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Image Segmentation and Analysis via
Multiscale Gradient Watershed Hierarchies

John M. Gauch, Member, IEEE

Abstract—Multiscale image analysis has been used successfully
in a number of applications to classify image features according
to their relative scales. As a consequence, much has been learned
about the scale-space behavior of intensity extrema, edges, inten-
sity ridges, and grey-level blobs. In this paper, we investigate
the multiscale behavior of gradient watershed regions. These
regions are defined in terms of the gradient properties of the
gradient magnitude of the original image. Boundaries of gradient
watershed regions correspond to the edges of objects in an image.
Multiscale analysis of intensity minima in the gradient magnitude
image provides a mechanism for imposing a scale-based hierarchy
on the watersheds associated with these minima. This hierarchy
can be used to label watershed boundaries according to their
scale. This provides valuable insight into the multiscale properties
of edges in an image without following these curves through
scale-space. In addition, the gradient watershed region hierarchy
can be used for automatic or interactive image segmentation. By
selecting subtrees of the region hierarchy, visually sensible objects
in an image can be easily constructed.

Index Terms—Image segmentation, multiscale image analysis,
watershed regions.

I. INTRODUCTION

M
ULTISCALE image analysis and image segmentation

play an important role in many computer vision appli-

cations. Together, they provide an indication of where visually

sensible objects in an image are located and also information

about their relative size or importance. With this information,

it is possible to perform quantitative measurements of object

properties such as size, shape, position, and orientation, and to

accomplish higher level vision tasks such as object recognition.

Early multiresolution methods utilized somewhat ad hoc res-

olution reduction schemes, but they produced compact image

descriptions which were useful for a number of computer

vision tasks [7], [38]. Gaussian blurring was later introduced to

study the scale-space behavior of intensity extrema in signals

and images [26], [44]. One of the attractive properties of this

technique is that images simplify in a well behaved manner.

For example, Gaussian blurring does not create any zero

crossings as resolution is reduced [1], [45].

The multiscale behavior of a number of image features have

been examined. Paths traced by intensity extrema through
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scale-space have been used to study one-dimensional (1-D)

signals [11], [44]. The image stack is the result of similar

analysis of critical points in two-dimensional (2-D) images

[26]. This multiscale image representation has also been used

for image segmentation [27]. The multiscale behavior of grey-

level blobs (defined relative to intensity extrema) has been

used to develop a scale-space primal sketch and used for

image segmentation and analysis [28]. The performance of

both of these segmentation techniques suffered somewhat

because edge information was not explicitly included. Edges

defined by Laplacian of Gaussian zero crossings [30] and zeros

of directional derivatives [8], [20] have been traced through

multiple scales in an attempt to identify significant object

boundaries and deal with image noise [2], [22]. One problem

with these methods is the difficulty of retaining connected

edge segments through scale-space. A second difficulty is

constructing object regions from these boundaries.

The multiscale behavior of intensity ridges and valleys

in an image have also been studied [15]. Ridge tops and

valley bottoms were defined in terms of the local differential

geometry of the image (extrema of level curve curvature) and

followed through scale-space. This process results in well

localized ridges and valleys but involves costly multiscale

curve following. To simplify this analysis, a representation for

ridge tops and valley bottoms based on watershed boundaries

was utilized. The drainage patterns of simulated rainfall on an

image can be used to partition an image into watershed regions

called hills and dales [9], [31]. The boundaries of hills corre-

spond to ridge tops and the boundaries of dales correspond to

valley bottoms, so multiscale watershed analysis provides an

alternative method to study the scale-space behavior of ridges

and valleys in an image [16].

Mathematical morphology provides a powerful set of non-

linear image analysis tools which can be applied in a wide

variety of situations [13], [21], [41]. For example, images

can be segmented into visually sensible regions by finding

the watershed regions in a gradient magnitude image [32],

[42]. Oversegmentation is a well-known difficulty with this

approach, which has led to a number of approaches for merg-

ing watershed regions to obtain larger regions corresponding to

objects of interest [17], [19], [34], [39], [40]. The development

of morphological scale-space operations [10], [23] has also

made it possible to study the multiscale behavior of watershed

regions [24], [25]. One advantage of this approach is that no

new intensity extrema (or corresponding watershed regions)

are created as scale is increased. In spite of recent speed

improvements [5], [14] the mathematical morphology scale-

space approach remains computationally demanding.
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The focus of this paper is on the multiscale analysis of

watershed regions using a Gaussian filtering based scale-space.

In Section II, we review methods for computing watershed

regions and describe how multiscale analysis of the intensity

extrema in an image can be used to define a scale-based

hierarchy on watershed regions. We then show how the closed

boundaries of these watershed regions can then be labeled

with a visually meaningful measure of their importance. In

Section III, we show how multiscale analysis of intensity

extrema in the gradient magnitude image can be used to

define a hierarchy on the corresponding watershed regions.

We then show how this region hierarchy can be used to label

gradient watershed boundaries according to their scale, thereby

providing insight to the relative importance of edges in an

image without actually following these curves through scale-

space. Finally, we describe how the gradient watershed region

hierarchy can be used for automatic and interactive image

segmentation. By selecting subtrees of the region hierarchy,

visually sensible objects in an image can be easily constructed.

II. INTENSITY WATERSHED HIERARCHIES

Work on watersheds began over a hundred years ago when

Cayley and Maxwell [9], [31], described how smooth surfaces

could be decomposed into hills and dales by studying the

critical points and slope lines of a surface. By viewing intensity

in an image as elevation and simulating rainfall, it is possible to

decompose an image into watershed regions. Since this image

decomposition is useful for a number of purposes, a number of

methods to find watershed regions and their boundaries have

been devised.

Early watershed algorithms were developed to process dig-

ital elevation models and were based on local neighborhood

operations on square grids [12], [29], [37]. Improved gradient

following methods were subsequently devised to overcome

problems with intensity plateaus and square pixel grids [6],

[18], [35]. Other approaches use “immersion simulations”

to identify watershed regions by flooding the image with

water starting at intensity minima [3], [4], [42]. Here, a

variety of data structures including priority ordered queues

and hierarchical queues are used to efficiently select pixels to

add to watershed regions.

The level of activity in the area of watershed identification

reflects to some degree the difficulty of this task. Much

of the complexity of current techniques is indirectly due

to pixel quantization. For example, if a 5 5 region of

uniform intensity appears in the image, central pixels will

have a gradient of zero. In order to determine if this region

corresponds to a local maxima or minima or is part of a hillside

in the image, all of the neighbors of the flat region must be

examined. We avoid this complexity by working with Gaussian

smoothed floating point images. This removes all regions with

uniform intensity (except in the case of an input image with

only one intensity value). We can then use fast and simple

gradient following algorithms based on local pixel properties

to identify watershed regions.

Our investigation of watersheds has three phases. First,

we describe how watersheds and their boundaries can be

Fig. 1. Simple example of watershed regions and their boundaries. Gradient
vectors indicate the direction toward the lowest value 8-neighbor at each point.
All points drain to intensity minima 61 or 65, defining two watershed regions.
The watershed boundary is shown in bold.

computed for 2-D images. Then, we impose a scale-based

hierarchy on watershed regions based on the behavior of

critical points in the image under Gaussian blurring. Finally,

we use this watershed hierarchy to assign importance related

scales to watershed boundary segments. These techniques

extend naturally to three dimensions, but this is not described

in this paper.

A. Watersheds and Their Boundaries

Watersheds are traditionally defined in terms of the drainage

patterns of rainfall. Regions of terrain that drain to the same

point are defined to be part of the same watershed. The same

analysis can be applied to images by viewing intensity as

height. In this case, the image gradient is used to predict the

direction of drainage in an image. By following the image

gradient downhill from each point in the image, the set of

points which drain to each local intensity minimum can be

identified. These disjoint regions are called the watersheds of

the image. Similarly, the gradients can be followed uphill to

local intensity maximum in the image, defining the inverse

watersheds of the image.

Our first step in computing the watersheds for an image is

identifying the local intensity minima. These are the points

which define the bottoms of watersheds. Since an integer

valued image is often a poor approximation to a smooth

surface, the input image is converted to floating point and

blurred using a Gaussian filter to yield a smooth image .

This eliminates the plateaus in the image and simplifies the

process of identifying maxima and minima. To distinguish

these critical points, each pixel is compared with its eight

nearest neighbors. If all neighbors are greater than the central

pixel, it is identified as an intensity minimum (see Fig. 1).

Similarly, all eight neighbors of an intensity maximum are

less than the central pixel.

Next, we calculate the image gradient. The goal here is

to identify the drainage directions for each pixel in the

image. Rather than calculate the gradient based on the partial

derivatives of the image, the eight neighbors of each point

are searched to determine the most steeply uphill and most

steeply downhill directions (i.e., the morphological gradient).

These directions may or may not be in opposite directions

due to discreteness. Again, the blurred floating point image
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is used to avoid problems caused by plateaus. There are nine

possibilities for each of these directions (the central pixel could

be an extremum), which are encoded and stored in a temporary

image for use in the gradient following step of our algorithm.

Partitioning the input image into watersheds begins by

marking the locations of intensity minima with unique region

identifiers in an output image. For each of the remaining

points in the image, the gradient information is used to

follow the image downhill to some intensity minimum. The

identifier of this extremum is then recorded in the output

pixel corresponding to this starting point. Once all pixels in

the image have been associated with their respective minima,

the output image will contain the watershed regions of the

image. The boundaries of watershed regions correspond to the

tops of intensity ridges in the image. We locate the watershed

boundaries by scanning the region image from left to right

and then from top to bottom, detecting changes in watershed

region numbers (see Fig. 1).

In cases where the input image contains large regions

of uniform intensity, the location of intensity minima or

maxima in our Gaussian smoothed images may or may not

correspond to the geometric center of the original flat regions.

For example, if the neighbors of a flat region decrease in

intensity rapidly on the left and gradually on the right, the

detected location of the local maxima will be to the right of the

center of the original flat region. Fortunately, this potential for

poor extrema localization has little effect on the identification

of watershed regions since all points in the “plateau region”

drain to a single minima regardless of its location.

One important optimization we use is to terminate this

downhill search whenever we reach a pixel which has already

been associated with an intensity minimum. This limits the

length of our downhill search considerably. As a consequence,

our watershed program is comparable in speed with other

methods in the literature. For example, on a SUN SparcStation

IPX, our method takes an average of 5.0 s to process images

in our collection of 25 images. The immersion simulation

approach is reported to take 6.3 s for 512 512 images on the

same platform [42]. Faster watershed algorithms are now avail-

able [14], but we have not investigated their use in our system

since gradient tracking is also used in our multiscale analysis.

Since watershed boundaries are defined in terms of the

global drainage patterns of the image rather than local dif-

ferential geometry, we find that not all visually apparent ridge

tops in the image are marked as watershed boundaries. Only

those ridges that separate drainage basins are identified. Ridges

that correspond to flanks on the side of larger ridges are

not detected. This may or may not be a problem, depending

on the needs of the image analysis application. In very

smooth images that have few intensity minima, the tops of

some ridgelike structures may be missed. In more realistic

images there are thousands of intensity minima and associated

watershed regions. In this case, the image is oversegmented

and the problem is identifying which watershed boundaries

mark significant image structures. To address this problem,

we consider the multiscale behavior of watersheds and their

boundaries.

Fig. 2. Series of watershed basins and their associated intensity minima (*)
through scale space. As the blurring level increases from top left to bottom
right, the number of minima and their associated watersheds decrease.

B. Multiscale Watershed Hierarchies

The multiscale properties of watershed boundaries depends

on the multiscale behavior of the intensity extrema that define

these regions. It is well known that as an image is gradually

blurred with a series of Gaussians, the image structure sim-

plifies [26], [44]. This has led to a definition of scale-space

image sequence where an input

image is convolved with a sequence of Gaussians with

standard deviation . In the case of intensity extrema, we

typically expect the number of maxima, minima and saddle

points in to decrease as increases. As this blurring

progresses, all but one of the intensity extrema in an infinite

extent image will eventually move toward a saddle point and

annihilate. Watershed regions associated with these intensity

extrema are annihilated at the same time (see Fig. 2).

For 2-D images, there are circumstances where intensity

extrema and saddle points can also emerge as an image is

Gaussian blurred [27]. Thus, watersheds can occasionally be

created as scale decreases. In practice, this property of Gauss-

ian scale-space does not cause problems in our application

if the steps in scale-space chosen to be moderately large

(i.e., 50 steps in scale-space rather than 500 steps). As we shall

see, this is a consequence of our selection of evenly spaced

Gaussian blurring levels, and our method for linking regions

from one scale to the next.

To impose a multiscale hierarchy on watershed regions, the

paths of intensity extrema in the image must be followed as

blurring proceeds. When an intensity minimum annihilates

into a saddle, the water that drains toward the annihilated

minimum will now drain to some other intensity minimum in

the image. This defines the parent–child relationship between

these two watershed regions. The region associated with the

annihilated intensity minimum is said to be a subregion of

the watershed region which is directly downhill from the

annihilation point. By continuing this process for all intensity

extrema in the image, a hierarchy on watershed regions is

defined. The amount of blurring necessary to cause two regions
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to merge is related to the height and width of the ridge that

initially separated the regions. This is quite different from

approaches that merge based on the lowest intensity along

a ridge or the average intensity.

Given the original locations of intensity extrema in the

image, our extremum linking algorithm operates by following

these points through a predetermined sequence of blurring lev-

els. Rather than using the computationally expensive process

of linking all image points to their isointensity counterparts

from one level of blurring to the next [27], a fast heuristic

is employed. Gradient descent is used to link minima from

one blurring level to the next. Given an intensity minimum

at position at blurring level , we follow the image

gradient downhill from position in level until

another intensity minimum is encountered. This is recorded as

the link from level to level of the former minimum.

The links defined by this process will have duplicates

whenever there are fewer extrema in level than in level .

This occurs whenever local intensity extrema are annihilated.

For example, if the extremum at position annihilates at

blurring level , the extremum at will be linked by

gradient following to some other pixel at location in

level . At the same time, a second pixel very near

in level will also be linked to in level . To

determine which link corresponds to the annihilated extremum,

the lengths of all links from level to level are compared. If two

or more extremum points link to the same point, the extremum

with the shortest distance link is selected as the normal link,

while the other links are recorded as annihilation links. Thus,

each annihilated intensity extremum is linked to the extremum

at the next blurring level which is directly downhill from the

annihilated extremum.

Fortunately, our linking algorithm is less sensitive to the

choice of blurring rate than other multiscale methods because

we are only interested in building a watershed region hierarchy

based on how the intensity extrema in the image are linked

from level to level. Instead of using optimal blurring rates

[28] to compensate for variations in the annihilation rate of

critical points among images or as blurring proceeds, we

use a table-driven interpolation scheme to select a sequence

of Gaussian blurring standard deviations such that the

percentage change in the number of minima after each blur-

ring step remains approximately constant. Specifically, if we

have intensity minima at the lowest scale and

at the highest scale , and we desire interme-

diate scales, then the necessary percentage change is

. The sequence of blurring levels

chosen is then for . The

lookup function uses linear interpolation between known

values to return the blurring level with approximately

intensity minima. The choice of an appropriate value

for depends on the computational power available and

the desired accuracy of the watershed hierarchy. We have

experimented with a variety of values and find that

yields satisfactory results in reasonable time for most images.

It is easy to build a hierarchy on the watershed regions

in an image once we have determined the annihilation level

of intensity extrema and have established a parent–child rela-

Fig. 3. Associating scale with watershed boundaries. In case (a), region A
annihilates into B before region B annihilates into C, so the AB boundary is
assigned a low scale. In case (b), region B annihilates into C before region A
annihilates into C, so AB is assigned a high scale.

tionship between their associated regions. Because we ignore

the case of critical point creation, each region has a single

parent region, and the relationships between regions can be

described using a tree. The region associated with the final

intensity minima in the image is the root of this tree. There is

no limit on the number of subregions associated with any given

region, so the tree describing the region hierarchy can have an

arbitrary number of branches at every level. The situation is

not so straightforward when we describe scale of watershed

boundaries.

C. Associating Scale with Watershed Boundaries

Once a hierarchy has been imposed on the intensity minima

that define the bottoms watershed regions, our next objective

is to associate scale information with the individual curve

segments that make up the watershed boundaries. With this

measure of scale for each watershed boundary curve segment,

it is possible to estimate the importance of each ridgelike

structure in the image. Similarly, the importance of valleylike

image structures can be estimated using the scale of inverse

watershed boundaries.

One way to determine the scale of watershed boundaries

is to interpret watershed boundaries as water barriers that

disappear when adjacent watersheds annihilate into each other.

Thus, if region A annihilates into region B after blurring

steps, all boundary points which have both A and B as

neighbors should be labeled with scale . By continuing this

process for all of the annihilations between adjacent regions

recorded in the hierarchy table, the majority of the watershed

boundary points in the image will be labeled by scale.

The remaining unlabeled boundary points correspond to

situations where two adjacent regions do not annihilate directly

into each other (see Fig. 3). To handle this situation, the

watershed hierarchy is searched to find the lowest scale

watershed region that is a parent of both of these regions. The

scale of the boundary between these regions is then determined

to be the highest scale required for these two regions to

annihilate into the parent region. For example, if region A

annihilates into region B at scale and region B annihilates

into C at scale , the scale of the boundary between A and C

is equal to . This corresponds to the lowest scale at which

water originally in region A will mix with water from region C.
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(a) (b)

(c) (d)

Fig. 4. (a) Finger print image. (b) Corresponding scale labeled watershed boundaries. (c) Nerve cell image. (d) Corresponding scale labeled wa-
tershed boundaries.

Our algorithm for associating scale with watershed bound-

ary pixels has three steps: 1) scanning the watershed region

from left to right and from top to bottom to detect changes

in region number; 2) using the methods described above to

identify the scale of the boundary between these two adjacent

regions; and 3) recording this information in the output image.

To reduce the computation time required to identify the scale

of watershed boundaries, this information is calculated only

for adjacent watershed regions, not all region pairs. Once this

process is complete, the scale of all watershed boundaries are

recorded in an output image with intensity proportional to

scale. Displaying this grey-scale image gives an indication of

the importance of individual ridges (or valleys) in the original

image.

We have tested our algorithm on a number of images where

the structures of interest are ridgelike or valleylike (see Fig. 4).

For images of finger prints, the size and spacing of ridges is

very uniform. The scales assigned to ridge tops reflect this

and are quite uniform. For images of cells in a microscopic

image, watershed boundaries coincide with the outlines of

cells. Again, multiscale analysis yields watershed boundaries

whose scales correspond to the significance of structures in

the image.

III. GRADIENT WATERSHED HIERARCHIES

Whenever objects of interest in an image are bounded by

strong intensity discontinuities, it is reasonable to make use

of edges based on the intensity gradient to locate objects in

the image. If we consider the geometry of gradient magnitude

images, we find that ridge tops mark the edges of objects

in the image. Calculating the watershed regions for gradient

magnitude images has therefore proven to be an effective
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(a) (b)

(c) (d)

Fig. 5. (a) Face image. (b) Corresponding gradient watershed boundaries. (c) House image. (d) Corresponding gradient watershed boundaries .

means for image segmentation [3], [32]. In this section, we

begin by describing how gradient watersheds are computed for

a single image and then across multiple scales. This section

concludes with a discussion of our interactive hierarchy based

image segmentation system.

A. Gradient Watersheds and Their Boundaries

The process of computing the gradient watersheds and

boundaries for a given image is quite simple. First, the gradient

magnitude must be computed at every point in our floating

point image . We use symmetric finite differences,

but any reasonable method can be used. The resulting image

is then treated as an intensity image and watersheds and

their boundaries are computed using the method described in

Section II. The boundaries of gradient watersheds correspond

quite closely to the edges of the original image (see Fig. 5).

For face images, the boundaries of the eyes, mouth, hair,

and profile can be easily seen. The boundaries of visually

sensible regions are also present for typical outdoor images

and common medical images.

There are some important differences between this ap-

proach and other edge-detection–based segmentation methods.

First, object edges obtained by calculating gradient watershed

boundaries are always guaranteed to be connected and closed.

This is a consequence of the fact that watersheds are disjoint

connected regions. This means that all of the boundary edges

for a single object can be trivially extracted without complex

tracking or connecting of edges, thereby avoiding one of the

pitfalls of many edge detection methods.

Second, edges that correspond to cracks in objects or texture

within objects will not be output as gradient watershed bound-

aries. This is also a consequence of the fact that watersheds

are disjoint connected regions. This point may or may not be
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a problem for subsequent image analysis tasks. Quantitative

analysis such as computing areas or volumes will not be

affected. On the other hand, qualitative tasks such as detecting

fractures in structures may not be possible without additional

edge detection.

Third, gradient watershed regions can be used to interac-

tively construct the image region associated with an object

of interest. Since these regions do not to cross significant

edges in the original image, smaller building units are not

necessary. In very smooth images, this object segmentation

scheme will often be satisfactory, but in more realistic images

there will be thousands of gradient watershed regions due to

oversegmentation. Objects of interest in the image may consist

of dozens of regions. To construct larger object regions, we

have developed a scale-based hierarchy on these regions.

B. Multiscale Gradient Watershed Hierarchies

To build a scale-based hierarchy on gradient watershed

regions, we need to consider the multiscale properties of

the image gradient. The major question is how and when

should the image be smoothed. A natural choice is to apply

Gaussian blurring before computing the gradient magnitude.

Here, the input image is convolved with a Gaussian

with standard deviation to obtain a multiscale

image sequence. The gradient magnitude at each scale is then

calculated to yield a multiscale image sequence

. It is well known that the positions

of edges in an image change position as scale changes [2],

[30]. As blurring increases, edges associated with small objects

disappear and the corners of large objects are rounded. Edges

associated with long narrow objects in the image often spread

apart as the object is blurred. Ridges in the image

change position and height to reflect this behavior.

The multiscale behavior of intensity minima in the gradient

magnitude image is less obvious. Intensity minima in the gra-

dient magnitude image occur near the centers of homogeneous

regions in the original image. As blurring increases, the edges

separating homogeneous regions are gradually removed, and

one of the intensity minima associated with these regions is

annihilated. Intensity minima surrounded by taller and wider

image edges persist longer in scale-space, so the amount of

blurring necessary to cause extrema annihilation has a natural

correspondence with feature size.

Although it is possible to derive a relationship between

blurring level and the number of intensity extrema in an

image [28] the exact relationship between blurring level and

the number of extrema in the gradient magnitude image

is very difficult to predict. Rather than doing so, we have

pragmatically selected a sequence of blurring levels which

cause a fixed percentage of the intensity minima in the

gradient magnitude image to be annihilated at each blurring

step. Specifically, if we have gradient minima at the

lowest scale and at the highest scale , and

we desire intermediate scales, then the necessary percentage

change is . The sequence of

blurring levels chosen is then for

. The lookup function uses linear interpolation

(a)

(b)

(c)

(d)

Fig. 6. (a) Ten automatically selected of blurring levels. (b) Corresponding
number of gradient magnitude minima at each scale (bottom) for a typical
256 256 image. The interpolation table used to model the (m) function
consisted of only two values, so there is considerable difference between
the predicted and actual number of minima at each scale. (c) Twenty-five
computed blurring levels (d) Corresponding number of gradient magnitude
minima at each scale (bottom) for a typical 512 512 image. An interpolation
table with five entries produced an average difference between the actual and
predicted number of minima of less than 6%.

between known values to return the blurring level

with approximately minima in the gradient magnitude

image. When only two values are used to define ,

we can expect considerable error. When between five and ten

values are used, there is almost no difference between

the number of predicted gradient magnitude minima and the

number of minima detected (see Fig. 6).
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(a)

Fig. 7. (a) House image (top left), scale labeled gradient watershed boundaries (top right), high scale (sigma 10) gradient watershed boundaries (bottom
left), high scale (sigma 20) Canny edges (bottom right).

Fine sampling of scale-space reduces the chance of multiple

watershed regions merging into a single parent region when

constructing the region hierarchy. Coarse sampling requires

less computation time and often yields acceptable region

hierarchies. In practice, the choice of number of blurring

levels depends on the type of image being processed and

desired segmentation accuracy. For example, if we know that

each watershed region has approximately adjacent regions,

selecting and such that would result in each

parent merging with a single child most of the time. We

have experimented with values between 5 and 100, and

found that yields satisfactory segmentation results for

images in our collection.

The intensity minima of are linked from one level

of blurring to the next and used to construct a scale-based hi-

erarchy on the gradient watershed regions. This hierarchy was

then used to compute the scales associated the corresponding

region boundaries using the technique described in Section II.

The result is very promising. For a variety of natural and med-

ical images, the scale labeled watershed boundaries typically

correspond with visually sensible image edges (see Fig. 7).

Edges of large object features have higher scales (shown by

brighter lines) than edges of small scale image features (shown

by darker lines). We have found that by simply thresholding

this boundary scale image, it is often possible to obtain the

outlines of objects of interest in an image.

C. Interactive Image Segmentation

Once an image has been decomposed into visually sensible

atomic regions and a meaningful hierarchy has been imposed

on these regions, the process of segmenting an image is greatly

simplified. Users can point to objects of interest and use the

hierarchy to help them combine atomic regions to construct

the image region associated with these objects. Our current

system has one window where the original image is displayed

and an adjacent window where the object being segmented

is displayed. In a third window, we display the scale-labeled
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(b)

Fig. 7. (Continued.) (b) MRI brain image (top left), scale labeled gradient watershed boundaries (top right), high scale (sigma 10) gradient watershed
boundaries (bottom left), high scale (sigma 20) Canny edges (bottom right).

watershed boundaries computed from our region hierarchy.

Our system supports two interactive segmentation modes:

region painting and hierarchy traversal.

In region painting mode, the mouse is used to manually

select points within an object of interest. The inverse mapping

from coordinates is used to identify the selected region

number. All image points within this region can then be

displayed. By holding the mouse button down and moving

to adjacent regions, additional atomic regions can be simul-

taneously displayed. Unwanted regions can be deleted from

the object in a similar manner. Thus, the user can “paint” the

object of interest using watershed regions as building blocks.

Once the initial segmentation has been completed, additional

cleaning up of the boundary could be performed using a pixel

level paint brush. This system is always guaranteed to work,

but can become tedious. To reduce the number of region

selections necessary, we make use of watershed hierarchy.

In hierarchy traversal mode, the mouse is again used to

select watershed regions. The user can then move up the region

hierarchy to “grow” larger regions. Two choices are possible:

1) the user can move up one blurring level at a time and display

all regions which merge into the current region at blurring

levels less than or equal to the current level; or 2) the user can

move up to the parent region of the current region by following

the “annihilation link” and display all regions that merge into

the parent region below the corresponding annihilation level.

It is also possible to move down the hierarchy by reversing

the operations above. For a variety of images in our collection,

this approach enables users to specify objects of interest with

very little user interaction (see Fig. 8).

IV. CONCLUSION

In this paper, we have focused on the multiscale properties

of watershed boundaries and gradient watershed boundaries

for an image. We have described how scale-based watershed

region hierarchies can be created by following isolated extrema

through scale-space and how these hierarchies can be used
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Fig. 8. Interactive segmentation using region painting and hierarchy traversal for a house image (top) and an MRI brain image (bottom). The regions
shown were all specified using between two and ten mouse clicks.

for multiscale edge analysis and interactive image segmen-

tation. The three main advantages of this approach are as

follows.

1) Multiscale analysis of watershed regions is fast and easy.

There is a one-to-one relationship between intensity ex-

trema and watershed regions in the image. By exploiting

this relationship, we can build hierarchies on watershed

regions by simply following intensity extrema through

scale-space and detecting their annihilations. This is

much easier than following curve segments associated

with edges or ridge tops through multiple scales and

imposing a scale-based hierarchy on these structures.

2) We can associate visually sensible measurements of

importance to individual curve segments which make

up the boundaries of watershed regions. For images

with ridgelike structures, these scale labeled water-

shed boundaries mark the tops of ridges. For gradient

magnitude images, these curve segments correspond to

edges of objects in the original image. Thus, multiscale

watershed analysis can be used indirectly as an edge

detection method.

3) Interactive image segmentation tools can be constructed

which use gradient watershed region hierarchies to

quickly and easily identify image regions associated

with objects of interest. The use of region painting

and hierarchy traversal are general methods that could

be used with any region hierarchy of visually sensible

regions.

While the advantages of this multiscale image segmentation

and analysis approach are evident by our results, there are

several interesting questions that remain to be investigated. Of

primary interest is the mechanism for imposing scale-space.

We are presently evaluating the use of anisotropic diffusion

[36], [43] as an alternative to Gaussian blurring because of its

edge-preserving properties. In particular, we are investigating

how this smoothing method effects the motion and annihilation
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of intensity minima in the gradient magnitude image, and how

this effects the resulting watershed hierarchy.
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