put in correspondence with each other, and
merged into the same entity in a new mental space (called blended space). This
process allows properties of both corresponding elements to come together in
the blend, leading to the emergence of novel structure and thus novel meaning.
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3 Approach

As explained above, image schemas can lead to inferences as a result of their
internal structure. We capture the structure of each schema formally with a typed
first-order logic (FOL) theory, following existing conceptual descriptions of image
schemas, or experimental work, when available. The geometry of the diagrams is
captured in the same way, additionally using some existing Qualitative Spatial
Reasoning (QSR) formalisms to represent topological and geometrical aspects
in a manner compatible with human cognition.

We hereby present a case study of sense-making of diagrams, modeling it
as a conceptual blending of image schemas with the corresponding geometric
configuration. The integration of the image-schematic space with the geometric
space follows the principles of conceptual blending, i.e., establishing a cross-space
correspondence between these two spaces. Formalising these correspondences
allows us to compute the conceptual blend that characterises the diagram as
the combination of image schemas with the geometric configuration based on
category-theoretic colimits [33].

3.1 Diagrammatic Syntax and Its Formalisation

The geometric configuration of Fig. 1 follows the convention of Hasse diagrams,
representing the transitive reduction of a partially ordered set (poset). Typically
Hasse diagrams are two-dimensional but this is not a requirement. They consist
of edges and vertices, drawn as points and lines. Each point represents one
element of the poset. Assuming elements x, y and z of the poset, ordered by the
‘<’ relation, then the lines between points are drawn according to the following
syntactic rules:

– If x < y then x is shown in a lower position than y in the configuration;
– x and y are connected by a line in the diagram iff x < y or y < x, and there

is no element z such that x < z and z < y;
– lines may intersect with each other, but each one intersects with exactly two

points

Therefore, the vertical position of the geometric elements in the configuration
of a Hasse diagram has a proper syntactic role, representing the direction of
ordering [8]. Consequently, the minimal and the maximal element are always
visualised as the lowest and highest points respectively. A poset can be graded,
or have ranks, when all maximal chains have the same finite length [37, p. 99].
This intuitively means that there exist groups of incomparable elements that are
the same number of steps away from the minimum element. To emphasise this
structure, the Hasse diagrams of these posets can be—optionally—drawn with
the elements of the same rank as horizontal hyperplanes, as is the case in the
Hasse geometric configuration of Fig. 1.

In order to describe the geometric configurations at hand, we draw from
some formal systems developed in the QSR literature. In particular, we require
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a logical formalism that can capture topological relations and relative positions
of the elements in a configuration. Some suitable formalisms are [9] and [16]
respectively. Geometric entities can be characterised as being of type point,
line or region, and we can describe and reason about their precise topological
configuration [9]. The relative position of two-dimensional objects, of any shape,
with respect to each other, can also be formalised [16]. This is done by denoting
the position (right, right-front, front, left-front, etc.) of an object relative to
another.

3.2 A Formal Model of Sense-Making

In this subsection, we present the formalization of the geometric configuration,
of the image schemas to be integrated with it, the correspondences between the
two, and, finally, their blends. We present here the theories for image schemas
link, path, verticality, and scale [19,22].1 In our model, we have described
the structure of each image schema and of the geometric configuration of the dia-
gram with a typed FOL theory. Our formalisations were guided by the existing
literature, mainly [19,22]. For the formalisation of the geometric configuration,
the aforementioned QSR formalisms are also needed. This way, we can declare
instances of geometric types (points and lines) and describe the topological rela-
tions and relative position between all pairs of these instances. In Appendix A
we show some details of our formalizations. In the remainder of this section,
however, we describe our model in a more intuitive and informal manner.2 The
category theoretical colimit is an abstract operation that can be applied on any
kind of mathematical object. In our case, it is applied to logical theories. Having
specified some correspondences between elements of these theories, the compu-
tation of their colimit yields a new theory where all counterpart elements (types,
predicates or functions) are merged into the same element, and the remaining
elements and axioms of both theories are also included (see also Appendix A).
This mathematical framework is apt to model conceptual blending [33].

link. The prototypical link schema consists of two distinct linked entities, and
a link connecting them. Being linked constrains two entities with respect to each
other, i.e., they are bound in some way, due to being in the same relation. More
concretely, being linked is a symmetric and irreflexive property. Our formalisa-
tion reflects this structure.

path. The path schema consists of a source, a goal, and a path. The path
consists of a series of adjacent locations that connect the source with the goal.
By the structure of the schema, it is obvious that, if someone is on a certain
1 The image schemas, and the correspondences selected, are those that lead to a blend

consistent with the set theoretical semantics of the Hasse diagram. This blend serves
as a proof of concept, but it is not the only possible blend to model the sense-making
of this diagram.

2 The complete executable specifications are available in https://drive.google.com/
drive/folders/1jcQdJT0qbnAua3uXIgTEW8zV3kF_2R14?usp=sharing and the
sense-making of more diagrams is modeled in [5].

https://drive.google.com/drive/folders/1jcQdJT0qbnAua3uXIgTEW8zV3kF_2R14?usp=sharing
https://drive.google.com/drive/folders/1jcQdJT0qbnAua3uXIgTEW8zV3kF_2R14?usp=sharing
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location of the path, then they have already traversed all prior locations, and that
contiguous locations serially lead from the source to the goal without branching.
Therefore, the path schema is axiomatised as a total order; a collection of serially
neighboring locations with the source and goal as the terminal locations in this
series.

verticality. This schema reflects the structure of our experience of standing
upright with our bodies resisting to gravity, or of perceiving upright objects like
trees. Thus, verticality involves a simple distinction between up and down.
The verticality schema comprises an axis and a base, or the ground, as a
reference point [34]. Therefore, we model verticality as a unique vertical axis
with its base.

scale. The scale schema comprises an ordered set of several grades. Unlike
verticality however, it does not imply a particular geometric orientation.
scale has a cumulative property (if someone has 15 euros, they also have 10);
consequently, we formalise it as a total order on grades.

Hasse Configuration. The Hasse configuration of Fig. 1 has eight points (a to
h) and twelve lines (ba, ca, etc.). Each line intersects with a pair of points. The
logical theory modeling this configuration states the topology and orientation
relations among all entities of the configuration with predicates such as intersects
[9], and right_back [16], respectively.

Overall Blend Network. The sense-making of the Hasse configuration is modeled
as the conceptual blending of image schemas with it (Fig. 2). Some image schemas
form blends among them, and the elements of these blends are subsequently put
in correspondence and blended with the geometric configuration.

Specifically, linked entities of link are put in correspondence with contiguous
locations of the path, giving rise to the chain image-schematic blend, compris-
ing a path of linked entities/locations.3 The linked and contiguous predicates
are also put in correspondence (see Appendix A). Subsequently, chain is put
in correspondence with the geometric configuration in the following way: The
blended entities/locations of the chain are put in correspondence with points
that intersect with the same line. The link of the link schema is put in corre-
spondence with the line itself. This means that the sequence of points connected
by lines in the Hasse configuration (e.g., points h, e, b, and a in Fig. 1), is in corre-
spondence with an instance of the chain image-schematic blend with contiguous
entities/locations. Specifically, this image-schematic blend is put in correspon-
dence with the geometry so that the source is the geometrically lowest point,
and the goal is the geometrically highest one (back , and front of all other points,
respectively, to use the terminology of [16]).
3 Here, we extend the convention of typesetting image schemas in small caps, to include

also our own proposed image-schematic blends, chain and vertical-scale. Note
that the resulting, blended type ‘entity/location’ now models the structure afforded
by chain, as reflected in the union of the axioms of link and path in the blend. See
also Appendix A and [4] for more details on the construction of the blend.
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Hasse diagram made sense of

Fig. 2. Image schema blends modeling the sense-making of the Hasse configuration.

Regarding the scale and verticality schemas, they are blended into the
vertical-scale image-schematic blend. The correspondences between scale
and verticality allow the construction of a blend which integrates quantita-
tively ordered grades of scale with vertically ordered marks of verticality,
giving rise to blended levels (dashed horizontal lines in Fig. 2). As for the cor-
respondences of the vertical-scale blend with the geometric configuration,
the levels are put in correspondence with points, with respect to their geometric
ordering. For instance, the level that is immediately above the base is put in
correspondence with points e, f , and g, resulting in their integration into the
same level in the final blend.

Guided by all the aforementioned correspondences, the vertical-scale and
the chain image-schematic blends, as well as the geometric configuration, are
all blended into a final blend (Fig. 2; bottom right) which has the structure of
an ordering that is schematic and geometric at the same time. In other words,
this complex network of cross-space correspondences enables the computation
of one final blend, whereby the Hasse configuration is structured into a single,
coherent gestalt.4

Blended Structure and Inferences. The resulting blended space integrates geo-
metric and image-schematic aspects, providing more meaningful structure to the
geometric configuration. Within this integrated structure, a variety of inferences
emerge. Blending the link schema with the geometric configuration of two points
intersecting with the same line, gives rise to the interpretation that these points
participate in some relationship, and are contingent upon one another in exactly
the same way. The two points, together with the line, comprise a single whole;
the LinkSchema. Blending chain with the geometric configuration structures
any set of serially linked shapes into an unitary configuration, i.e., a chain.

4 Viewing our model as a network of blends such as link-vertical and scale-path
is equally possible and mathematically equivalent to the blends presented, because
the colimit operation is associative.
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Ultimately, vertical-scale and chain, blended with the geometric configu-
ration of the Hasse diagram, yield the Hasse diagram as an observer makes sense
of it: as several chains of linked elements, arranged at several levels of generality
along a down-up axis. It is important to clarify that the geometric configuration
as a graded structure with directionality from point h to point a (reflected in the
logical axioms of path, verticality, and scale, which jointly appear in the
blend—see Appendix A), is neither geometric nor image-schematic. This graded
structure emerges in a conceptual blend whose entities and properties are both
geometric and image-schematic at the same time. This is only possible because
the cognitive structure of the image schemas (reflected in their logical axioms) is
blended with the geometric structure, and it yields a variety of inferences within
the blend. First, points on the same horizontal plane (e.g., b, c, and d) are con-
strued as being on the same level (dashed horizontal lines in Fig. 2). Second,
some points are transitively above others, such as above(a, e), above(d, h) and so
on. Notice that this predicate now models the structure afforded by vertical-
scale. Finally, through this blended above predicate, and the chain, the points
that are serially and pairwise linked, form six maximal chains. All of these chains
have points a and h, the geometrically uppermost and lowermost points, as their
goal and source.

4 Related Work

In the literature of diagrammatic reasoning, it is often posited that the efficacy
of diagrams lies in the sharing of structural properties between the geometric
configuration and the semantics of a diagram [28,39]. These properties allow
observers to make some inferences directly. Therefore, the more the properties
of the geometry of a diagram match the properties of a given semantics, the
more efficacious the diagram is to represent this semantics [35,38]. A similar
framework, called Semiotic-Conceptual Analysis, is proposed by Priss [29]. This
framework attempts to explain how meaning is represented with diagrams, lan-
guage etc. and indeed accounts for various phenomena, such as polysemy, and
whether a certain representational format is advantageous for some semantics.

Several research groups have worked on formalizing image schemas and rela-
tions among them. Rodriguez and Egenhofer provide a relational algebra based
on the container and surface schema, used to model, and reason about,
spatial relations of objects inside a room [31]. Kuhn formalised image schemas
as ontology relations using functional programming, in a relatively abstract and
general way [21]. Others concretise their formalisations more, using bigraphs [42],
or QSR [15]. Such formalisms imbue topological and other properties into the
schemas. The latter also formalises the interrelations of image schemas, as fami-
lies of logical theories, constructed from combinations of primitive components.
Embodied Construction Grammar formalises [2] and implements [6] language
understanding by putting in correspondence the components of specific schemas
(image schemas, and other kinds of schemas) with phonemes. The framework
also incorporates an additional formalism (x-schema) allowing the modeling of
inference.
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Finally, regarding a formal view of conceptual blending, the blending pro-
cess has been described though a general, mathematical theory [3,10,33]. This
is done through amalgams, obtained by generalising the input spaces as much
as necessary to find commonalities, and blending parts of them towards a con-
sistent and novel output. This framework, together with image schemas, has
been used to interpret an icon by blending a description of the schema with a
QSR description of the icon [11]. This approach is a conceptual equivalent of the
current computational model. In the same direction, other work formalises the
blending of given mental spaces, in order to obtain inference as novelty. Related
to our approach, Goguen [14] applied algebraic specifications and their category-
theoretic operations for modeling the cognitive understanding of space and time
when solving a riddle. Building on this work, Schorlemmer et al. [32] modeled
the process of solving a riddle, using blending and typed FOL specifications of
image schemas. The interrelations between amalgams, Goguen’s framework, and
our current model of blending are discussed in [33]. All aforementioned work
contributes valuable, useful formalisations of blending as a creative process.

5 Discussion

The predominant logical approach to diagrammatic reasoning requires a level
of abstraction which does not allow for fully taking into account the spatial
structure of the geometry, the embodiment of the observer, and the interaction
of the two. We believe embodied experiences—whose invariants are crystalised
in the form of image schemas—can provide additional insight into the process of
understanding and reasoning with a diagram. We present a computational model
of this perceptual structuring process, through the integration of image schemas
with the geometry of a diagram. To the best of our knowledge, this approach
is a novel and valuable theoretical contribution to the diagrammatic reasoning
literature. Our work is also directly relevant for human computer interaction and
data visualization because, as we explain below, it has the potential to unravel
guiding principles towards more intuitive visualizations.

5.1 Diagrammatic Inference with Image-Schematic Blends

Given our modeling of diagram understanding as emerging from conceptual
blends of image schemas with geometric configurations, in our Hasse diagram,
the facts that: (a) point a is above point h (b) points h, e, b and a form a chain
and (c) points b, c and d are on the same level, all can be quickly inferred from
the geometric configuration. To make inference (a), for instance, an observer
may mentally visualise a physical path of linked locations, starting at location
h, extending towards higher locations e and b, up to a, which lies above h and the
rest of the locations traversed in the path. This mental visualisation facilitates
the inference that h < a directly from the Hasse diagram. Mental visualization
is indeed necessary for inference, and image schemas are the mental structures
that enable it [25, pp. 513, 519].
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Eye-tracking experiments have shown that subjects can make inference (a)
for one transitive step without physically manipulating the diagram they were
shown [36], and this is interpreted using Shimojima’s theory of direct inference
[35].

Other inferences made possible through mental visualisation, modeled as the
final blended space that integrates the structure of all four described image
schemas with the geometry, are (Fig. 2): the transitive ordering of points in
terms of their grade on the vertical-scale, the inference that the point on
the source of the chain is ordered before all others (corresponding semantically
to the minimal element), that the point on the goal is after all others (maximal
element), and the existence of distinct instances of chain (including all maximal
chains).

In the present work, our main goal was to create a cognitively-inspired model
of the sense-making of diagrams, not to make claims about human cognition.
Consequently, we have not undertaken any psychological experiments. However,
our claims about the cognitive structure of Hasse diagrams are consistent with
experiments showing that being upright, as opposed to slanted, and explicitly
showing levels, makes Hasse diagrams more efficacious (i.e., interpreted faster)
[20]. Moreover, other work on diagrammatic reasoning also claims that Hasse
diagrams prioritize visualizing the structure of the order they represent, through
a vertical organization, and explicit visualization of levels [8]. Levels correspond-
ing to elements with the same rank, i.e., same number of steps away from the
minimum element, are geometrically orthogonal to the vertical axis. In fact, this
axis is the one intended to be interpreted, and elements of the same rank are
indeed not comparable semantically with respect to the ordering.

5.2 Efficacy of Diagrammatic Representations

According to the view of efficacy that we have discussed, some geometric configu-
rations are more efficacious for representing a given semantics, than others. This
phenomenon is attributed to some geometric configurations having more simi-
lar properties with certain semantics, than others do [35,38]. A Hasse diagram
would then be considered very efficacious to represent a partial order, because
the geometric arrangement of shapes along a vertical axis has a transitive and
asymmetric property, as does a partial order. A diagram whose geometric con-
figuration did not have these properties, or worse, had contradicting ones (e.g.,
symmetry), would be less efficacious to represent poset semantics. Euler dia-
grams, for example, have different properties. Representing that Q ⊆ P and
P ∩R = ∅ with the Euler diagram of Fig. 3, makes the inference that Q∩R = ∅
directly observable [38]. A Hasse diagram can also represent this scenario, as well
any possible constellation of sets. Then why are Hasse diagrams predominantly
used to represent posets, and Euler diagrams for set membership?

According to our framework, the higher efficacy of Euler diagrams for set
membership and inclusion, and of Hasse diagrams for poset semantics, can be
explained as follows: The geometry of the Hasse diagram, comprising shapes
that are one above another and grouped in parallel horizontal lines, as well as
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the semantics of a poset, are easy to put in correspondence with the vertical-
scale schema. These correspondences enable constructing blends whereby the
aforementioned inferences (transitivity, existence of maximal elements, minimal
elements, and maximal chains) emerge. In contrast, the geometric configuration
of an Euler diagram, comprising closed curves that are inside one another, is
more compatible with the container schema; the boundary, inside and outside
of the container schema can be put into correspondence with the boundary,
interior and exterior of closed curves.

The above is also true for the semantics of set membership. Thus, having
mentally structured the diagram as comprising physical containers, we can men-
tally visualize the impossibility of Q being inside P and inside R at the same
time. Similarly, the container schema also fits the semantics of set membership.
This is in agreement with Priss’s suggestion that observers find set membership
and inclusion easier to read from Euler than Hasse diagrams, because the former
enable mentally visualising the impossibility of Q exiting P and approaching R
[30]. In fact, it has been proposed that our understanding of abstract set theo-
retical notions also rests on the same image schematic structures [23].

P                                                R 
Q 

Fig. 3. A simple Euler diagram.

5.3 Conclusions and Future Work

In this paper we have provided a formal framework of sense-making of a dia-
gram, as a creative, active process on the part of the observer, involving the
conceptual blending of image schemas with the geometry of the diagram. Most
previous computational work making reference to conceptual blending and image
schemas only considered creative and problem solving tasks. However, the more
fundamental process of sense-making is also a creative and active process that
can be explained with conceptual blending. In our work, this view serves as the
conceptual foundation.

In future investigations we would like to model a broader range of
image schemas, enabling us to examine alternative—including erroneous—
interpretations of diagrams. Moreover, we aim to characterise formally what it
means for a diagram to be efficacious, in the context of our framework. To achieve
both goals, we are currently expanding our framework with the role of the seman-
tics, as well as by including some formal criteria for selecting well-integrated, con-
sistent blends that are useful for reasoning with diagrams. This approach would
be a cognitively plausible way to model possible interpretations of diagrams.
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The outputs of our model could guide designers of various visual represen-
tations, so they can design them with the aim to match the properties of the
geometric syntax with the intended meaning. For example, following up with the
comparison we made in the previous subsection, if a designer wants to visually
represent some ordinal values, a tool based on our framework might recommend
the use of a vertical geometric configuration and not a horizontal one. This is
because a vertical-scale is likely to map to such a configuration and lead to a
blend with the intended semantics. In contrast, if a designer wants to represent
the notion of belonging in a group, a tool would recommend a configuration with
topological containment, because its semantics are similar. Various such recom-
mendations can be made precise thanks to our model and could contribute to
new tools directed at designers.
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A FOL Specifications of Image Schemas and Blends

In this appendix we present some more technical detail of our formalizations and
their implementation. The complete formalisation using CASL [1] and HETS
[27] can be found in https://drive.google.com/drive/folders/1jcQdJT0qbnAua
3uXIgTEW8zV3kF_2R14?usp=sharing.

A.1 The Hasse Geometric Configuration

The specification of the Hasse geometric configuration defines sorts correspond-
ing to geometric entities, and predicates that define their relations in terms of
orientation and topology. Below, we present a fragment of this description, for
points a, b, e, and h (here constants c1, c2, c5, and c8) and lines r21 and r52,
which we discuss as an example throughout the paper.

rightBackPP (c1, c2) ∧ rightBackPP (c1, c5) ∧ leftBackPP (c5, c8) ∧ backPP (c1, c8) ∧ backPP (c2, c5)

intersectLP (r21, c1) ∧ intersectLP (r21, c2) ∧ intersectLP (r52, c2) ∧ intersectLP (r52, c5) ∧ . . .

A.2 Image Schemas

To model image schemas we followed the principles of algebraic specification,
declaring for each schema several types, defining operations and predicates on
types, and modeling their behavior by stating axioms over these operations and
predicates.

https://drive.google.com/drive/folders/1jcQdJT0qbnAua3uXIgTEW8zV3kF_2R14?usp=sharing
https://drive.google.com/drive/folders/1jcQdJT0qbnAua3uXIgTEW8zV3kF_2R14?usp=sharing
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The link schema specification

∀s ∈ LinkSchema : linked(anEnt(s), anotherEnt(s))

∀l ∈ Link ∃!s ∈ LinkSchema : l = link(s)

∀x, y ∈ Entity ∀s : LinkSchema : linked(x, y) ⇔ (anEnt(s) = x ∧ anotherEnt(s) = y)

∨ (anEnt(s) = y ∧ anotherEnt(s) = x)

∀x, y ∈ Entity : linked(x, y) ⇔ linked(y, x)

∀x ∈ Entity : ¬linked(x, x)

The path schema specification

∀p ∈ Path ∃!s ∈ SPGschema : path(s) = p

∀s ∈ SPGschema : inPath(source(s), path(s))

∀s ∈ SPGschema : inPath(goal(s), path(s))

∀s ∈ SPGschema : source(s) 	= goal(s)

∀s ∈ SPGschema ∀l ∈ Location : ¬(isFollowedBy(l, source(s), path(s))

∨ isFollowedBy(goal(s), l, path(s)))

∀s ∈ SPGschema ∀l ∈ Location : inPath(l, path(s)) ∧ l 	= source(s)

⇒ ∃!k ∈ Location : inPath(k, path(s)) ∧ isFollowedBy(k, l, path(s))

∀s ∈ SPGschema ∀l ∈ Location : inPath(l, path(s)) ∧ l 	= goal(s)

⇒ ∃!m ∈ Location : inPath(m, path(s)) ∧ isFollowedBy(l,m, path(s))

∀k, l ∈ Location ∀p ∈ Path : isFollowedBy(k, l, p) ∨ isFollowedBy(l, k, p)

⇒ inPath(k, p) ∧ inPath(l, p)

∀s ∈ SPGschema ∃!l ∈ Location : inPath(l, path(s)) ∧ placed(trajector(s), l)

∀k, l ∈ Location; p ∈ Path : contiguous(k, l) ⇔ isFollowedBy(k, l, p)

∨ isFollowedBy(l, k, p)

The verticality schema specification

∀s ∈ VerticalitySchema : inAxis(base(s), axis(s))

∀m ∈ Mark : ¬above(m,m)

∀s ∈ VerticalitySchema;m ∈ Mark : inAxis(m, axis(s)) ∧ (m 	= base(s)) ⇒ above(m, base(s))

The scale schema specification

∀c ∈ Scale ∃!s ∈ ScaleSchema : scale(s) = c

∀c ∈ Scale; x, y ∈ Grade : inScale(x, c) ∧ inScale(y, c) ∧ (x 	= y) ⇒ more(x, y) ∨ more(y, x)

∀c ∈ Scale; x, y ∈ Grade : more(x, y) ⇒ ∃!c ∈ ScaleSchema : inScale(x, scale(c))

∧ inScale(y, scale(c))

∀x, y ∈ Grade : less(x, y) ⇔ more(y, x)

∀x, y ∈ Grade : more(x, y) ⇔ ¬more(y, x)

∀x ∈ Grade : ¬more(x, x)

∀x, y, z ∈ Grade : more(x, y) ∧ more(y, z) ⇒ more(x, z)
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A.3 The Hasse Blend

Blends are computed with HETS as category-theoretic colimits, once the cor-
respondences between instances of image schemas and the Hasse configuration
have been established by means of spans of morphisms. Below we show a frag-
ment of the blend, namely the constants and axioms of the blend combining
chain with the geometric configuration, and some theorems deducible from the
blend. As mentioned, this blend includes signatures and axioms of the link and
path schemas, as well as those of the geometric configuration. We denote those
coming from link in orange, those from path in purple, and those from the
geometry in teal.

Declaration of constants:

lsc21, lsc31, lsc41, lsc52, lsc53, lsc62, lsc64, lsc73, lsc74, lsc85, lsc86, lsc87 ∈ LinkSchema

p1, p2, p3, p4, p5, p6 ∈ Path s1, s2, s3, s4, s5, s6 ∈ SPGschema

c1, c2, c3, c4, c5, c6, c7, c8 ∈ Point r21, r31, r41, r52, r53, r62, r64, r73, r74, r85, r86, r87 ∈ Line

Axioms:

rightBackPP (c1, c2) ∧ rightBackPP (c1, c5) ∧ leftBackPP (c5, c8) ∧ backPP (c1, c8)

∧ backPP (c2, c5)

intersectLP (r21, c1) ∧ intersectLP (r21, c2) ∧ intersectLP (r52, c2) ∧ intersectLP (r52, c5) ∧ . . .

∀x, y ∈ Point ∀s ∈ LinkSchema : linked(x, y)

⇔ (anEnt(s) = x ∧ anotherEnt(s) = y) ∨ (anEnt(s) = y ∧ anotherEnt(s) = x)

∀s ∈ LinkSchema : linked(anEnt(s), anotherEnt(s))

∀l ∈ Line : exists!s ∈ LinkSchema : link(s) = l

∀x, y ∈ Point : linked(x, y) ⇔ linked(y, x)

∀x ∈ Point : ¬linked(x, x)

anEnt(lsc21) = c2 ∧ anotherEnt(lsc21) = c1 ∧ link(lsc21) = r21

anEnt(lsc52) = c5 ∧ anotherEnt(lsc52) = c2 ∧ link(lsc52) = r52 ∧ . . .

∀s ∈ SPGschema : source(s) 	= goal(s)

∀s ∈ SPGschema ∀l ∈ Point : ¬(isFollowedBy(l, source(s), path(s))

∨isFollowedBy(goal(s), l, path(s)))

∀s ∈ SPGschema ∀l ∈ Point : inPath(l, path(s)) ∧ l 	= source(s)

⇒ ∃!k ∈ Point : inPath(k, path(s)) ∧ isFollowedBy(k, l, path(s))

∀s ∈ SPGschema ∀l ∈ Point : inPath(l, path(s)) ∧ l 	= goal(s)

⇒ ∃!m ∈ Point : inPath(m, path(s)) ∧ isFollowedBy(l,m, path(s))

∀k, l ∈ Point ∀p ∈ Path : isFollowedBy(k, l, p) ∨ isFollowedBy(l, k, p)

⇒ inPath(k, p) ∧ inPath(l, p)

∀p ∈ Path∃!s ∈ SPGschema : path(s) = p

∀s ∈ SPGschema : inPath(source(s), path(s))

∀s ∈ SPGschema : inPath(goal(s), path(s))

∀s ∈ SPGschema∃!l ∈ Point : inPath(l, path(s)) ∧ placed(trajector(s), l)

∀k, l ∈ Point ∀p ∈ Path : linked(k, l) ⇔ isFollowedBy(k, l, p) ∨ isFollowedBy(l, k, p)
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path(s1) = p1 ∧ source(s1) = c8 ∧ goal(s1) = c1

path(s2) = p2 ∧ source(s2) = c8 ∧ goal(s2) = c1 ∧ . . .

isFollowedBy(c2, c1, p1) ∧ isFollowedBy(c5, c2, p1) ∧ isFollowedBy(c8, c5, p1)

isFollowedBy(c3, c1, p2) ∧ isFollowedBy(c5, c3, p2) ∧ isFollowedBy(c8, c5, p2) ∧ . . .

Theorems deducible from the blend (about points linked by lines and located in paths):

linked(c1, c2) ∧ linked(c2, c5) ∧ linked(c5, c8) ∧ . . .

inPath(c1, p1) ∧ inPath(c2, p1) ∧ inPath(c5, p1) ∧ inPath(c8, p1)

inPath(c1, p2) ∧ inPath(c3, p2) ∧ inPath(c5, p2) ∧ inPath(c8, p2) ∧ . . .
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