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Abstract

Image search with text feedback has promising impacts

in various real-world applications, such as e-commerce and

internet search. Given a reference image and text feedback

from user, the goal is to retrieve images that not only re-

semble the input image, but also change certain aspects in

accordance with the given text. This is a challenging task as

it requires the synergistic understanding of both image and

text. In this work, we tackle this task by a novel Visiolin-

guistic Attention Learning (VAL) framework. Specifically,

we propose a composite transformer that can be seamlessly

plugged in a CNN to selectively preserve and transform the

visual features conditioned on language semantics. By in-

serting multiple composite transformers at varying depths,

VAL is incentive to encapsulate the multi-granular visiolin-

guistic information, thus yielding an expressive represen-

tation for effective image search. We conduct comprehen-

sive evaluation on three datasets: Fashion200k, Shoes and

FashionIQ. Extensive experiments show our model exceeds

existing approaches on all datasets, demonstrating consis-

tent superiority in coping with various text feedbacks, in-

cluding attribute-like and natural language descriptions.

1. Introduction

Image search is a fundamental task in computer vision.

It has been serving as the cornerstone in a wide range of

application domains, such as internet search [42], fashion

retrieval [34], face recognition [57] and product identifica-

tion [44]. The most prevalent paradigms in image search

take either image or text as the input query to search for

items of interest, commonly known as image-to-image [15]

and text-to-image matching [12]. However, an intrinsic

downside of these paradigms lies in the infeasibility to re-

fine the retrieved items tailored to users’ intentions, espe-

cially when users cannot precisely describe their intentions

by a single image or with all the keywords.

To overcome the aforementioned limitation, different

user interactive signals have been explored over the past two

decades [61]. The basic idea is to incorporate user feedback

*Work partially done during an internship with Amazon.

…(a)

(b) …

I want a similar one but

change black to pink.

I want it to has a light 

floral pattern.

Figure 1. Given a reference image and user text as input, we con-

sider the task of retrieving new images that resemble the reference

image while changing certain aspects as specified by text. The text

generally describes the visual content to refine in reference image,

such as (a) a concrete attribute or (b) more abstract properties.

to refine or discover image items retrieved by the system

[52, 81, 70, 11, 45, 28, 27, 18, 79, 2, 39, 16, 48, 75, 17].

Most of these interactions are delivered in the form of text,

describing certain attributes [18, 79, 2] or relative attributes

[45, 28, 75] to refine or modify upon a reference image.

More recently, natural language feedback [17] is introduced

as a more flexible way to convey user’s intention for inter-

active image search. Despite having great potential value

in practice, incorporating various types of text feedback for

image search still remains understudied.

In this work, we investigate the task of image search with

text feedback, which entitles user to interact with the system

by selecting a reference image and providing additional text

to refine or modify the retrieval results. Unlike the prior

works that mostly focus on one type of text feedback, we

consider the more general form of text, which can be either

attribute-like description, or natural language expression.

This poses a more challenging multimodal learning prob-

lem that requires the synergistic understanding of both vi-

sual and linguistic contents at different granularities – the

given text may convey multi-granular semantics, ranging

from a concrete attribute to highly abstract visual proper-

ties (Fig. 1). As a task lying at the intersection of vision and

language, image search with text feedback, however, differs
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greatly from other extensively studied vision-and-language

tasks, such as image-text matching [12, 73, 67], image cap-

tioning [24, 60], and visual question answering [4, 60]. This

is because, it uniquely entails learning a composite repre-

sentation that can jointly capture visual cues and linguistic

information to match the target image of interest.

One intrinsic challenge is the difficulty to simultane-

ously preserve and transform the visual content in accor-

dance with the given text. For instance, when a text snip-

pet specifies the colour to modify (Fig. 1(a)), it means the

other visual cues such as silhouette, pattern, trim should all

be preserved in the retrieved items, with only the colour

transformed to the desired one. Another challenge is to

learn a composite representation that can jointly encapsu-

late visual and linguistic contents from coarse to fine-grain.

Since the text feedback may convey multi-level semantics

(Fig. 1), the composite representation is also expected to

capture the multi-granular visiolinguistic information. To

address these challenges in a unified solution, we propose

a novel Visiolinguistic Attention Learning (VAL) frame-

work, which fuses vision and language features via atten-

tion learning at varying representation depths.

Briefly, VAL is featured with multiple composite trans-

formers plugged at multi-level inside a CNN to compose

visual features and language semantics. Our core idea is to

learn the attentional transformation and preservation con-

currently, such that the composite features not only pre-

serve the unaltered visual content in image, but also trans-

form certain content as specified by text. To train our VAL,

we devise a hierarchical matching objective, which incen-

tivises exclusive alignments to the desired visual and se-

mantic features for discriminative feature learning.

To summarise, our contribution is two-fold:

• We tackle the challenging task of image search with text

feedback by a novel Visiolinguistic Attention Learning

(VAL) framework. VAL is characterised by multiple

composite transformers that compose multi-level visual

features and language semantics via attention learning.

Through a hierarchical matching objective, VAL is in-

centive to encapsulate visual and linguistic contents as

composite representations for effective image search.

• We set a new state-of-the-art on three datasets: Fash-

ion200k, Shoes, and FashionIQ. Remarkably, VAL per-

forms consistently well in coping with various types of

text feedback, demonstrating a greater potential in prac-

tical use. We also present an insightful ablation study to

analyse the underlying attentions learnt by VAL.

2. Related Work

Interactive image search aims to incorporate user feed-

back as an interactive signal to navigate the visual search. In

general, the user interaction can be given in various formats,

including relative attribute [45, 28, 75], attribute [79, 18, 2],

attribute-like modification text [66], natural language [16,

17], spatial layout [37], and sketch [76, 74, 14]. As text

is the most pervasive interaction between human and com-

puter in contemporary search engines, it naturally serves to

convey concrete information that elaborates user’s intricate

specification for image search. In this work, we investigate

various text feedbacks for image search. Thanks to the rich

annotations released recently on several fashion benchmark

datasets [18, 17], we present the first attempt to consider

richer forms of text feedback in one-turn interactive search,

including attribute-like and natural language expression.

Attention mechanism is widely adopted as an important

ingredient in various vision-and-language tasks, which aims

to mimic human’s capability of attending to salient sensory

information [7]. To steer where to fixate in images, spatial

attention is commonly used to assign importance weights

on image regions. This helps to select informative regions

for captioning [65, 3], or locate relevant visual content for

question answering [72, 82]. For attention learning in vision

and language domains, co-attention [36, 41] is generally

adopted to fuse visual and textual contents by generating at-

tention weights on image regions and question words. Re-

cently, several self-attention mechanisms are proposed for

VQA [77, 13, 23, 35], which builds upon transformer [64]

to learn the inter-modal or intra-modal latent attention. In-

spired by this line of works, we propose a generic visiolin-

guistic attention learning scheme, which learns the atten-

tional interactions upon the visiolinguistic features. Unlike

previous works that rely heavily on off-the-shelf Faster R-

CNN [51] to extract image region features, our approach

avoids the dependency on a pre-trained object detector, and

thus generalises well to fine-grained visual search, espe-

cially when the imagery data does not share the common

objects as those in the object detection datasets.

Composition learning is deemed as an essential function-

ality to build intelligent machine [29, 30]. The general aim

is to learn a feature encoding that encompasses multiple

primitives [38, 40, 62, 49, 69]. Although convolutional

neural networks (CNNs) inherently learn the composition

of visual parts [78, 5, 31], they do not explicitly tie visual

representation and language semantics in a compositional

way. Recently, several concurrent works [59, 56, 35] extend

the pre-training strategies from BERT [9] to learn the latent

compositional representations, which jointly represent im-

ages and descriptive texts for solving VQA, captioning, or

image-text matching. However, these works mostly fix the

image representation pre-extracted from a detection [51] or

recognition [71] model. This not only limits their applica-

bility to certain imagery domain, but also leads to an over-

all complex, heavy modelling framework. We propose a

remedy by injecting language semantics at varying depths

inside a CNN. This effectively yields a more powerful com-

posite representation with simpler, lighter modelling.
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Figure 2. An overview of our Visiolinguistic Attention Learning (VAL) framework. Given a pair of reference image and text as input,

our goal is to learn their composite representation that aligns exclusively to the target image representation. VAL contains three major

components: (a) an image encoder and (b) a text encoder (Sec. 3.1), (c) composite transformers (Sec. 3.2) that are plugged into different

convolution layers to compose the vision and language contents. All components are synergistically optimised by (d) hierarchical matching

(Sec. 3.3). Symbols of ⊙, ⊗, ⊕ stand for the Hadamard product, matrix multiplication and element-wise addition, respectively.

3. Visiolinguistic Attention Learning

Fig. 2 presents an overview of our Visiolinguistic

Attention Learning (VAL) framework. Given a reference

image and user text as input query, the ultimate aim of VAL

is to learn a composite representation that aligns exclusively

to the target image representation. VAL contains three com-

ponents: (a) an image encoder, (b) a text encoder for vi-

sion and language representation learning; and (c) multiple

composite transformers that absorb language semantics into

visual feature maps at varying depths. All components are

jointly optimised in an end-to-end manner via a hierarchical

matching objective. We start with an overview of two basic

components in Sec. 3.1, then elaborate our key ingredient

and model optimisation in Sec. 3.2, Sec. 3.3.

3.1. Representing Images and Texts

Image Representation. To encapsulate the visual contents

into discriminative representations, we employ an image

encoder, i.e. a standard CNN, for image representation

learning. As CNNs inherently learn visual concepts of in-

creasing abstraction in a compositional, hierarchical order

[5, 31, 78], we conjecture that image features from a sin-

gle convolution layer do not capture the visual information

of different granularities. Thus, we extract the feature maps

from multiple convolution layers to construct a build-in fea-

ture pyramid [33] for more expressive representation learn-

ing. Concretely, the feature pyramid F is obtained from

three different levels inside the CNN θCNN:

Fr = {xL
r ,x

M
r ,xH

r } = θCNN(Ir)

Ft = {xL
t ,x

M
t ,xH

t } = θCNN(It)

Here, Ir, It refer to the reference image and target image;

Fr, Ft are their corresponding feature pyramids, with each

containing multi-level feature maps x
L,xM ,xH extracted

from the Low, Mid, High-level convolution layers1.

Text Representation. To represent the semantics of texts,

we utilise a text encoder to map the user text T into a vec-

torised text representation. Formally, the text encoder is im-

plemented as an LSTM, followed by max-pooling and a lin-

ear projection layer. In brief, we first apply basic tokenising

on text, then feed the token sequence into the text encoder

to obtain the final text representation: t ∈ R
ℓ.

3.2. Composite Transformer

To jointly represent images and texts, we propose to

transform and preserve the visual features conditioned on

language semantics. Inspired by the superiority of trans-

former [64] in multimodal learning [23, 35], we devise a

composite transformer plugged at multi-level inside a CNN.

Our key idea is to learn a composite representation of image

and text through attentional transformation and preserva-

tion learnt upon the visiolinguistic features (Fig. 2(c)), with

the ultimate aim to capsule the essential visual and linguis-

tic contents for visual search, which we describe next.

Visiolinguistic Representation. To digest the information

flows from vision and language domains, the reference im-

age feature Fr, text feature t are first fused to obtain the

visiolinguistic represention. Formally, for feature maps xi
r

(where i=L,M,H is the level in feature pyramid), multi-

modal fusion is performed by concatenation with the text

feature t, followed by a composite function Fc to learn the

fused visiolinguistic feature x
i
vl:

x
i
vl = Fc([x

i
r, t]) (1)

1Refer to Supplementary Material for more architecture details.
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where [·, ·] denotes concatenation, which broadcasts the text

feature t spatially to match the shape of image feature x
i
r;

Fc is an MLP. Here, the input xi
r, output xi

vl are kept as 3D

feature tensors (i.e. xi
r,x

i
vl ∈ R

hi
×wi

×ci ) to ensure spatial

information is not collapsed due to global pooling – each

spatial vector conceptually corresponds to a part represen-

tation of image. Essentially, this composite process shares

similar spirit as Relation Network [53], in that pairwise vi-

siolinguistic relationships between the reference image and

input text are formed spatially in the output xi
vl.

After fusing image and text features to the visiolinguistic

feature xi
vl, we feed x

i
vl to a two-stream module for learning

the attentional transformation and preservation.

Self-Attentional Transformation. To self-discover the

latent region-to-region relationships essential for learning

the transformation, we feed the visiolinguistic feature x
i
vl

through a multi-head transformer2. The key insight is to

capture the important visiolinguistic cues via non-local self-

attention learning. This is achieved by first projecting x
i
vl

into the latent space as query, key, value (i.e. Q,K, V ):

Qi = FQ(x
i
vl), K

i = FK(xi
vl), V

i = FV (x
i
vl)

where FQ,FK ,FV are implemented as 1×1 convolutions;

Qi,Ki, V i ∈ R
hi

×wi
×c̄i are outputs in the latent space.

The self-attention is then derived by reshaping Qi,Ki to

R
n×c̄i (n=h×w), followed with matrix multiplication:

A
i
sa = softmax(

QiKiT

√
c̄

)

where A
i
sa ∈ R

n×n is the self-attention matrix, with each

element indicating the intensity of focus when learning the

transformation. The output of this stream is updated by ag-

gregating the essential information from the latent represen-

tation V , followed by a linear transformation layer Fsa:

o
i
sa = Fsa(A

i
saV ) (2)

where o
i
sa ∈ R

hi
×wi

×ci . In essence, this self-attentional

stream learns the non-local interactions [68, 50] among the

pairwise visiolinguistic relationships formed in x
i
vl. Per vi-

siolinguistic relationship, it generates an attention mask to

highlight the spatial long-range interdependencies that are

essential for learning the feature transformation.

Joint-Attentional Preservation. Whilst self-attention cap-

tures the non-local correlations for feature transformation,

it does not specify how should the reference image feature

x
i
r be preserved to resemble the input image Ir. To retain

the unaltered visual content in Ir, we introduce a joint-

attentional stream alongside the self-attentional stream.

Specifically, this stream contains spatial-channel attention

2We omit the multi-head formulation [64] of tensor split and concate-

nation to avoid clutter. Details are given in Supplementary Material.

learnt upon on the visiolinguistic feature x
i
vl to recalibrate

the strength of preservation on x
i
r. This is motivated that

different feature maps encode different semantics, e.g. col-

ors, materials, parts [80]. Thus, to selectively suppress and

highlight the visual content in Ir, attentional preservation is

introduced to selectively reuse the reference image feature

x
i
r. Formally, a lightweight joint-attention is learnt upon on

the visiolinguistic feature x
i
vl in a squeeze-and-excite man-

ner [22] to obtain the selective activation on x
i
r:

A
i
sp = sigmoid(Fsp(

1

ci

ci∑

j

x
i
vl(:, :, j)))

A
i
ch = sigmoid(Fch(

1

hi×wi

hi

∑

j

wi

∑

k

x
i
vl(j, k, :)))

A
i
ja = A

i
sp ⊙A

i
ch

where A
i
sp∈Rhi

×wi
×1, Ai

ch∈R1×1×ci , Ai
ja∈Rhi

×wi
×ci ;

Fsp, Fch are implemented as hi×wi, 1×1 convolutions to

learn the spatial, channel attentions A
i
sp,A

i
ch. A

i
ja is the

joint-attention matrix derived from A
i
sp,A

i
ch, which dy-

namically modulates the intensity to preserve the reference

image feature x
i
r:

o
i
ja = A

i
ja ⊙ x

i
r (3)

where o
i
ja ∈ R

hi
×wi

×ci . The final output of the composite

transformer is the weighted sum of outputs o
i
sa, oi

ja from

two complementary attentional streams:

o
i = wsao

i
sa + wjao

i
ja (4)

where wsa, wja are learnable scalars to control the relative

importance of two streams. The composite output of VAL

is denoted as Fo = {oL,oM ,oH} – a feature pyramid with

each level derived from one composite transformer. The

final composite feature used for image retrieval is simply the

concatenation of multi-level outputs after average-pooling.

3.3. Hierarchical Matching

As our ultimate aim is to align the composite output Fo

and the target image representation Ft exclusively, we for-

mulate a hierarchical matching objective, with two losses

formed in a two-level hierarchy to match with the desired

visual and semantic features (Fig. 3), as detailed next.

Primary visual-visual matching. We introduce visual-

visual matching as our primary objective to ensure the com-

posite feature match the target feature with high similarity.

Formally, with similarity measured by L2 distance d, a bi-

directional triplet ranking loss [10] is imposed to align the

multi-level feature maps in two feature pyramids Fo, Ft:

Lvv =

L,M,H
∑

i

Li(ō
i, x̄i

t)
︸ ︷︷ ︸

rank x̄

+Li(x̄
i
t, ō

i)
︸ ︷︷ ︸

rank ō

with Li(ō, x̄
i
t) = max(0, d(ōi, x̄i

t)− d(ōi, x̄i
n) +m)

(5)
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Figure 3. Feature matching in a two-level hierarchical space.

Here, ōi, x̄i
t are average-pooled features at ith level in fea-

ture pyramids Fo, Ft; m is distance margin. We adopt semi-

hard mining [54] to select the negative pair x̄i
n. Lvv con-

strains attention learning at multi-level to incentivise multi-

granular alignments across the network. Per level, Li en-

courages the composite feature ōi to match the target image

feature x̄i
t with a smaller distance than the negative pair x̄i

n.

Auxiliary visual-semantic matching. To further tie the

learnt representation with desired semantics, we introduce

visual-semantic matching as an auxiliary regulariser. This

is beneficial when images are tagged with descriptive texts

(e.g. product descriptions) to serve as side information dur-

ing training [55, 32]. Formally, a bi-directional triplet rank-

ing loss is imposed to align the projected visual feature and

its corresponding text feature in a shared embedding space

(Fig. 3(b):

Lvs =

L,M,H
∑

i

Li(x
i
v, tp)

︸ ︷︷ ︸

rank t

+Li(tp,x
i
v)

︸ ︷︷ ︸

rank x

with Li(x
i
v, tp) = max(0, d(xi

v, tp)− d(xi
v, tn) +m)

(6)

Here, xi
v ∈ R

ℓ is the projected visual feature mapped from

the visual space to the semantic space by a linear projection

Wvs; tp, tn are positive, negative text pairs. Lvs essen-

tially acts as a regulariser by aligning the projected feature

and its text feature, which can be imposed via pre-training

or joint training with Eq. 5 to tie visual representations with

corresponding semantics in a meaningful way.

4. Experiments

4.1. Experimental Setup

Datasets. To validate the model’s generalisability to vari-

ous text feedbacks, we evaluate on three datasets, including

(1) Fashion200k using attribute-like description, (2) Shoes

and FashionIQ using natural language expression. We de-

tails these datasets in Sec. 4.2, Sec. 4.3 and Sec. 4.4.

Compared Methods. To validate the efficacy of our ap-

proach in image search with text feedback, we compare

with four representative multimodal learning methods:

• Relationship [53]: A relation reasoning module. It takes

in feature maps extracted from the final layer of a CNN

and text feature from an RNN, followed by concatenation

and an MLP to learn the cross-modal relationships. The

pairwise relationships are simply summed and processed

through another MLP to get the final output.

• FiLM [47]: A Feature-wise Linear Modulation compo-

nent. It contains a stack of three FiLM layers cascaded

after a CNN. The text information is represented by the

text feature extracted from an RNN to modulate each fea-

ture map by affine transformation.

• MRN [25]: A Multimodal Residual Learning compo-

nent. It learns multimodal representations by fusing vi-

sual and textual features from a CNN and an RNN. The

cross-modal features are obtained through three blocks of

element-wise multiplication and residual learning.

• TIRG [66]: An image-text composition approach for im-

age retrieval. It composes visual and textual features by

concatenation, followed by learning a gating connection

and a residual connection for cross-modal fusion.

Discussion. Among the above methods, TIRG is proposed

for image search with attribute-like text feedback; whilst

others are originally used in VQA. However, unlike exist-

ing methods that stack transformation layers after a CNN,

VAL uniquely plugs the composite transformers at multi-

level inside a CNN to capture multi-granular visiolinguistic

information. In addition, VAL is specially featured with

two attentional streams that operate upon the visiolinguis-

tic features to selectively transform and preserve the visual

features conditioned on the language semantics. For a fair

comparison, we implement existing methods using the same

CNN, RNN trained by a bi-directional ranking loss.

Ablative baselines. Besides comparing with existing meth-

ods, we conduct several ablative tests on our model:

• VAL (Lvv): VAL optimised with the primary objective

(Eq. 5), i.e. auxiliary regulariser (Eq. 6) is not used.

• VAL (Lvv+Lvs): VAL trained by hierarchical matching,

using side information by joint training or pre-training.

• VAL (GloVe): It shares the same structure as VAL (Lvv+
Lvs), with word vectors initialised from GloVe [46].

The latter two tests endow our VAL model with prior lin-

guistic knowledge from side information and GloVe.

Implementation Details. We conduct all the experiments

in Tensorflow [1]. We initialise the CNNs pre-trained from

ImageNet [8], and integrate the composite transformers into

ResNet-50 [19] on Shoes, FashionIQ, and MobileNet [21]

on Fashion200k. In the self-attentional stream, we set the

number of heads to 2. The LSTM [20] is one-layer with

1024 hidden units, followed by a linear projection layer that

maps the max-pooled LSTM feature to the text feature of

512 dimension. We use Adam [26] optimiser with a con-

stant learning rate of 2×10−4 and α, β of 0.999, 1×10−8.

The batch size is set to 32. The margin m in Eq. 5, Eq. 6

is set to 0.2. More network architecture and training details

are given in Supplementary Material due to space limit.

Evaluation Metric. We adopt the standard evaluation met-

ric in retrieval, i.e. Recall@K, denoted as R@K for short.
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Figure 4. Qualitative results of image search with attribute-like text feedback on Fashion200k. blue/green boxes: reference/target images.

Method R@1 R@10 R@50

Han et al. [18] 6.3 19.9 38.3

Show and Tell [65] 12.3 40.2 61.8

Param Hashing [43] 12.2 40.0 61.7

FiLM [47] 12.9 39.5 61.9

Relationship [53] 13.0 40.5 62.4

MRN [25] 13.4 40.0 61.9

TIRG [66] 14.1 42.5 63.8

MRN 14.2 43.6 63.8

TIRG 14.8 43.7 64.1

VAL (Lvv) 21.2 49.0 68.8

VAL (Lvv + Lvs) 21.5 53.8 73.3

VAL (GloVe) 22.9 50.8 72.7

Table 1. Quantitative results of image search with text feedback

on Fashion200k. Rows in colours indicate results obtained with

the same networks and data. Overall 1st/2nd best in red/blue.

4.2. Fashion200k

Fashion200k [18] is a large-scale fashion dataset crawled

from multiple online shopping websites. It contains more

than 200k fashion images collected for attribute-based prod-

uct retrieval. It also covers a diverse range of fashion con-

cepts, with a total vocabulary size of 5,590. Each image is

tagged with descriptive texts as product description, such as

“white logo print t-shirt”, which is exploited

as side information for auxiliary supervision via joint train-

ing. Following [66], we use the training split of around 172k

images for training and the test set of 33,480 test queries for

evaluation. During training, pairwise images with attribute-

like modification texts are generated by comparing their

product descriptions (see Supplementary Material).

Table 1 shows our comparison with existing methods.

We reproduce the best competitors with the same networks

and optimiser for a like-to-like fair comparison. As can be

seen, our model demonstrates compelling results compared

to all other alternatives, e.g. VAL (Lvv) outperforms the

best competitor TIRG with an improved margin of 6.4%

in R@1. We also observe that (1) VAL (Lvv + Lvs) per-

forms better than VAL (Lvv), which indicates the advan-

tage of introducing auxiliary supervision to match with ad-

ditional semantics; (2) VAL (GloVe) performs on par with

VAL (Lvv + Lvs), suggesting using GloVe word vectors is

Method R@1 R@10 R@50

FiLM 10.19 38.89 68.30

MRN 11.74 41.70 67.01

Relationship 12.31 45.10 71.45

TIRG 12.60 45.45 69.39

VAL (Lvv) 16.49 49.12 73.53

VAL (Lvv + Lvs) 16.98 49.83 73.91

VAL (GloVe) 17.18 51.52 75.83

Table 2. Quantitative results of image search with text feedback

on Shoes. Rows in colour indicate results obtained with the same

networks and data. Overall 1st/2nd best in red/blue.

not so vital when using attribute-like text feedback.

Fig. 4 shows our qualitative results on Fashion200k. We

notice our model is able to retrieve new images that resem-

ble the reference image, while changing certain attributes

conditioned on text feedback, e.g. colour, material and trim.

4.3. Shoes

Shoes [6] is a dataset originally crawled from like.com. It

is further tagged with relative captions in natural language

for dialog-based interactive retrieval [16]. Following [16],

we use 10,000 training samples for training and 4,658 test

samples for evaluation. Besides relative captions, there are

3,000 images tagged with descriptive texts, such as “brown

buckle mules”, which are used as auxiliary supervision

(Eq. 6) for pre-training in VAL (Lvv+Lvs). Due to missing

results of state-of-the-art methods in composing image and

text for image search, we provide a new benchmark on this

dataset by performing experiments under the same networks

and optimiser for a comprehensive comparison.

Table 4 shows the clear superiority of our model com-

pared to other alternatives. For instance, VAL (Lvv) sur-

passes the best competitor TIRG by 3.89% in R@1. We

also notice the clear advantages of utilising prior linguistic

knowledge in VAL (Lvv +Lvs) and VAL (GloVe), as com-

pared to not using such knowledge in VAL (Lvv).

Fig. 5 further shows our qualitative results on Shoes. It

suggests our model is capable of ingesting multiple visual

attributes and properties in the natural language text feed-

back to search for the desired target images. More qualita-

tive results are given in Supplementary Material.
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are red with a 

woven top 

pattern

have no buckle 

or wedge heel

have fur on 

the outside

Figure 5. Qualitative results of image search with natural language text feedback on Shoes. blue/green boxes: reference/target images.

Method
Dress Shirt Toptee Avg

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

TIRG 8.10 23.27 11.06 28.08 7.71 23.44 8.96 24.93

Image+Text Concatenation 10.52 28.98 13.44 34.60 11.36 30.42 11.77 31.33

Side Information [17] 11.24 32.39 13.73 37.03 13.52 34.73 12.82 34.72

MRN 12.32 32.18 15.88 34.33 18.11 36.33 15.44 34.28

FiLM 14.23 33.34 15.04 34.09 17.30 37.68 15.52 35.04

TIRG 14.87 34.66 18.26 37.89 19.08 39.62 17.40 37.39

Relationship 15.44 38.08 18.33 38.63 21.10 44.77 18.29 40.49

VAL (Lvv) 21.12 42.19 21.03 43.44 25.64 49.49 22.60 45.04

VAL (Lvv + Lvs) 21.47 43.83 21.03 42.75 26.71 51.81 23.07 46.13

VAL (GloVe) 22.53 44.00 22.38 44.15 27.53 51.68 24.15 46.61

Table 3. Quantitative results of image search with text feedback on FashionIQ. Avg: averaged R@10/50 computed over three categories.

Rows in colour indicate results obtained with the same backbone networks (i.e. CNN, LSTM) and data. Overall 1st/2nd best in red/blue.

leopard print 

with deeper 

neck

is purple in 

color with 

playing cards 

graphic

is yellow 

with 

fringe

Figure 6. Qualitative results of image search with natural language text feedback on FashionIQ. blue/green boxes: reference/target images.

4.4. FashionIQ

FashionIQ [17] is a natural language based interac-

tive fashion product retrieval dataset. It contains 77,684

images crawled from Amazon.com, covering three cate-

gories: Dresses, Tops&Tees and Shirts. Among

the 46,609 training images, there are 18,000 image pairs,

with each pair accompanied with around two natural

language sentences that describe one or multiple visual

properties to modify in the reference image, such as

“is darker” and “has short sleeves and is

longer and more flowing”. We use the side infor-

mation from Fashion200k as auxiliary supervision for pre-

training in VAL (Lvv+Lvs). Following the same evaluation

protocol of composing image and text for retrieval [17], we

use the same training split and evaluate on the validation

set3. We report results on individual category, as well as the

averaged results over three categories4.

Table 3 shows our model outperforms other competitors

substantially, e.g. VAL (Lvv) surpasses Relationship with

an overall margin of 4.31% in R@10. We also notice the

performance boosts in VAL (Lvv +Lvs) and VAL (GloVe),

as compared to VAL (Lvv). This again indicates the benefit

of using prior linguistic knowledge from auxiliary seman-

tics and GloVe when using natural language text feedback.

Fig. 6 presents our qualitative results on FashionIQ. It

shows that given multiple semantic concepts within a sen-

tence snippet, our model captures both concrete and ab-

stract semantics, including various fashion elements [63]

3The groundtruth of test set in FashionIQ has not been released yet.
4The unpublished state-of-the-art uses an ensemble of diverse models.
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low-level mid-level high-level

less full skirt 

with slit to 

thigh

are teal 

suede with 

closed toes 

low-level mid-level high-levelaverage

(a) Example pairs (b) Joint-attention (c) Self-attention

Figure 7. Attention visualisation. (a) Example pairs of reference image, user text as input query, and desired target image output. (b) The

attended regions (i.e. the maximum magnitude along the channel dimension) for preservation selected by joint-attention at multi-levels;

and average attended regions across all levels. (c) The self-attention at the central query point, with arrows indicating the attended regions.

Method
Fashion200k FashionIQ (Avg) Shoes

R@1 R@10 R@10 R@50 R@1 R@10

w/o SA 16.3 46.9 21.94 44.56 7.85 42.33

w/o JA 19.9 48.8 21.31 43.74 13.43 42.01

VAL 21.2 49.0 22.60 45.04 16.49 50.09

Table 4. Ablation study on effect of attention learning.

like colour, silhouette, printing, etc. We also observe that

our model can jointly comprehend the global appearance

(e.g. overall colours, patterns), as well as local fine-grained

details (e.g. a specific logo and trim) for image search.

4.5. Ablation Study

In this section, we conduct analysis to give an insight of

the key ingredient in VAL (i.e. composite transformers). We

perform experiments with the primary objective (Eq. 5) to

exclude the effect of auxiliary regulariser.

Effect of self-attention and joint-attention. To anal-

yse the synergistic effect of self-attentional transformation

(SA) and joint-attention preservation (JA), we compare our

composite transformer with two baselines: (a) remove SA

stream (i.e. “w/o SA”); (b) remove JA stream (i.e. “w/o

JA”) – see a graphical illustration in Supplementary Mate-

rial. For each baseline, we remove one attentional stream

to study its effect. Table 4 shows the comparison on Fash-

ionIQ and Shoes. It can be seen that our VAL does profit

substantially from the complementary benefits of SA and

JA. This verifies our rationale of composing visual features

and language semantics through attentional transformation

and preservation learnt upon the visiolinguistic features.

Attention visualisation. To further interpret the attentions

learnt by VAL at varying representation depths (i.e. low,

mid, high level), we visualise the attended regions by joint-

attention and self-attention in Fig. 7. From Fig. 7(b), we no-

tice that the spatially attended region varies across different

levels. This indicates the joint-attention stream picks up dif-

ferent visual cues to preserve across varying depths. From

Fig. 7(c), we observe that the multi-level self-attention trig-

ger various attended regions for learning the transformation,

e.g. in the dress example, the low-level self-attention high-

lights the overall silhouette, while the mid, high-level self-
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Figure 8. Effect of composition at multi-level.

attentions pick up the thigh area to focus on.

Overall, Fig. 7 shows our model captures visual cues at

different granularities to selectively preserve and transform

the reference image features according to language seman-

tics. This suggests that VAL learns to capture the essential

multi-granular visiolinguistic contents for image search.

Effect of composition at multi-level. We test how compo-

sition at multi-level aids in representation learning by com-

paring VAL (high+mid+low) to two baselines: (a) high, (b)

high+mid, which perform composition at high or high+mid

level. Fig. 8 shows composition at multi-level improves the

overall performance. This verifies the efficacy of employ-

ing composite transformers at varying depths to capture the

multi-granular information, which also accords with the fact

that CNNs learn visual features of increasing abstraction

from lower to higher layers [58]. While focusing on multi-

modal representation learning, our model can also be inte-

grated with a dialogue manager [16] for interactive search.

5. Conclusion

We introduced VAL, a novel approach to tackle the chal-

lenging task of image search with text feedback. VAL is

featured with multiple composite transformers that selec-

tively preserve and transform multi-level visual features

conditioned on semantics to derive an expressive compos-

ite representation. We validate the efficacy of VAL on three

datasets, and demonstrate its consistent superiority in han-

dling various text feedbacks, including attribute-like de-

scription and natural language expression. We also explore

auxiliary semantics to further boost the model performance.

Overall, this work provides a novel approach along with a

comprehensive evaluation, which collectively advance the

research in interactive visual search using text feedback.
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